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ABSTRACT

The objective of this study is to determine the characteristics of hydromagnetic flow over a slendering
stretching sheet in slip flow regime. Steady, two dimensional, nonlinear, hydromagnetic laminar flow
of an incompressible, viscous and electrically conducting fluid over a stretching sheet with variable
thickness in the presence of variable magnetic field and slip flow regime is considered. Govern-
ing equations of the problem are converted into ordinary differential equations utilizing similarity
transformations. The resulting non-linear differential equations are solved numerically by utilizing
Nachtsheim-swigert shooting iterative scheme for satisfaction of asymptotic boundary conditions
along with fourth order Runge-Kutta integration method. Numerical computations are carried out
for various values of the physical parameters and their effects over the velocity and temperature are
analyzed. Numerical values of dimensionless skin friction coefficient and non-dimensional rate of
heat transfer are also obtained.
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NOMENCLATURE

A coefficient related to stretching sheet
a thermal accommodation coefficient
b physical parameter related to stretching

sheet
Cp specific heat at constant pressure
f1 maxwell’s reflection coefficient
h∗1 dimensional velocity slip parameter
h∗2 dimensional temperature jump

parameter
h1 dimensionless velocity slip

parameter
h2 dimensionless temperature jump

parameter
k thermal conductivity of the fluid
M2 magnetic interaction parameter
m velocity power index parameter
Pr Prandtl number

Rex local Reynolds number
T fluid temperature
Tw(x) wall temperature
T∞ temperature far away from the

sheet
u velocity component in the x

directions
v velocity component in the y

directions

γ ratio of specific heats
η plate surface
λ wall thickness parameter
ν kinematic viscosity
ρ density of the fluid
σ electrical conductivity of the fluid
ξ1 mean free path (Constant)

1. INTRODUCTION

Recent years have seen rapid advancement in
medical and technological research fields espe-
cially in the area of medical device production
and miniature technology. Inspite of their pre-
cautionary procedures in the manufacturing of

cardiac rhythm management devices like arti-
ficial pacemaker, the electromagnetic interface
remains as a real concern and potential dan-
ger Sweesy et al. (2004). The smoothen-
ing thickness of such artificial devices, arti-
ficial heart valves, internal cavities, and mi-
cro/nano -electronic mechanical systems is vi-



S. P. Anjali Devi and M. Prakash / JAFM, Vol. 9, No. 2, pp. 683-692, 2016.

tal and which are characterized by slip flows
over variable thickness sheets. Due to their
smaller size those micro devices may get heated
quickly. In those situations the suitable heat
transfer techniques are needed. For future med-
ical research regarding these physical phenom-
ena, the combined knowledge of MHD flows
and heat transfer over with varying thickness
sheet and slip flow regime are essential. Re-
search on boundary layer flow over a stretch-
ing sheet has become desire and attracted much
attention because of its ever growing indus-
trial applications. In most of the traditional
boundary layer flow problems over the stretch-
ing sheet, they consider the sheet to be flat.
Practically, the stretching sheet need not be flat.
Sheet with variable thickness can be encoun-
tered more often in real world applications. The
boundary layer flow over a stretching sheet with
variable thickness has received great attention
in recent years owing to its abundant practi-
cal applications in machine design, architecture,
nuclear reactor technology, naval structures,
acoustical components, chemical and manufac-
turing processes, such as polymer extrusion, hot
rolling, spinning of filaments, metal extrusion,
crystal growing, glass fiber production, paper
production, continuous casting of metals, cop-
per wires drawing and glass blowing Altan et al.
(1979), Fisherl (1976) and Karwe and Jaluria
(1991). Motivated by these applications this
work is mainly focused to analyze the influence
of these physical phenomena through the phys-
ical parameters.

