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ABSTRACT 

This work focuses on melting heat transfer in the stagnation point flow of Jeffrey fluid past an impermeable 

stretching cylinder with homogeneous-heterogeneous reactions. Characteristics of magnetohydrodynamic 

flow are explored in presence of heat generation/absorption. Diffusion coefficients of species A and B are 

taken of the same size. Heat released during chemical reaction is negligible. A system of ordinary differential 

equations is obtained by using suitable transformations. Convergent series solutions are derived. Impacts of 

various pertinent parameters on the velocity, temperature and concentration distributions are discussed. 

Numerical values of skin friction coefficient and Nusselt number are computed and analyzed. Present results 

are compared with the previous published data. 

 

Keywords: Stagnation point flow; Melting heat transfer; Homogeneous-Heterogeneous reactions; Jeffrey 

fluid. 

 
1. INTRODUCTION 

Scientists and researchers are still interested in 

exploring the behaviors and characteristics of non-

Newtonian fluids. Such inspiration is due to 

numerous applications of non-Newtonian fluids in 

physiology, pharmaceuticals, fiber technology, 

coating of wires, food products, crystal growth etc. 

Characteristics of non-Newtonian fluids cannot be 

analyzed by a single constitutive relationship. 

Therefore various models are proposed for the non-

Newtonain fluids. Generally the non-Newtonian 

fluids are categorized into three main types i.e., (i) 

Differential type (ii) Rate type and (iii) Integral 

type. Rate type fluids describe the behavior of 

relaxation and retardation times. Maxwell fluid is a 

subclass of rate type material which exhibits the 

behavior of relaxation time only. This model does 

not present the behavior of retardation time. Thus 

Jeffrey fluid model (Turkyilmazoglu and Pop 

(2013), Hayat et al. (2015), Ellahi et al. (2014), 

Dalir et al. (2015), Hayat et al. (2013)) is proposed 

to fill this void. Jeffrey fluid model characterizes 

the linear viscoelastic properties of fluids which has 

wide spread applications in the polymer industries. 

Recently the phenomenon of melting heat transfer 

has received the attention of researchers and 

scientists due to their widespread applications in the 

advanced technological and industrial processes. The 

melting of soil, the freezing of soil around the heat 

exchanger coils of a ground based pump, melting of 

permafrost, magma solidification, thawing of frozen 

grounds, the freeze treatment of sewage, the 

preparation of semiconductor material, the casting 

and welding of a manufacturing process are the 

important applications of melting phenomenon 

(Rahman et al. (2013)). Robert (1985) for the first 

time described melting phenomenon of ice slab 

placed in a hot stream of air. Hayat et al. (2013) 

presented boundary layer stagnation point flow of 

melting heat transfer in Powell-Eyring fluid. 

Radiative melting heat transfer in the 

magnetohydrodynamic flow over a moving surface 

was investigated by Das (2014). Characteristics of 

melting heat transfer in the flow of Maxwell fluid 

with double diffusive convection were explored by 

Hayat et al. (2014). Awais et al. (2014) examined 

melting heat transfer in the boundary layer stagnation 

point flow of Burgers' fluid. Prasad et al. (2014) 

analyzed melting heat transfer and mixed convection 

boundary layer flow of non-Newtonian fluid 

saturated by porous medium over a vertical plate. 

Chemical reactions in the natural processes involve 
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both homogeneous and heterogeneous reactions. Also 

there exist some of the reactions which have less 

ability to proceed quickly or not at all, except in the 

presence of a catalyst. The interaction between the 

homogeneous and heterogeneous reactions are very 

complex involving the production and consumption of 

reactant species at different rates both within the fluid 

and on the catalyst surface such as reactions occurring 

in combustion, catalysis and biochemical systems. 

Merkin (1996) explored the properties of 

homogeneous heterogeneous reactions in the 

boundary layer flow for isothermal model. 

Characteristics of homogeneous-heterogeneous 

reactions in micropolar fluid embedded in porous 

medium past a stretching/shrinking sheet were 

analyzed by Shaw et al. (2013). The analysis of 

homogeneous-heterogeneous reactions in flow of 

nanofluid past a permeable stretching sheet was 

examined by Kameswaran et al. (2013). 

