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ABSTRACT 

The numerical simulation of flow around a three dimensional moving body faces different problems in 

several methods, such as disruption of the structure of the grid, the need for deletion and insertion of nodes, 

interpolation, and data transfer between different parts of grid. In order to tackle the above-mentioned 

problems, a new configuration has been developed for meshing domain, which besides providing the body 

with the capability of rotational and oscillatory motions in large displacements, saves the grid’s primitive 

quality. In the introduced method, the grid connections are manipulated with the motion of the body, but the 

general form of the grid is not changed or disrupted. This needs a special form for nodes of the grid, which is 

explained in this paper. The three dimensional unsteady form of the Euler equations is solved and the 

properties over each cell faces are evaluated using an averaging method. For time integration of the equations 

an implicit dual time method is used. It can prove that the volume of all elements is constant in the introduced 

grid. Therefore, there is no need to calculate elements volume in every time step. Several test cases are solved 

and the results are compared with experimental or other numerical data. 

 

Keywords: Three dimensional; Moving body; Oscillation; Grid connection; Unsteady.  

NOMENCLATURE 

Cp pressure coefficient 

Cn normal force coefficient 

Cm pitching moment coefficient 

c chord 

E total energy 

F convective flux in the x direction 

G convective flux in the y direction 

H convective flux in the z direction 

K reduce frequency 

M Mach number 

P pressure 

Q vector of conserved variable 

S surface 

t time 

ux component of Cartesian velocity  

vy component of Cartesian velocity 

 

 

w z component of Cartesian velocity 

ur relative velocity in the x direction 

vr relative velocity in the y direction 

wr relative velocity in the z direction 

V volume 

xt velocity of control-volume boundary in the x 

direction 

yt velocity of control-volume boundary in the y 

direction 

zt velocity of control-volume boundary in the z 

direction 

 

α angle of attack 

γ ratio of specific heat 

𝜌 density 

τ pseudo-time 

ω angular frequency 

 
 

 

1. INTRODUCTION 

Simulation of flow around a 3-D moving body can, 

in view of its various applications in sciences and 

engineering, prove very useful. Particularly in 

aerospace science, modeling the rotational motions 

of aerospace vehicles around various axes, 

maneuvers of aircrafts and movement of blades of 

articulated rotors in helicopters which have 3-D 

rotation, the three dimensional simulation is needed. 

Numerical simulation of flow consists of two 

general steps, the first step involves computational 
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grid generation in solution domain and the second 

step involves analysis of flow with using the 

selected method. The primitive grid becomes 

useless as body is displaced; therefore, the 

numerical simulation of flow around a moving body 

needs an efficient computational grid; an intelligent 

grid able to intelligently adapt itself to the motion of 

body. This is especially needed in three dimensional 

spaces and large motions. 

The first method in this regard is regeneration of the 

grid after each body motion and modification of 

boundaries which are not acceptable because of 

repeated interpolations and time consumption 

(Goswami and Parpia 1991; Gaitonde and Fiddes 

1995). 

In the dynamic grid, the motions of the body are 

transferred to grid elements. Batina (1989) assumed 

that the nodes in the domain are inter-connected via 

springs. After each change in body location, a 

smoothening process is performed through the 

balancing of the spring force. Spring factor is 

selected by the user, and the first choice is selection 

of the same spring factor for all of springs (Hase, 

Anderson, and Parpia 1991). The other choice is 

selection of the spring factor with the reverse of the 

distance between two nodes, which causes the 

nodes that are closer to have smaller displacements 

and, hence, the reduction of grid quality is delayed. 

In complex geometries and large motions of the 

body, to prevent the interference of elements, the 

angle between nodes connection is taken into 

consideration in, the definition of the spring 

elasticity coefficient (Batina, 1991; Pirzadeh, 1999). 

Use of torsion springs near linear springs is another 

strategy that has been considered (Degand and 

Farhat 2002; Zeng and Ethier 2005). Generally, 

using this technique in large motions can reduce 

grid quality and, in some cases, grid regeneration is 

needed locally. 