Flow of an electrically conducting fluid over
a stretching sheet along with heat transfer has
gained considerable attention due to its vast ap-
plications in the industry and important bear-
ings on several technological and natural pro-
cesses. Examples include the boundary layer
control in the field of aerodynamics, cooling of
nuclear reactors, cooling of a metallic plate in a
cooling bath, geothermal energy extraction, op-
eration of magnetohydrodynamic (MHD) gen-
erators, plasma studies, etc. Some research
contributions towards this field is found below.
Sparrow and Cess (1961) reported the effect of
magnetic field on the natural convection heat
transfer. Chakrabarti and Gupta (1979) ana-
lyzed the hydromagnetic flow and heat transfer
over a stretching sheet. Behrouz et al. (2011)
obtained the solution to the MHD flow over a
non-linear stretching sheet.

The flow in micro/nano systems such as hard
disk drive, micro-pump, micro-valve and micro-
nozzles is in slip transition regime, which is
characterized by slip boundary at the wall. The

Fig. 1. Schematic diagram of the problem.

liquids exhibiting boundary slip find its ap-
plications in technological problems. There-
fore many boundary layer fluid flow problems
have been revisited with slip boundary condi-
tion and different researchers have made signif-
icant contributions. Navier (1827) suggested a
slip boundary condition in terms of shear stress.
Of late, the work of Navier was extended by
many authors. GadelHak (1999) established the
fact that the micro-scale level the fluid flow is
dominated by fluid surface interaction which
belongs to slip flows regime, whereas the mo-
mentum equation remains to be Navier-Stokes
equation. Slip flow past a stretching surface was
analyzed by Andersson (2002). Wang (2009)
attempted an analysis of viscous flow due to
a stretching sheet with surface slip and suc-
tion. Dissipation effects on MHD nonlinear
flow and heat transfer past a porous surface
with prescribed heat flux was studied by An-
jali and Ganga (2010). Yazdi et al. (2011) ana-
lyzed the Slip MHD liquid flow and heat trans-
fer over non-linear permeable stretching sur-
face. Slip effects on MHD boundary layer flow
over an exponentially stretching sheet with suc-
tion/blowing and thermal radiation was reported
by Mukhopadhyay (2013).

Practically, the stretching sheet need not be
flat. Sheet with variable thickness can be en-
countered more often in real world applications.
Plates with variable thickness are often used
in machine design, architecture, nuclear reac-
tor technology, naval structures and acoustical
components. Variable thickness is one of the
significant properties in the analysis of vibration
of orthotropic plates. Historically the concepts
of variable thickness sheets originate through
linearly deforming substance such as needles
and nozzles. Idea about the variable thickness
sheet was initiated by Lee (1967) through thin
needles. Later, Fang et al. (2012) analyzed the
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behavior of boundary layer flow over a stretch-
ing sheet with variable thickness. The numer-
ical solution for boundary layer flow due to a
nonlinearly stretching sheet with variable thick-
ness and slip velocity has been obtained by
Khader and Megahed (2013). Recently, Anjali
and Prakash (2014) studied the hydromagnetic
flow over a stretching sheet with variable thick-
ness and variable surface temperature.

So far no attempt has been tried towards hydro-
magnetic boundary layer flow and heat transfer
over a stretching sheet with variable thickness
in slip flow regime. In this work, a special form
of magnetic field, velocity slip and temperature
jump are considered to analyze the various as-
pects of the flow and heat transfer effects.

2. FORMULATION OF THE PROBLEM

Steady, two dimensional, nonlinear, laminar hy-
dromagnetic flow of an incompressible, viscous
and electrically conducting fluid over a stretch-
ing sheet with variable thickness in slip flow
regime is considered. The x-axis is chosen in
the direction of the sheet motion and the y-axis
is perpendicular to it.

The following assumptions are made

• The sheet is stretching with the velocity
Uw(x) =U0(x+b)m and the wall is imper-
meable with vw = 0.

• The sheet is not flat described as y = A(x+
b)

1−m
2 and the coefficient A is chosen as

small for the sheet to be sufficiently thin,
to avoid pressure gradient along the sheet(

∂p
∂x = 0

)
.

