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ABSTRACT 

Two-dimensional incompressible fluid flow around a rectangular shape placed over a larger rectangular shape 

is analyzed numerically. The vortex shedding is investigated at different arrangements of the two shapes. The 

calculations are carried out for several values of Reynolds numbers from low values up to 52. At low 

Reynolds number, the flow remains steady. The flow characteristics are analyzed for each configuration. The 

analysis of the flow evolution shows that with increasing Re beyond a certain critical value, the flow becomes 

unstable and undergoes a bifurcation. It is observed that the transition to unsteady regime is performed by a 

Hopf bifurcation. The critical Reynolds number beyond which the flow becomes unsteady is determined for 

each configuration.  

Keywords: Obstacle; Incompressible fluid flow; Finite-volume method; Von Karman vortex street; Critical 

Reynolds number. 

NOMENCLATURE 

Re channel Reynolds number 
CD drag coefficient 

CL lift coefficient 

c critical 

h channel height  

l channel width 

p dimensionless pressure 

Max,Min   maximum, minimum 

 

 

St Strouhal number 

(u, v) velocity components, m s-1 

  viscosity, m2s-1 

(x,y) dimensionless coordinates 

 
  generic variable 

  density of fluid, kg m-3 

 

 

 

1. INTRODUCTION 

Flows around objects are phenomena that occur 

frequently in practice. Their understanding is 

essential in the mechanical and thermal design of 

many engineering systems such as: airplanes, 

automobiles, buildings, electronic components, 

turbine blades and geometric shapes of square and 

circular section. The identification and study of 

hydro and aerodynamic phenomena that arise in the 

wake of an obstacle remains a topic of current 

interest in various fields. Besides, wake around 

obstacles is a major interest in practice. Indeed, the 

knowledge structures generated behind these 

barriers and their plans is of paramount in the 

design of fluid flows exposed to utility works. The 

choice of the study of cylindrical and square 

obstacles is resulting from their simple geometry 

that facilitates experimental and numerical 

investigations (Bhattacharyya and Dhinakaran 

(2008), Straatman and Martinuzzi (2003), Guo and 

Julien (2008), Wang et al. (2014)). Many researches 

works have been made to model the flow around 

obstacles. In this vein, several experiments in the 

field were performed and compared to numerical 

methods. In this context, a wide range of 

mathematical methods have been developed to 

approach the reality of flow and provide maximum 

results that may occur. Breuer et al. (2000) studied 

numerically the flow around a square cylinder 

inside a channel by both numerical methods: a 

Lattice-Boltzmann and finite volume method. They 

made a comparison between the results of these two 

methods and found that when Re <60, there is an 

excellent agreement between the two methods for 

the computation of the length of the recirculation 

zone, but they detected a small difference to the 
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drag coefficient. When Re increases to 100, they 

measured the velocity profiles at different locations 

and found a good agreement. At Re =150, the two 

methods give a local maximum of the Strouhal 

number and the authors concluded that the 

differences between both numerical techniques are 

almost negligible.  

Berrone et al. (2011) made a comparison between 

the two finite volume methods and finite elements. 

They studied a flow around a cylinder with two 

different ratios of blocking one B/D=5 (rectangular 

cylinder) and the other B/D=1 (square cylinder). 

They found good agreement between the results of 

two techniques for both cylinders and for different 

flow regimes.  

These researchers have also shown the influence of 

Reynolds number on the criteria of occurrence of 

different regimes such as crawling system, the 

steady regime and unsteady.  

 In addition, the steady flow around a circular 

cylinder in a channel with a moving wall for a 

Reynolds number ranging from 50 to 200 has been 

investigated by Qu et al. (2013). The authors 

recorded a non-monotonous stream-wise velocity 

recovery in the intermediate wake for Re>50, a 

phenomenon that has been grossly overlooked in 

the past. Furthermore, the variation of field was 

seen to have no effect on the size of the vortices 

behind the obstacle and also the angles of 

separation. 

On another hand, many authors also analyzed the 

effect of the time parameter on the flow regime but 

they found that this parameter has little influence on 

the drag coefficient on and the Strouhal number.  

Zhou et al. (2005) carried out a numerical study on 

the reduction of fluid forces acting a square cylinder 

in a two-dimensional channel using a control plate. 