In order to tackle the aforementioned problems and 

keep the quality of elements surrounding the body, 

in the moving zonal grid, the motions are 

transferred to elements of a layer that is selected 

around and far from the body. The elements of this 

layer are larger and their quality is reduced later 

(Zhang and Wang 2004). The method of choosing 

this layer is different in various methods and is 

time-consuming, with decreasing elements quality 

of this layer a new layer must be considered. For 

solving this problem, Mirsajedi, Karimian, and 

Mani (2006) and Mirsajedi and Karimian (2006a, 

2006b) used a circular layer of elements in two 

dimensions and cylindrical shell in three 

dimensions. Therefore a body can rotate without 

any limitation in two dimensions but in three 

dimensions is limited around one of the three axes 

e.g. rolling, pitching or yawing. 

Overset grid is composed of two grids: the main 

grid and the local grid. The local grid, along with 

the body, moves on the main grid. Data transfer 

between the two grids is very difficult and usually 

needs a structured grid or the unstructured Cartesian 

grid. Recently, unstructured grids are also used in 

the overset grid method. Since several 

interpolations are required in this method, special 

attention should be given to the accuracy of the 

method (Togashi, Ito, Nakahashi, and Obayashi, 

2006; Liu and Akay, 2010; Kannan and Wang 

2007; Kannan and Wang 2006; Cai, Tsai and Liu 

2005). 

Additional details and some of the applications of 

the mentioned methods are presented in references: 

Karimian and Ardakani (2011); Younis, Bibi, 

Haque and Khushnood (2009); Srinivasa Rao and 

Babu (2013); Ou and Jameson (2010); Ou, 

Castonguay and Jameson (2011); Ou and Jameson 

(2011) and Kamkar, Wissink, Sankaran and 

Jameson (2012). 

Most of the current methods attempt to fix grid 

connections as much as possible, which leads to 

reduction of the amount of grid quality and 

limitation body motions. For solving above 

mentioned problems and developing method of 

Mirsajedi and Karimian (2006a), introduces a new 

algorithm for simulation of flow around a body with 

rotational motion. In this algorithm, making regular 

and foreseeable changes in grid connection, besides 

modeling the large motions of the body, the original 

grid quality is preserved, and there is no need for 

local regeneration or deletion/insertion of nodes, 

interpolation of properties, and transfer of data 

between to the regions. 

In order to model the simultaneous rotation in 

different directions, three nesting sphere regions 

around the body were considered, each of which 

covered the rotation around one axis i.e. pitch, roll 

and yaw, and therefore, the rotational motion of the 

body was obtained in general. Elements of each 

region rotate rigidly and only one spherical shell 

between two the regions is deformed. To keep the 

quality of the grid in the rotational motion of the 

body, the grid adapts itself to the new rotation by 

manipulating the connections. 

Therefore, in order to have a regular scheme for 

connection manipulations, the surface elements on 

each sphere must have rotational symmetry around 

an axis. This is obtained by using a circuit and 

meridian form for dividing the surface of each 

sphere. This form has a rotational symmetry around 

the axis that crosses two sphere poles. 

The unsteady form of the Euler equations is solved 

and the properties over each cell faces are evaluated 

using an averaging method, in this method added 

numerical dissipative term to equations with using 

Jameson method (Jameson, Schmidt, and Turkel 

1981; Jameson and Mavriplis 1986). For time 

integration of equations used an implicit dual time 

method (Jameson 1991; Gaitonde 1994; Jahangirian 

and Hadidoolabi 2004). Considering the fixedness of 

the volume of elements in rotational motions of the 

body in the introduced grid, there is no need to 

calculate elements volume in every time step therefore 

the calculations decreases. However, to accelerate 

convergence, local pseudo-time stepping, enthalpy 

damping and residual averaging are used (Jameson, 

Schmidt, and Turkel 1981). For more evaluation of 

this method during body rotation, several test cases 

are solved and discussed in this paper. 
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a) 3-D view                                                                            b) 2D view 

Fig. 1. Three spheres cut around the 3-D body (airplane wing). 

 

 
Fig. 2. Circuit and meridian form.                        Fig. 3. Form of elements in spherical shell. 

 

2. GRID CONFIGURATION 

Every rotational motion of the body can be divided 

into rotation around x-axis, y-axis and z-axis. For 

each rotation mentioned, one spherical region is 

considered around body. Region (A) starts at the 

body surface and continues to the surface of the 

interior sphere; region (B) covers the space between 

the interior sphere and the middle sphere; and 

finally, region (C) begins from the middle sphere 

and continues to the outer sphere. The three regions 

are cut around a wing, as illustrated in Fig. 1. 