• The magnetic Reynolds number is as-
sumed as so small so that the induced
magnetic field is negligible. As the in-
duced magnetic field is assumed to be neg-
ligible and since B(x) is independent of
time, curlE⃗ = 0. In the absence of surface
charge density, divE⃗ = 0 . Hence the exter-
nal electric field is assumed as negligible.

• The problem is valid for m ̸= 1 since m = 1
refers to the flat sheet case.

• The viscous and Joule dissipation are con-
sidered to be negligible.

Under the above assumptions, the steady
boundary layer equations are given by An-
jali Devi and Thiyagarajan (2006)

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 − σB(x)2u

ρ
, (2)

u
∂T
∂x

+ v
∂T
∂y

=
k

ρCp

∂2T
∂y2 (3)

with the boundary conditions

u
(

x,A(x+b)
1−m

2

)
=Uw(x)+h∗1

(
∂u
∂y

)
=U0(x+b)m +h∗1

(
∂u
∂y

)
,

v
(

x,A(x+b)
1−m

2

)
= 0,

T
(

x,A(x+b)
1−m

2

)
= Tw (x)+h∗2

(
∂T
∂y

)
,

u(x,∞) = 0,T (x,∞) = T∞,(m ̸= 1) ,

(4)

where

h∗1 =
[

2− f1

f1

]
ξ1 (x+b)

1−m
2 , (5)

h∗2 =
[

2−a
a

]
ξ2 (x+b)

1−m
2 ,ξ2 =

(
2γ

γ+1

)
ξ1

Pr
.

(6)

3. SIMILARITY TRANSFORMATIONS

The special form of magnetic field and wall
temperature are taken as

B(x) = B0 (x+b)
m−1

2 ,(m ̸= 1) , (7)

and

Tw (x) = T∞ +T0(x+b)
1−m

2 ,(m ̸= 1) . (8)

The above forms are considered to obtain the
similarity solutions. In order to solve the Eq. 1
- Eq. 3 subject to Eq. 2., the stream function
and similarity transformations are introduced as
follows:

ψ(x,y) = f (η)
√

2
m+1

νU0 (x+b)m+1,(m ̸= 1)

(9)

η = y

√
m+1

2
U0 (x+b)m−1

ν
,(m ̸= 1) , (10)
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θ =
T −T∞

Tw(x)−T∞
. (11)

For the validity of the similarity variable and
functions, it is assumed m > −1 in this work.
Eqns. 3. - 11 are proposed based on the stan-
dard practice for similarity transformation of
partial differential equations. The stream func-
tion ψ is defined as

u =
∂ψ
∂y

and v =−∂ψ
∂x

. (12)

Using the Eq. 3., Eq. 10 and Eq. 12, the veloc-
ity components are expressed as follows

u =U0 (x+b)m f ′ (η) ,(m ̸= 1) , (13)

v =−
√

m+1
2

ν U0 (x+b)m−1

[
f ′ (η) η

(
m−1
m+1

)
+ f (η)

]
,(m ̸= 1) . (14)

Equation of continuity Eq. 1 is automatically
satisfied. Using the similarity transformations
Eq. 7 - Eq. 11, the nonlinear partial differen-
tial equations Eq. 2 and Eq. 3 with boundary
conditions Eq. 2. are reduced to the following
nonlinear ordinary differential equations:

f ′′′ =

[(
2m

m+1

)
( f ′)2 − f f ′′+ M2 f ′

]
, (15)

θ ′′ = Pr
[(

1−m
m+1

)
f ′ θ− f θ ′

]
(16)

with the boundary conditions

f (λ) = λ
(

1−m
m+1

)[
1+h1 f ′′(0)

]
,

f ′ (λ) =
[
1+h1 f ′′(0)

]
,

θ(λ) =
[
1+h2θ ′(0)

]
,

f ′ (∞) = 0, θ(∞) = 0,(m ̸= 1) ,

(17)

where λ = A

√
m+1

2
U0

ν
,

h1 =

[
2− f1

f1

]
ξ1

√
Uo(m+1)

2ν
and

h2 =

[
2−a

a

]
ξ2

√
Uo(m+1)

2ν
.