The objective of the present investigations is to 

explore the characteristics of homogeneous 

heterogeneous reactions in the stagnation point flow 

of Jeffrey fluid past a cylinder with melting heat 

transfer. Behavior of heat transfer is modeled and 

analyzed with heat generation/absorption. Diffusion 

coefficients of both species are assumed equal. 

Convergent series solutions are computed via 

homotopy analysis method (Liao (2012), 

Turkyilmazoglu (2012), Beg et al. (2012), Shehzad 

et al. (2014), Abbasbandy (2013), Hayat et al. 

(2015)). Behavior of various pertinent parameters on 

the skin friction coefficient and Nusselt number are 

presented numerically. Present results for skin 

friction coefficient and Nusselt number are compared 

with previous published work in limiting sense. 

Excellent agreement between the results is obtained. 

2. MATHEMATICAL FORMULATION 

We consider the steady melting heat transfer in the 

stagnation point flow of Jeffrey fluid by an 

impermeable stretching cylinder. 

Magnetohydrodynamic flow analysis is explored 

with homogeneous-heterogeneous reactions and 

heat generation/absorption. Cylindrical coordinates 

are chosen in such a way that x -axis is along the 

axial direction of cylinder while  r-axis is normal to 

it. Stretching velocity of the cylinder is originated 

by applying two forces which are equal in 

magnitude but opposite in direction such that origin 

is kept fixed. Ambient temperature T  is assumed 

greater than the melting surface temperature mT . 

The heat released by the reaction is assumed 

negligible. The homogeneous reaction for cubic 

autocatalysis can be expressed as follows: 

2
12 3 ,     rate ,k ab  A B B                               (1) 

while first-order isothermal reaction on the catalyst 

surface is presented in the form 

,       rate .sk a A B                                           (2) 

Here a and b are the concentrations of chemical 

species A  and B  while 1k  and sk  are the rate 

constants. These equations of reactions ensure that 

the reaction rate is zero in the external flow and at 

the outer edge of the boundary layer. Using the 

boundary layer approximations ( ( ) ( ) (1),o x o u o   

( ) ( ) ( )o r o v o   ), the conservation laws of mass, 

linear momentum and energy take the forms: 

   
0,

rv ru

r x

 
 

 
                                              (3) 

 

2 2 3

2 2 3

2 2 3

2

1

2

22

2
0

1

1

,

e
e

v u v u u
r rr r r

u u u u u
r x r r x r x r

e

dUu u
u v U

x r dx

v
u u

r r r v

B
u U











   
  

   
      

 
  

  

       
   

    
   

 

 

                                                                          (4) 

 
2

0
2

1
,m

p p

QT T k T T
u v T T

x r c r r cr 

    
     

    

 

(5) 

with 

2
2

12

1
.A

a a a a
u v D k ab

x r r rr

    
    

    

             (6) 

2
2

12

1
.B

b b b b
u v D k ab

x r r rr

    
    

    

             (7) 

The subjected boundary conditions are 
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            (8) 

In the above expressions u and v denote the velocity 

components in the axial and radial directions 

respectively,   is the electrical conductivity, 0B  is 

the magnetic field, 1  is the ratio of relaxation to 

retardation times, 2  is the retardation time, R is 

the radius of cylinder, wU  and eU  are the 

stretching and free stream velocities respectively, 

  is the kinematic viscosity, k is the thermal 

conductivity,   is the density, pc  is the specific 

heat, 0Q  is the heat generation/absorption 

coefficient, AD  and BD  are diffusion species 

coefficients of A and , T and mT  are the fluid and 

(8) 
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melting surface temperatures, T  is the ambient 

fluid temperature, l  is the characteristic length, 0a  

is the positive dimensional constant,   is the latent 

heat of the fluid, 0T  and sc  are the temperature and 

heat capacity of the cylinder surface. 

Considering the following transformations 
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incompressibility condition is satisfied 

automatically and Eqs. (4) to (7) are reduced to 
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where   is the curvature parameter, A is the ratio 

of velocities, 1  is the ratio of relaxation to 

retardation times,   is the Deborah number in 

terms of retardation time, Ha  is the Hartman 

number, Pr  is the Prandtl number,  is the heat 

generation/absorption parameter, K  is the strength 

of homogeneous reaction parameter, sK  is the 

strength of heterogeneous reaction parameter, 1  is 

the ratio of mass diffusion coefficients, Sc  is the 

Schmidt number and M is the melting parameter. 