If we assume the interior sphere for rotation around 

x-axis, the middle sphere for rotation around y-axis, 

and the outer sphere for rotation around z-axis, 

when the body rotates around axis-x, the interior 

sphere must rotate around x-axis along with the 

elements of Region (A); and when the body rotates 

around axis-y, the middle sphere along with the 

elements of Region (A) and (B) will rotate around 

the y-axis. Accordingly, for the body to rotate 

around the z-axis, the outer sphere along with the 

elements of Regions (A), (B) and (C) must rotate 

around the z-axis. Therefore, the rotation of the 

body in any direction and at the same time is 

possible.  

But this method is not complete yet, because with 

the rotation of spheres, boundary elements between 

each neighboring pairs of regions are deformed and 

their quality is extremely reduced. To solve this 

problem, in the boundary of each pair of regions, a 

spherical shell is used in which the deformation is 

transferred to these elements. This has two 

advantages: first the deformed elements are 

completely clear and there is no need to search all 

of domain to find them; and, second, the 

deformable elements are far from the body surface. 

Considering the intended idea based on the 

manipulation of the grid connections with the 

rotation of the body, surface elements must have 

symmetric rotation. If it was possible to achieve a 

form of the surface elements that have symmetric 

rotation in every direction, the use of three spheres 

would not be necessary and a single sphere would 

be enough, Of course this is impossible. Therefore 

the surface of each sphere must be divided into the 

circuit and meridian form. As illustrated in Fig. 2, 

except the elements located at the two poles of the 

sphere, other elements have a square surface, and  

the elements near the poles have triangular form.  
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Fig. 4. Three spheres with different radii. 

 

 

It should be noted that the inner and outer surfaces 

of each shell must have the same meshing so that 

the majority of the elements of the deformable shell 

have a hexahedral and cubic form and other 

elements that are near the two poles have a wedge-

like form (Fig. 3). 

Considering the fact that rotation in the other two 

perpendicular directions is needed to achieve the 

general modeling of the body, the surface of the 

other spheres must be divided in the same way; i.e., 

the surface of the shell in each sphere must be 

meshed with circuit and meridian forms, with the 

difference being that the axis passing through the 

two poles is along one of the coordinate axes in 

each of the spheres. This causes each sphere to have 

symmetric rotation around one coordinate axis and 

that is used as rotation around that axis. As 

mentioned earlier, in order to have the three 

rotational motions in one body, the radii of the 

spheres must be different (Fig. 4). 

3. ESTIMATION OF THE DOMAIN 

DIMENSIONS 

In this section, the factors effective on determining 

the dimension of the domain are investigated. The 

radius of the internal sphere should be in such a 

way that it totally covers the moving body and the 

required space for arranging qualified elements, 

from the surface of the moving body to the surface 

of the sphere (region A) existed.  

The middle sphere which covers the internal sphere 

should have a larger radius than that of the internal 

one and regarding the difference between the mode 

of positioning surface elements of the two internal 

and middle spheres, the amount of increasing the 

radius is so much that the elements of the region (B) 

have the capability of matching itself from the 

surface mesh of the internal sphere to the surface 

mesh of the middle sphere. In case of insufficiency 

of this distance, elements will not enjoy required 

quality.   

Furthermore, the external sphere which covers the 

two internal and middle spheres naturally should 

have a larger radius than those of the two previous 

ones and like the middle, with considering the 

surface elements of the middle and external sphere 

which are located in two opposite direction, the 

value of the radius is determined in such a way that 

the elements of the region (C) be qualified.  

Considering this point is important that the defined 

regions, as much as possible, should have smaller 

dimensions because in this case, producing 

elements and consequently required controls on 

them decreases and the capability of simulating 

some moving body simultaneously increase in the 

solution domain. 

 

 
Fig. 5. Three spherical shell cut around the 3-D 

body (airplane wing). 
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a) 3-D view                                                        b) 2D view 

Fig. 6. Interior sphere and shell around a wing cut along the equator. 