Table 1 Numerical values of −F ′′(0) when
M2 = 0, h2 = 0 and m = 0.5

h1 λ Khader and Megahed (2013) Present work
0.0 0.2 0.924828 0.9248281
0.2 0.25 0.733395 0.7333949
0.2 0.5 0.759570 0.7595701

Eq. 15 and Eq. 16 with the boundary conditions
Eq. 17 are the nonlinear differential equations
with a domain [λ,∞). In order to facilitate the
computation and to transform the domain into
[0,∞), we define F (ξ)=F (η−λ)= f (η). The
similarity equations become

F ′′′=

[(
2m

m+1

)
(F ′)2 −F F ′′+ M2F ′

]
,(18)

Θ ′′ = Pr
[(

1−m
m+1

)
F ′ Θ−F Θ ′

]
(19)

with the boundary conditions

F (0) = λ
(

1−m
m+1

)[
1+h1F ′′(0)

]
,

F ′ (0) =
[
1+h1F ′′(0)

]
,

Θ(0) =
[
1+h2 Θ ′(0)

]
,

F ′ (∞) = 0, Θ(∞) = 0,(m ̸= 1) ,

(20)

where the prime indicates differentiation with

respect to ξ, M2 =
2σB0

2

ρU0(m+1)
, Pr =

µCp

k
.

Based on the variable transformation, the solu-
tion domain will be fixed from 0 to ∞.

The important physical quantities of interest,
the skin-friction coefficient C f and local Nus-
selt number Nux are defined as

C f =

µ
(

∂u
∂y

)
y=A(x+b)

1−m
2

1
2 ρUw

2

= 2

√
m+1

2
(Rex)

− 1
2 F ′′(0),


(21)

Nux =

(x+b)
(

∂T
∂y

)
y=A(x+b)

1−m
2

(Tw(x)−T∞)

=−
√

m+1
2

(Rex)
1
2 Θ ′(0),


(22)

where Rex =
UwX

ν
and X = (x+b).
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λ  = 0.5
h1 = 0.3

 M2 = 0, 1, 4, 9 

Fig. 2. Velocity distribution for various
values of M2.

4. NUMERICAL SOLUTION

An efficient Nachtsheim-Swigert shooting iter-
ation technique Nachtsheim and Swigert (1965)
for the satisfaction of the asymptotic boundary
conditions along with fourth order RungeKutta
method has been employed to study the flow
model for the above non-linear ordinary differ-
ential Eq. 18 and Eq. 19 for different val-
ues of governing physical parameters over the
flow field and dimensionless temperature distri-
bution. The governing system of partial differ-
ential equations are first reduced to a system of
ordinary differential equations. The crux of the
problem is that we have to make an initial guess
for the values of F ′′(0) and Θ ′(0). The different
initial guesses were made are taken into account
of the convergence. The process is repeated un-
til the results are corrected upto desired accu-
racy of 10−5 level. Numerical values of dimen-
sionless skin friction coefficient and non dimen-
sional rate of heat transfer are also obtained.

5. RESULTS AND DISCUSSION

The ultimate goal of this work is to establish the
influence of magnetic field and other physical
parameters over the stretching sheet with vari-
able thickness in the slip flow regime. The reli-
ability of the numerical procedure of this work
has been tested through the comparison analy-
sis. In the absence of magnetic interaction pa-
rameter

(
M2 = 0

)
and nondimensional temper-

ature jump parameter (h2 = 0), the numerical
values of −F ′′(0) are found to be in excellent
agreement with that of Khader and Megahed
(2013) which are displayed in Table 1.