The forces acting on the cylinder, the frequency of 

vortex formation and the various schemes are 

designed for different heights and positions of the 

control plate. They also found that the existence of 

the plate changes the characteristics of the upstream 

flow of the cylinder completely. Subsequently, they 

determined the optimal position of the control plate 

for each height in order to minimize the drag force 

effects along the cylinder.  

Another numerical analysis focusing on the effect 

of the geometry of the barrier has been performed 

by Franke et al. (1990). They noted that the flow 

around a square cylinder behaves similarly to the 

case of the flow around a circular cylinder, the main 

difference was in the fact that the separation points 

are fixed to the sharp corners of the cylinder. They 

investigated the effect of Reynolds number on the 

Strouhal value by processing the corner regions 

which may affect the vortex-shedding frequency 

due to high velocity gradients in these corners. 

Thereafter, they discussed the structure of the flow 

for both obstacles and they concluded that the 

variation of the lift and drag forces for low 

Reynolds is similar for both obstacles but the 

difference appears for large Reynolds.  

Furthermore, Mukhopadhay et al. (1992) analyzed 

the structure of a flow around a square obstacle for 

different Reynolds numbers and different positions 

of the obstacle. These authors were able to 

determine the vortex-shedding frequency using the 

spectral analysis of the temporal evolution of the 

coefficient. Consequently, they determined the 

critical Reynolds number from which the flow 

becomes periodic and they concluded that the 

frequency starts at Re = 87 for a blockage ratio B / 

H = 0.25.  

The transition from a symmetric flow state to the 

periodic state was also well analyzed by Turki et al. 

(2003). They found the critical value of Re which 

was observed to increase with the blockage ratio. In 

addition, the Reynolds numbers corresponding to 

the maximum of the Strouhal number and the 

minimum of the time averaged drag coefficient 

were seen to strongly depend on this parameter and 

were observed at Re =130, 140 and 150 for the 

blocking ratio values  1/8, 1/6 and 1/4, respectively. 

The authors also declared that for a high blockage 

ratio and Re numbers, the square cylinder has a 

stable transversal posture to the flow.  

Bhattacharyya and Maiti (2004) numerically 

analyzed the structure of the wake behind a square 

cylinder placed near the lower wall. They found that 

the wall causes a difference in strength between the 

two rows of vortices and it was found that the 

strength of the positive vortices from the lower 

portion of the cylinder decreases with the decrease 

in the barrier height between the bottom wall and 

the obstacle.  

The aim of the present paper is to analyze the effect 

of changing the geometry of the obstacle on the 

flow structure and to determine the critical 

Reynolds number for each configuration of the 

obstacle from which the flow exhibits an unsteady 

behavior. 

2. PHYSICAL PROBLEM 

The configuration of this problem consists of a two 

dimensional flow of a Newtonian incompressible 

fluid around an obstacle situated in a channel 

having a width l = 50H and a height h = 8H as 

sketched in Figure 1. 

 

 
Fig. 1. Physical model. 

 

In the present study, three configurations will be 

considered by varying the value of ε between 0 and 

2H.  

For the configuration (1), the value of ε is set to 
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H,the value of ε for the second configuration is 0, 

while the value of ε relative to the third 

configuration is kept at  

ε = 2H.  

 

2.1 Governing flow Equations 

The flow is assumed to be two-dimensional of an 

incompressible Newtonian fluid, around an obstacle 

that is governed by the dimensionless Navier-Stokes 

equations, which describes the continuity and 

momentum equations in Cartesian coordinates (i, 

j= 1, 2) written as:  

0




i

i

x

u

                                                           

(1) 

2( ) 1

Re

i ji i

j i j j

u uu up

t x x x x

 
   

    
                    

(2) 

Generally, a dimensionless writing of the Navier-

Stokes equations shows the usual dimensionless 

numbers. These parameters characterize the 

similarity structure and stability of the flow. It is 

worth noting that the scales H, ue,
2

0 0(1/ 2) ep u

and 0 ( / )et H u  are used for the 

dimensionalization of the coordinate space  

xi=(x,y), velocity ui=(u,v), pressure p and time t 

respectively. 