 
The thickness of the deformable shell composed of 

one element should be determined regarding the 

dimensions of the surface elements of the sphere, in 

fact we pursue the cubic elements of the shell to get 

more symmetric in order that the applied 

deformations in the distance between two stages of 

the manipulations in grid connections decrease less 

the quality of the elements of this shell; therefore, 

the smaller the surface elements of the sphere are, 

the thickness of the deformable shell are less 

considered and vice versa, by increasing the surface 

elements of the sphere, the thickness of the 

deformable shell increases. By considering this 

factor, the thickness of the deformable shell is 

considered as equal to the mean of two dimensions 

of the surface elements of the spheres.  

The number of the circuits are considered in such a 

way that the surface elements of spheres be shaped 

in the form of isosceles triangles and squares as 

much as possible. With this in mind, the number of 

the circuits depends on the number of the meridians 

and by increasing the number of the meridians, the 

number of circuits increases.  

The number of the meridians is available for users, 

but it should at least be so many that the grid can 

cover the curvature of the sphere and consequently 

by increasing the number of the meridians, more 

compliance will be established between the grid 

surface and the sphere surface. However, it should 

be consider that the increase in the number of the 

meridians and consequently the circuits and surface 

and volume elements will engender specific 

problems. (Fig. 5) 

 

4. GRID OPERATION  

To figure out the operation of the grid, the inner-

most sphere along with shell is selected and the 

changes made in it after body motions and its 

special manner of adapting to the changes is 

described. Naturally, the two other spheres have 

similar manner. 

A rectangular wing with NACA0012 airfoil is used 

for moving body. If we assume that the surface 

elements of the interior sphere are such that the 

main axis of the sphere that passes through its two 

poles is perpendicular to the surface of the paper, by 

cutting it along the equator (middle circuit) can we 

observe the internal part as shown in Fig. 6. It is 

obvious in this figure that by dividing the body 

surface with unstructured element, the region 

between body and spherical shell is filled with 

tetrahedral elements and only a few pyramidal 

elements in this region are adjacent to the spherical 

shell and exist in the sections that have the square 

surface elements. As it was previously pointed out, 

shell elements have a cubic form and just near the 

two poles have a wedge-like form. 

After the rotation or oscillation of the body, all 

nodes and elements in the sphere move rigidly 

along with the body and are not deformed. 

This way, the quality of the grid near the body is 

maintained. Only the nodes on the outer part of the 

shell remain fixed and do not move; therefore, the 

elements in the shell are deformed. Fig. 7 illustrates 

the grid after rotation. 

With increase in rotation, the quality of the shell 

elements is reduced and the elements are deformed 

badly. In order to remedy this drawback, by 

manipulating the connections of the elements in this 

region, the component nodes of each element 

change. Considering the fact that angular distance 

of nodes in circuits of sphere are equal, in this 

process when each node on the inner part of the 

shell reaches the previous position of its neighbor 

node, a new connection between two nodes vis-à-

vis comes to existence (Fig. 8). As it is evident, no 

node is deleted or inserted, but as the connections 

are manipulated, the structure of elements in the 

shell is modified and the grid returns to its original 

quality. Figure 9 displays the motion of the inner 

nodes in one circuit of the shell as well as 

manipulation of connections for one phase. 

Moreover, changes in data structure of the shell in 

one circuit are shown in Table 1. 
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a) 3-D view                                                                  b) 2D view 

Fig. 7. Interior sphere and shell after wing rotation 

 

 
a) 3-D view                                                                          b) 2D view 

Fig. 8. Interior sphere after manipulating the nodes connection of shell elements. 

 

 
a) Before rotation 

b) After rotation of the inner part  

c) After rotation when each node on the inner part reaches the previous position of its neighbor node 

d) After rotation and manipulating the nodes connection 
 

Fig. 9. Connections manipulation process in the shell elements. 
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Table 1 Renumbering in data structure of the shell elements, colored cells are variable 

Elements No. 1 2 … n-1 n 

Nodes before manipulating the 

connections 

𝐴1̅̅̅̅  𝐴2̅̅̅̅  𝐴2̅̅̅̅  𝐴3̅̅̅̅  … … 𝐴𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐴𝑛̅̅̅̅  𝐴𝑛̅̅̅̅  𝐴1̅̅̅̅  