The numerical analysis has been carried
out for various values of M2

(
0 ≤ M2 ≤ 9

)
,

m(−0.9 ≤ m ≤ 0.5), λ(0.25 ≤ λ ≤ 1.25),
h1 (0.0 ≤ h1 ≤ 0.7), h2 (0.0 ≤ h2 ≤ 0.7) and
Pr (0.71 ≤ Pr ≤ 7.02). In order to get the clear
insight of the problem, the computed results are

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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0.00
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0.08

0.10

0.12

0.14

0.16

Θ(ξ)
 M2 = 0, 1, 4, 9 

m = - 0.75
λ = 0.5
Pr = 7.02
h1 = 0.3

h2 = 0.3

Fig. 3. Temperature distribution for various
values of M2.
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M2 = 4
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h1 = 0.3

Fig. 4. Velocity distribution for various
values of m.

displayed graphically through Fig. 2. - Fig. 16.

The velocity distribution for different values of
M2 was elucidated through Fig. 2. As the
magnetic interaction parameter (M2) increases,
the velocity distribution and the boundary layer
thickness gets decreased. This happens due to
Lorentz force arising from the interaction of
magnetic and electric fields during the motion
of an electrically conducting fluid. The gener-
ated Lorentz force opposes the fluid motion in
boundary layer region and thereby reducing the
momentum boundary layer thickness.

Fig. 3. portrays the influence of magnetic field
over dimensionless temperature distribution.
It is noted that, the increase in the value of
magnetic interaction parameter (M2) leads to
increase in the temperature distribution. Since
the Lorentz force tends to suppress the flow
motion for increasing magnetic field strength,
the tendency of the flow to drive away the
temperature from the sheet is reduced and
consequently makes the heat transfer process
slower. This essentially causes the enhance-
ment in thermal boundary layer thickness for
increasing strength of the magnetic field.
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Fig. 5. Temperature distribution for various
values of m.
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Fig. 6. Velocity distribution for various
values of λ.

Velocity distribution for different values of ve-
locity power index is visualized through Fig. 4.
It shows that, due to the fact that increase in ve-
locity power index parameter (m) leads to the
slendering of the stretching sheet. As the thick-
ness of the sheet gets reduced, the flow velocity
gets accelerated in such slendering regions so
the velocity distribution gets increased. Eventu-
ally the boundary layer thickness gets thicker as
the velocity power index increase.

Fig. 5. reveals the effect of velocity power in-
dex over the temperature distribution. Practi-
cally it is known that the heat transfer from thin-
ner region will be greater than that of thicker re-
gion. Hence due to increase in velocity power
index (m), the thickness of the sheet gets re-
duced which leads to enhancement in the tem-
perature distribution. Significantly the thermal
boundary layer gets thicker for larger values of
velocity power index.

The variation in velocity distribution and tem-
perature distribution due to increase in wall
thickness parameter (λ) were depicted through
Fig. 6. and Fig. 7. respectively. The wall thick-
ness decrease for the variable thickness sheet
slendering away from the slot, as it is stretch-
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Pr = 7.02
h1 = 0.3

h2 = 0.3

λ = 0.25, 0.5, 1.0, 1.25 

Fig. 7. Temperature distribution for various
values of λ.
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Fig. 8. Velocity distribution for various
values of h1.

ing away. Increasing values of wall thickness
parameter reduces the boundary layer thickness
due to decreasing velocity which is illustrated
in Fig. 6.

It is evident through Fig. 7. that increase in wall
thickness parameter is to reduce the tempera-
ture distribution. The thermal boundary layer
becomes thinner for higher values of wall thick-
ness parameter.

Fig. 8. shows the effect of dimensionless ve-
locity slip parameter over the velocity distribu-
tion. It is inferred from the figure that the pres-
ence of slip velocity within the boundary layer
causes the velocity level along the sheet to de-
crease. Initially, for the increasing values of the
slip parameter the velocity distribution gets de-
creased near the surface of the sheet since not
all the pulling force of the stretching sheet can
be transmitted to the fluid but it gets increased
away from the sheet. Due to that greater sepa-
ration from the sheet, the wall slip factor exerts
progressively diminishing influence favours the
reversed effect.