In the momentum equation, a dimensionless number 

appears that is the Reynolds number expressed by:  

)/(Re Hue  

Where ue is the velocity upstream, H is the side of 

the barrier and  is the kinematic viscosity of the 

fluid under consideration. This dimensionless 

number characterizes the relationship between 

inertial forces and viscous ones and thus inertia 

forces are destabilizing when viscous forces are 

stabilizing.  

2.2 Boundary Conditions 

The boundary conditions for this physical problem 

are as following:  

At the channel entrance:  

The horizontal u- velocity component has a uniform 

form u = 1  

The vertical component of the velocity v is set to 

zero.  

On the obstacle, non slip conditions are imposed; u 

= 0 and v = 0  

At the exit of the channel:  

We use a boundary condition of convective type as 

this condition appears to be more effective in 

reducing the computation time and has a slight 

influence on the velocity. However, the governing 

parameters such as the Strouhal number and the 

drag and lift coefficients are roughly assigned by 

this condition (Sohankar et al. 1998).  

Convective condition is written as follows: 

0)/()/(  xuutu iconvi  

Where 1 econv uu  

At the upper and lower walls:  

The adherence condition (no-slip on the walls) is 

used.  

0)/(  xu  and v= 0 

3. NUMERICAL METHOD 

The equations governing the flow are nonlinear and 

have no analytical solution, where the need to use a 

numerical method.  

In our study the resolution of the Navier-Stokes 

equations is made using the finite volume method 

(Hortmann et al. 1990). This method is used to 

discretize the equations and the projection method 

(Brown et al. 2001) is also implemented to couple 

the momentum and continuity equations. Solving 

these equations was performed using an iterative 

method RBSOR (Red-Black Successive Over 

Relaxation) (Ben Cheikh et al. 2007). The Poisson 

pressure correction equation is solved using a full 

multigrid method as suggested by Ben-Cheikh et al. 

(2008).  

The construction of the mesh is the first step in any 

numerical simulation. This construction consists not 

only on the number of grid points but also their size 

and shape. The meshes we have used are based on a 

staggered grid where scalar quantities (pressure ...) 

are located at the center of the cell while the 

velocity components are defined at the centers of 

faces of the volume controls.  

For enhanced accuracy, the grids have denser 

clustering at the vicinity of the barrier where strong 

gradients are expected. Conversely, away from the 

obstacle where the expected gradients are low, 

larger meshes are preferred.  

The convergence of the numerical results is 

established at each time step according to the 

following criterion: 61
,, 10  l
ji

l
ji   

The generic variable   stands for u, v or   and l 

indicates the iteration time levels. In the above 

inequality, the subscript sequence (i, j) represents 

the space coordinates x and y. 

4. RESULTS AND DISCUSSIONS 

4.1 Code Validation 

To give more confidence to the results of our 

numerical simulations, we established some 

quantitative and qualitative comparisons with other 

numerical investigations presented in the literature. 

Numerical simulations are related to the problem of 

a square obstacle in a channel where horizontal 

dimensionless velocity component at the entrance 
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has a parabolic shape )8()64/4( yyue  and the 

vertical component is set to zero. The dimensions of 

the channel and the obstacle are those of physical 

model of Breuer et al. (2000).  

The simulations were performed on a non-uniform 

mesh size m×n=768×160. Breuer et al. (2000) used 

three different grids 500×80, 400×240 and a 

560×340. This last mesh was chosen to validate our 

results with the corresponding ones.  

We conducted our study over a range of Reynolds 

which varies from 60 to 200 and analyzed the effect 

of this parameter on the evolution of the Strouhal 

number.  

We start with studying the effect of Re on the 

Strouhal number (Figure 2). It is noted that for 

relatively low Reynolds numbers (50 < Re < 130) 

the Strouhal number increases with Re values. A 

significant change in the structure of flow takes 

place, namely the movement of separation point of 

the trailing edge to the leading edge of the square 

cylinder. The Strouhal number is at a maximum at 

nearly Re = 140 then decreases again for higher 

Reynolds numbers.  

 

 
Fig. 2. Variation of the Strouhal values versus 

the Reynolds number. 

 

Figure 2 shows that our results are in good 

agreement with the results of Breuer et al. (2000) 

and Galleti et al. (2004).As observed, this 

comparison validates our computer code making 

confidence on the presented results. 