A1 A2 A2 A3 … … An-1 An An A1 

Nodes after 1 manipulating the 

connections 

𝐴1̅̅̅̅  𝐴2̅̅̅̅  𝐴2̅̅̅̅  𝐴3̅̅̅̅  … … 𝐴𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐴𝑛̅̅̅̅  𝐴𝑛̅̅̅̅  𝐴1̅̅̅̅  

An A1 A1 A2 … … An-2 An-1 An-1 An 

Nodes after 2 manipulating the 

connections 

𝐴1̅̅̅̅  𝐴2̅̅̅̅  𝐴2̅̅̅̅  𝐴3̅̅̅̅  … … 𝐴𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐴𝑛̅̅̅̅  𝐴𝑛̅̅̅̅  𝐴1̅̅̅̅  

An-1 An An A1 … … An-3 An-2 An-2 An-1 

. 
… … … … … … … … … … 

… … … … … … … … … … 

 

 
a) 3-D view                                                                                             b) 2D view 

Fig. 10. Interior sphere after 𝟕𝟎° rotation of wing and 5 phases of connections’ manipulation. 

 

 

Through this method, the body can rotate freely 

without experiencing any major deformation in grid 

elements. The only necessity is that the connection 

nodes are reformed considering the amount of 

rotation. The written software manipulates the 

connections regarding the rotation degree without 

the interference of user (Fig. 10). Therefore, using 

this method, the grid is able to adapt to any rotation 

or oscillation with no need to re-mesh. Also, with 

known deformable elements, there is no need to use 

an algorithm search to find deformed elements. In 

addition, the quality of elements is maintained even 

in large motions of the body and a grid with high 

quality is always available for the user. As for a 

limitation of the presented moving grid method, the 

incapability of modeling the simultaneous rotation 

of two bodies with a small distance can be 

mentioned. 

5. SOLUTION ALGORITHM 

The three dimensional unsteady compressible Euler 

equations in the Cartesian coordinate system can be 

written as  

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0                                           (1) 

Where Q, the vector of conserved quantities, is 

given as 

Q =

[
 
 
 
 

ρ

ρu
ρv
ρw
ρE]

 
 
 
 

                                                             (2) 

And the convective fluxes F, G and H in the 

corresponding x, y and z coordinate directions are 

defined as 

F =

[
 
 
 
 

ρur

ρuru + P
ρurv
ρurw

(ρE + P)ur + xtP]
 
 
 
 

 

G =

[
 
 
 
 

ρvr

ρvru
ρvrv + P

ρvrw
(ρE + P)vr + ytP]

 
 
 
 

                                        (3) 

H =

[
 
 
 
 

ρwr

ρwru
ρwrv + P
ρwrw + P

(ρE + P)wr + ztP]
 
 
 
 

 

Where ρ, P, u, v, w, xt, yt, zt, ur, vr, wrand E denote 

density, pressure, Cartesian velocity components, 

Cartesian velocity components of control-volume 

boundary, relative velocities and total energy 
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respectively. 

 The relative velocities are defined as 

ur = u − xt, vr = v − yt, wr = w − zt 

The Eq. (1) are augmented by the equation of state, 

which for a perfect gas is given by 

P = (γ − 1) [ρE − ρ
u2 + v2 + w2

2
]                      (4) 

Where γ is the ratio of specific heat. 

For a control volume with volume v and surface s, 

Eq.(1) can be rewritten in integral form as 

∂

∂t
∰ QdV + ∯ (

∂F

∂x
+

∂G

∂ySv

+
∂H

∂z
)dS = 0.      (5) 

Appling Eq. (5) to each cell in the domain 

independently, the spatial and time dependent terms 

are decoupled and a set of ODE`s is obtained in the 

following form 

d

dt
(QiVi) + Ri(Q) = 0                                               (6) 

That first term of above equation indicant change in 

control-volume depend of time and Ri(Q) is the 

convective fluxes of cell faces. Where Vi is the cell 

volume, considering the fact that the form of the 

elements outside the spherical shell is constant, 

these elements will have no volume change in 

relation to time. Of course, no volume changes 

occur in the shell elements in rotational motions due 

to the existence of symmetry. Therefore, we may 

conclude that the volume of all elements is constant 

in relation to time and Eq. (6) can be rewritten 

accordingly: 

Vi

d

dt
(Qi) + Ri(Q) = 0                                              (7) 

The properties over each cell faces are evaluated 

using an averaging method. In this method added 

numerical dissipative term to Eq. (7) with using 

Jameson method (Jameson, Schmidt, and Turkel 

1981; Jameson and Mavriplis 1986). 