Variation in dimensionless temperature distri-
bution due to dimensionless velocity slip pa-
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Fig. 9. Temperature distribution for various
values of h1.
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Fig. 10. Temperature distribution for
various values of h2.

rameter is presented graphically in Fig. 9. It
shows that increase in the dimensionless veloc-
ity slip parameter enhances the dimensionless
temperature and thermal boundary layer thick-
ness. Physically, flow velocity is significant to
drive out the temperature from the sheet. Near
the sheet, the dimensionless velocity slip pa-
rameter reduces the flow velocity which leads
to increase in dimensionless temperature and si-
multaneously the thermal boundary layer thick-
ness.

Fig. 10. highlights the impact of dimension-
less temperature jump parameter over the di-
mensionless temperature distribution. It is ev-
ident an obvious result that, the dimensionless
temperature gets decreased for increasing val-
ues of dimensionless temperature jump param-
eter. Since the increase in temperature jump pa-
rameter, increases the thermal accommodation
coefficient which reduces the thermal diffusion
towards the flow. The thermal boundary layer
also gets thinner due to increase in dimension-
less temperature jump parameter.

Dimensionless temperature distribution for var-
ious values of Prantdl number is displayed

0 1 2 3 4 5

ξ

0.0

0.1

0.2

0.3

0.4

0.5

Θ(ξ)

M2 = 4
m = - 0.75
λ = 0.5
h1 = 0.3

h2 = 0.3

 Pr = 0.71, 1.0, 2.3, 7.02 

Fig. 11. Temperature distribution for
various values of Pr.
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Μ2

-1

0

1

Cf Rex
1/2

m = - 0.75
h1 = 0.3

λ = 0.25, 0.5, 1.0, 1.25

Fig.12. Non dimensional skin friction
coefficient against M2 for different values of

λ.

through Fig. 11. It reveals that, eventually
both the dimensionless temperature distribution
and thermal boundary layer thickness gets de-
creased due to the slow rate of thermal diffu-
sion which is induced by the increasing values
of Prantdl number.

Fig. 12. and Fig. 13. represents the influence
of various physical parameters like Magnetic in-
teraction parameter (M2), Velocity power index
(m), wall thickness parameter (λ) and dimen-
sionless velocity slip parameter (h1) over the di-
mensionless skin friction coefficient. Non di-
mensional skin friction coefficient against mag-
netic interaction parameter (M2) for different
values of wall thickness parameter (λ) is pre-
sented in Fig. 12. It shows that the dimension-
less skin friction coefficient decreases for both
increased values of magnetic interaction param-
eter and wall thickness parameter.

The effect of different values of dimensionless
velocity slip parameter over the dimensionless
skin friction coefficient against velocity power
index parameter can be viewed through Fig. 13.
It portrays an interesting result for the no-slip
case (h1 = 0), the increase in the velocity power
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Fig. 13. Non dimensional skin friction
coefficient against m for different values of

h1.
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Fig. 14. Non dimensional rate of heat
transfer against λ for different values of M2.

index parameter increased the skin friction co-
efficient, where as for velocity slip h1 > 0, the
skin friction coefficient gets decreased for in-
creasing values of velocity power index param-
eter. It is also noted that, for increasing val-
ues of dimensionless velocity slip parameter,
the nondimensional skin friction coefficient gets
increased.

Fig. 14. elucidates the non dimensional rate
of heat transfer against wall thickness parame-
ter (λ) for various values of magnetic interac-
tion parameter (M2). The magnetic interaction
parameter suppress the non dimensional rate of
heat transfer as it increases, whereas the wall
thickness parameter is to enhance the non di-
mensional heat transfer rate. Variation in the
non dimensional rate of heat transfer against ve-
locity power index parameter (m) for different
values of dimensionless velocity slip parame-
ter (h1) were depicted through Fig. 15. It is
observed that the increase in the dimensionless
velocity slip parameter reduces the non dimen-
sional rate of heat transfer whereas the velocity
power index parameter has the tenancy to en-
hance the nondimensional rate of heat transfer
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Fig. 15. Non dimensional rate of heat
transfer against m for different values of h1.
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Fig. 16. Non dimensional rate of heat
transfer against Pr for different values of h2.

as it is increased.