4.2 Effect of Reynolds Number on the 

flow Patterns 

In this sub-section we attempt to reveal the 

influence of the Reynolds number on the flow 

patterns. Figure 5 depicts the effect of Reynolds 

number on the iso-vorticities for the three 

considered configurations considered. For Re <Rec 

the flow is stable and steady, and the flow structure 

is symmetrical with respect to the longitudinal axis. 

Downstream of the obstacle, a wake appears formed 

by two nearly symmetric counter rotating vortices 

attached to the obstacle.  

As the Reynolds number is increased above Rec, a 

change in vortex is observed with a development of 

the vortex street of Von- Karman and an increase in 

the wake zone. It is worth noting that this 

phenomenon is due to a repeating pattern of 

swirling vortices caused by the unsteady separation 

of flow of a fluid around blunt the body. In fact, we 

may observe the emergence of alternate pair of 

vortices of opposite signs that stands behind the 

cylinder. By further increasing the Reynolds 

number, flow instabilities are enhanced and the flow 

undergoes an oscillatory trend. Thus, the fluctuation 

in the wake is purely periodic showing an increase 

in the amplitude and a variable frequency in the 

laminar regime. We also note the formation of large 

vortices that develop and are sometimes ejected 

alternately to the top wall and the bottom wall. One 

can deduce that there are rolling eddies in the wake 

zone with a non-slip situation (Figure 3). 

4.3 Critical Reynolds Number for the 

three Configurations 

Stability analysis, local or global, has taken more 

attention in fluid mechanics researches in recent 

years in order to understand the flow transition from 

one regime to another. Indeed the transition 

between the recirculation bubble and driveway 

Periodical Von-Karman vortex is widely studied in 

the literature.  

For better understanding of the phenomenon, one 

can refer to the investigation of Yang and 

Zebib(1989). They showed that when the Reynolds 

number of about 20, an absolutely unstable region 

begins to form, and grows more and more with Re. 

Furthermore, they deduced that the critical 

Reynolds number corresponds to a state where all 

wake is absolutely unstable.  

Noack and Eckelmann (1994) have analyzed the 

effect of Reynolds number on the different 

instabilities that may occur in the wake of a cylinder 

using the Galarkin method. Furthermore, they found 

that for all Reynolds less than 54 the flow is stable, 

while the periodicity appears for 54 <Re <170.Two 

solutions of supercritical Hopf bifurcation for Re = 

54 and Re = 170 were predicted from which the 

flow passes to a periodic three-dimensional 

appearance established.  

Kelkar and Patankar (1992) have focused on the 

study of instability that causes a steady laminar flow 

behind a square cylinder to result in an unstable 

laminar flow. 

Indeed, they showed that the point of instability is 

between Re = 50 and 60 and they computed the 

value of the critical Reynolds number having a 

value Rec=53.  

At this stage, we can conclude that the flow is 

oscillatory from a certain value of Reynolds. This 

periodic behavior occurs when the Reynolds 

number exceeds the critical value of Reynolds from 

which the flow becomes unsteady.  

Indeed, we performed multiple calculations for 

Reynolds number for the three configurations.  

We conduct our simulations so we find that the 

oscillatory flow regime remains beyond Rec and a 
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Fig. 3. Flow patterns for the three configurations investigated. 

 

 regular flow cannot persist beyond this Reynolds 

number.  

In addition, we find that the amplitude of the 

oscillations increases with Re. This dependence is 

illustrated for the three configurations in Figure 4 

relatively to the u-velocity component at location 

(x=18; y=4.4) for the three considered 

configurations. It can be seen that all the velocity 

components are oscillates with sinusoidal periodic 

signal.  

To check the periodic behavior of the flow, a phase 

diagram of the vertical v-velocity component 

depending on the longitudinal u-velocity component 

for different Re values is shown in Figure 5.  
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In addition, as seen in Figure 3, the flow exhibits an 

oscillatory trend after the critical point. It becomes 

unstable and periodic in time and the bifurcation 

point instability is a Hopf bifurcation (Chen et al. 

(1995), Sahin and Owens (2004), Jackson (1987)). 