Vi

d

dt
(Qi) + Ri(Q) − Di(Q) = 0                              (8) 

The numerical dissipative term in three dimensional 

is defined as 

Di(Q) =  ∑ dik

N

K=1

                                                         (9) 

Where dik of numerical dissipative terms at the 

boundary face cells i and k, is defined as  

dik = (
Vi

∆t
+

Vk

∆t
) [

ϵik
2

2
(Qi − Qk)

+
ϵik
4

2
(∇2Qi − ∇2Qk)]        (10) 

where 

∇2Qi = ∑(Qk − Qi)

n

K=1

 , 

ϵik
2 = k2 max(vik) , 

ϵik
4 = max(0, k4 − ϵik

2 ) , 

vik = |
Pi − Pk

Pi + Pk
| 

And the constant values  k2 and k4 are  

k2 = 0.9 

k4 = 0.02 

For time integration of equations used an implicit 

dual time method (Jameson 1991; Gaitonde 1994; 

Jahangirian and Hadidoolabi 2004), in real time a 

second order accurate backward difference formula 

(BDF) is used as follows 

Vi [
3

2∆t
(Qi

n+1) −
2

∆t
(Qi

n) +
1

2∆t
(Qi

n−1)]

+ Ri(Q
n+1) − Di(Q

n+1) = 0      

   (11) 

With rewriting above equation in each time step 

Vi

∂Qi
n+1

∂τ
+ Ri

∗(Qn+1) = 0                                     (12) 

Where τ is pseudo-time and Ri
∗(Qn+1) is the 

unsteady residual, that is given by 

Ri
∗(Qn+1)     

= Vi [
3

2∆t
(Qi

n+1) −
2

∆t
(Qi

n) +
1

2∆t
(Qi

n−1)]  

+ Ri(Q
n+1) − Di(Q

n+1)                                         (13) 

For solving Eq. (12) an explicit Runge-Kutta 

multistage method is used, the four-stage Runge-

Kutta method is given by 

Q(0) = (Qi
n+1)

m
 

Q(1) = Q(0) −∝1

∆τ

Vi
Ri

∗(Q(0)) 

Q(2) = Q(0) −∝2

∆τ

Vi
Ri

∗(Q(1)) 

Q(3) = Q(0) −∝3

∆τ

Vi
Ri

∗(Q(2)) 

Q(4) = Q(0) −∝4

∆τ

Vi
Ri

∗(Q(3)) 

(Qi
n+1)

m+1
= Q(4) 

Where 

Ri
∗(Ql) = Vi [

3

2∆t
(Qi

l) −
2

∆t
(Qi

n) +
1

2∆t
(Qi

n−1)]

+ Ri(Q
l) − Di(Q

0). 

And typical values of the constant α1, α2, α3 and α4 

are 

α1 = 0.333 

α2 = 0.2667 

α3 = 0.555 

α4 = 1.0 

to accelerate convergence, local pseudo-time  
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a) Comparison of pressure distribution                                  b) pressure contour at the middle of span 

Fig. 11. The NACA0012 airfoil in subsonic flow with 𝐌∞ = 𝟎. 𝟓, ∝= 𝟎°. 

 

 
a) Comparison of pressure distribution                                  b) pressure contour at the middle of span 

Fig. 12. The NACA0012 airfoil in transonic flow with 𝐌∞ = 𝟎. 𝟖𝟓,∝= 𝟏°. 
 

 
a) Pressure distribution                                   b) pressure contour at the middle of span 

Fig. 13. The NACA0012 airfoil in supersonic flow with 𝐌∞ = 𝟏. 𝟐, ∝= 𝟕°. 
 

 

stepping, enthalpy damping and residual averaging 

are used (Jameson, Schmidt, and Turkel 1981). 