Fig. 16. reveals the state of nondimensional rate
of heat transfer against the Prandtl number (Pr)
for different values of dimensionless tempera-
ture jump parameter (h2). It is evident that, for
increasing dimensionless temperature jump pa-
rameter the nondimensional rate of heat trans-
fer gets reduced significantly. For increasing
Prantdl number, the non dimensional heat trans-
fer rate gets increased effectively for h2 = 0 than
h2 > 0.

Physically stretching surfaces are often encoun-
tered in many industrial manufacturing pro-
cesses like glass blowing, liquid metal produc-
tion, metal extrusion, glass fiber production and
polymer extrusion. Stretching surfaces prac-
tically need not to be flat; it may have some
thickness variations in which the rate of cool-
ing of the product is vital. Especially in glass
blowing process due to the smoothness of the
surface, the velocity may slip over the surface
and during this process random heating is done
which may give some rise to temperature jump
at the surface. From the results it is evident
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that increasing magnetic field strength has the
tendency to suppress the flow motion which re-
duces its capacity to drive away the temperature
from the sheet. Similarly, increase in tempera-
ture jump parameter increases the thermal ac-
commodation which leads to reduction of the
thermal diffusion towards the flow. Hence it is
clear that both magnetic field strength and tem-
perature jump make the heat transfer process
slow. Since the rate of cooling has significant
effects on the glass blowing process, both mag-
netic field strength and temperature jump may
play individual vital role in achieving best qual-
ity of the final products.

6. CONCLUSION

The problem of steady, two dimensional, non-
linear, laminar hydromagnetic flow of an in-
compressible, viscous and electrically conduct-
ing fluid over a stretching sheet with variable
thickness in slip flow regime has been ana-
lyzed. A parametric study on dimensionless
velocity, temperature, skin friction coefficient,
heat transfer rate are carried out. In the absence
of magnetic interaction parameter

(
M2 = 0

)
and nondimensional temperature jump param-
eter (h2 = 0), the numerical values of −F ′′(0)
are found to be in excellent agreement with that
of Khader and Megahed (2013). From the re-
sults of the present investigation, following con-
clusions are drawn:

• Dimensionless velocity gets accelerated
by the increasing velocity power index
whereas it gets decelerated by the Lorenz
force of increased magnetic field strength
and for increasing wall thickness. Dimen-
sionless velocity slip parameter has the
tenancy to both increase and decrease the
velocity distribution.

• The magnetic field, velocity power index
and dimensionless velocity slip parameter
has the influence to enhance the tempera-
ture distribution, whereas the wall thick-
ness parameter, dimensionless temperature
jump parameter and Prandtl number has
different effects to suppress the dimension-
less temperature distribution.

• Dimensionless skin friction coefficient has
decreased for increasing magnetic field,
velocity power index parameter with ve-
locity slip (h1 > 0) and wall thickness. It
gets increased for increasing values of di-
mensionless temperature jump parameter
and velocity power index parameter with-
out the velocity slip (h1 = 0).

• Wall thickness parameter, velocity power
index parameter and the Prandtl number
especially for h2 = 0 than h2 > 0 are to
enhance the non dimensional rate of heat
transfer. The magnetic field strength, di-
mensionless velocity slip parameter and
dimensionless temperature jump parame-
ter pulls down the non dimensional heat
transfer rate.

• Thickening of the boundary layer occurs
for increasing values of velocity power in-
dex, whereas it get thinner for increase
in magnetic field strength, wall thickness
parameter and dimensionless velocity slip
parameter.

• Thermal boundary layer is enriched by
magnetic field, velocity power index pa-
rameter and dimensionless velocity slip
parameter. Thinner thermal boundary
layer is obtained for increasing wall thick-
ness, Prandtl number and dimensionless
temperature jump parameter.
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