The square root of the amplitude of the solution 

increases with the bifurcation parameter. This 

means that the square of the amplitude of the 

longitudinal and vertical u- and v-velocity 

components must be proportional to the Re value 

after the bifurcation.  

 
Fig. 4. Temporal variation of the horizontal u-

velocity component at location (x=18; y=4.4) 

relatively to the three considered configurations. 

 

It should be noted that the amplitude of the 

component of velocity (u or v) is defined as:  

Amp = | ui max (A, t)-ui min (A, t) | / 2, where the 

coordinates of the monitoring point A (18; 4.4) is 

taken in the wake of the obstacle. During this 

procedure, we compute the values of the squared 

amplitudes Amp2 of velocity components u (A) and 

v (A).  

 
Fig. 5. Phase diagram (v, u) for the three studied 

configurations at location(x=18; y=4.4). 

 

This allowed us to plot the squared amplitudes of 

oscillations (Amp2) versus Reynolds number as 

depicted in Figure 6.  
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We find an affine equation such as: 

abAmp  Re2
 

Where a and b are coefficients that was determined 

in each configuration.  

 
Fig. 6.Variation of the square amplitude of the 

oscillations of u and v velocity components at the 

same point as a function of the Reynolds number 

for the three configurations. 

 

When the amplitude of oscillation is zero (Amp2 = 

0), the value of the critical Reynolds is therefore: 

 bac /Re   

Extrapolation of each curve to zero amplitude 

allowed us to determine the value of the critical 

Reynolds number Rec for which the transition to the 

periodic regime occurs. The values of both 

constants a and b were determined (Figure 6) and 

values of the critical Reynolds number Rec for the 

different configurations are listed in Table 1.  

In order to study the effect of the geometry of the 

obstacle on the dynamics of the flow structure, we 

performed a comparison between the three 

configurations. First, we started by analyzing the 

releases in the near vortex depending on the 

Reynolds number wake and wenoted that an 

unsteady behavior 

 

Table 1 Numerical values of the critical Reynolds 

number of the first bifurcation for each 

configuration 

configuration Rec 

1(ε=1) 47.7 

2(ε=0) 48.7 

3(ε=2) 41.0 

 

of the flow appears in the configuration 3 (ε = 2) 

and in the configuration 1 (ε = 1) and finally in the 

configuration 2 (ε = 0). We can conclude that the 

top of the obstacle causes a retardation of the 

appearance of unsteadiness when ε = 0 and ε = 1 

and tends to stabilize the wake. For this reason we 

find that the transition to the unsteady regime 

begins firstly in the third configuration, then in the 

first one and finally occurs at the second 

configuration. Consequently, this may explain that 

Rec(ε=0)> Rec(ε=1)> Rec(ε=2). 

 

5. CONCLUSION 

A numerical study on the effects of different 

arrangements of two shapes on two-dimensional 

flow structure and its stability was investigated. 

Numerical experiments were performed using a 

numerical code based on a finite volume 

formulation, the projection method and a multi-

grid-type acceleration. We started our results by 

validating the code with a problem in the literature 

and found good agreement between the available 

results. Thereafter we analyzed the flow structure 

for different Reynolds numbers and we noticed that 

for Re <Rec , the flow is stable and steady and 

symmetrical with respect to the longitudinal axis. 

Downstream the obstacle, a wake appears formed 

by two counter rotating eddies attached to obstacle 

which remains almost symmetrical. For Re> Rec, a 

change in vortex is seen with a development of the 

vortex street of Von- Karman with also an increase 

in the wake zone. Indeed vortex shedding starts in 

configuration 3 (ε = 2) and configuration 1 (ε = 1) 

and finally the configuration 2 (ε = 0).On another 

hand, we found that the flow regime remains 

oscillatory beyond Rec and a steady flow regime 

cannot persist beyond this critical value. Moreover, 

we noticed that the amplitude of the oscillations 

increases with Re. As a result, the flow after the 
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critical point is unstable and periodic in time and 

the bifurcation point of instability is a Hopf 

bifurcation. 

We also found that the Reynolds number for which 

transition to the unsteady state starts, is smaller for 

configuration number three, i.e., Rec=41.0 Finally, 

we can conclude that the top obstacle position plays 

an important role for the stability of the flow. 

Indeed, the flow will be more stable for 

configuration number two. 
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