In the far field, non-reflecting boundary conditions 

are used based on the characteristic analysis. At the 

solid wall boundary, the normal velocity is set equal 

to zero, since no mass or other convective fluxes 

can penetrate the solid body. The pressure value at 

the solid wall can be obtained by extrapolating from 

the values of adjacent cells. 

6. NUMERICAL RESULT  

To validate and demonstrate the correct 

performance of solver and grid, several test cases 

have been solved. These include a rectangular wing 

with NACA0012 airfoil in subsonic flow with 

M∞ = 0.5,∝= 0°, transonic flow with M∞ =
0.85,∝= 1° and supersonic flow with M∞ = 1.2,∝
= 7°. The chord has a length of 1, the wing span is 

4. The radius of outer boundary is 7 and thickness 

of spherical shell is 0.7. 

The CP distributions obtained on the wing surface at 

the middle of span and pressure contours are shown 

in Figs 11-13. The calculated results agree very well 

with the results of AGARD-211.  
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Table 2 Grid specifications 

Grid type Number of nodes 
number of 

elements 

Number of nodes 

on each airfoil 

Number of nodes 

on the wing 

Number of elements 

on the wing 

Coarse 13988 74995 100 2395 4786 

Middle 37451 198465 150 8330 16656 

fine 72675 358992 200 14113 28222 

 

It should be mentioned that the above results are 

obtained after the grid study for each case. For the 

subsonic case, three different grids are used. As is 

seen, although the results change from coarse grid 

to middle grid, the results of middle grid and fine 

grid are the same. Therefore, the middle grid is 

chosen. This is the case for other solutions as well. 

The grid specifications for all of these cases are 

given in Table2. 

The convergence history for employed grid is 

shown in Fig. 14. The error is defined as the density 

difference calculated between two successive time 

steps that 10−8 for real time and 10−3 for pseudo 

time is considered. Due to the small number of the 

real time steps for convergence (smaller 4) and the 

number of the pseudo time steps at each real time 

step (smaller 3) except for the first step, therefore 

iterations in the first step of real time is used for 

convergence history. Number of iterations is 508 

and total time necessary for convergence of solver 

in subsonic flow is 240 seconds. 

 

 
Fig. 14. Convergence history for the solution of 

flow around airfoil. 
 

Now it is time to demonstrate that without 

interpolation and only with element renumbering, 

the accuracy of solution would not be lost in a 

rotational motion. The oscillatory wings with 

NACA0012 airfoil studied, which undergoes 

harmonic pitching motion about the quarter chord 

with the following time dependent angle of attack ∝
= αm + α0sinωt, where αm is the meanangle of 

attack, α0 is the oscillation amplitude and ω is the 

angular frequency of the motion which is related to 

reduce frequency K by K = ωc 2V∞⁄ , where V∞ is 

the free stream velocity and c is the chord length of 

the airfoil. 

The flow conditions over the wing are M∞ =
0.6, αm = 2.89°, α0 = 2.41° and K = 0.0808, that 

is similar to AGARD CT1. The comparison of 

normal force coefficient with experimental data is 

shown in Fig. 15. As is seen the computed result 

agree very well with the experimental result. 
 

 
Fig. 15. Normal force coefficient for CT1 test 

case. 
 

Another flow conditions are M∞ = 0.755,αm =
0.016°, α0 = 2.51° and K = 0.0814, that is similar 

to AGARD CT5. The comparison of normal force 

and pitching moment coefficient with experimental 

data is shown in Figs 16 and 17. It is obvious that 

the agreement is good, indicating that the 

implementation of the present algorithm is 

successful. 

 

 
Fig. 16. Normal force coefficient for CT5 test 

case. 

 

 
Fig. 17. Pitching moment coefficient for CT5 test 

case. 
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7. CONCLUSION 

We could simulate rotational motion and oscillation 

of the body by dividing a solution domain around 

the body into three spherical regions. Each region is 

used for modeling the rotation around one of the 

three axes, and the general rotations of the body are 

simulated in general. Using the orbital and meridian 

form for surface elements of each sphere and 

manipulating the grid connections through a defined 

algorithm, the reduction of the grid quality id 

prevented and we can simulate rotational motion 

even up to 360 degrees without any interpolation. 

The computational results show good consistency 

between this method and the previous experimental 

data. 
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