These quantities are defined as follows: 
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Here it is assumed that diffusion coefficients of 

chemical species A and B  to be of a comparable 

size. This argument provides us to make further 

assumption that the diffusion coefficients AD  and 

BD  are equal i.e. 1 1   and thus (Kameswaran et 

al. (2013)): 

    1.g h                                                    (17) 
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are defined as follows: 
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Dimensionless skin friction coefficient and local 

Nusselt number are 
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where Re /x wU x    is the Reynolds number. 

3. HOMOTOPIC SOLUTIONS 

Homotopy analysis method was first proposed by 

Liao (2012) in 1992 which is used to obtain the 

solutions of highly nonlinear problems. It provides 

us a great freedom to choose the initial guesses and 

linear operators for the construction of series 

solutions. Thus we have 
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1 2 3exp( ) exp( ) 0,f A A A      L                (25) 

4 5exp( ) exp( ) 0,A A      L                        (26) 

6 7exp( ) exp( ) 0,g A A     L                       (27) 

where iA   1,2,...,7i    are the arbitrary constants. 

The zeroth and  mth order deformation problems 

are: 

Convergence analysis 

Homotopy analysis technique provides us great 

freedom and an easy way to adjust and control the 

convergence region of the series solutions. 

Convergence region is the region parallel to  -

axis. Therefore we have plotted the  -curves in 

the Figs. 1-2. It is found that the admissible ranges 

of the auxiliary parameters ,f    and g   are 

1.3 0.8f    , 1.2 0.8     and 

1.15 0.6g     . 

 
Fig. 1. -curve for f.  

 

 
Fig. 2. -curves for  and   

 

4. DISCUSSION 

The main focus of this section is to analyze the 

characteristics of various parameters on the axial 

velocity, temperature and concentration 

distributions. Characteristics of ratio parameter A on 

the velocity distribution are illustrated in Fig. 3. It is 

concluded that velocity profile increases for 1A  

and for 1A  the boundary layer thickness has 

opposite effects. It is also examined that there is no 

formation of boundary layer for 1A  i.e., fluid and 

cylinder move with the same velocity. Fig. 4 shows 

the behavior of Deborah number   on the velocity 

distribution. Here we analyzed that velocity 

distribution enhances for larger values of Deborah 

number. Higher values of Deborah number 

corresponds to higher characteristics of elasticity 

which is responsible in enhancement of the velocity 

profile. Influence of melting parameter M on the 

velocity distribution is displayed in Fig. 5. It is 

noted that velocity distribution is higher for larger 

values of melting parameter. As a result of melting, 

more heat transfers from the heated fluid to the 

melting surface which corresponds to higher 

convection flow. Therefore velocity profile 

increases. Effect of curvature parameter   on the 

velocity profile is sketched in Fig. 6. Velocity 

profile decreases near the surface of cylinder while 

it increases gradually far away from the surface. 

 

 
Fig. 3. Effect of A  on f'.  

 
Fig. 4. Effect of   on f'.  
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Fig. 5. Effect of M  on f'.  

 

 
Fig. 6. Effect of   on f'.  

 
 

 
Fig. 7. Effect of Pr  on θ.  

 

 
Fig. 8. Effect of M  on θ.  

 

In fact for higher values of curvature parameter, the 

radius of cylinder decreases which reduces contact 

area of the cylinder with the fluid. Therefore 

velocity profile increases. Characteristics of Prandtl 

number Pr  on temperature distribution is sketched 

in Fig. 7. It is shown that temperature distribution 

increases for larger values of Prandtl number. 

Prandtl number is the ratio of momentum diffusivity 

to thermal diffusivity. Higher Prandtl number 

corresponds to lower thermal diffusivity. Hence less 

heat is transferred from heated fluid to the melting 

surface and as a result the temperature distribution 

remains higher. Behavior of melting parameter M  

on the temperature distribution is shown in Fig. 8. 

Temperature distribution is higher for small values 

of melting parameter. Further higher values of 

melting parameter result in enhancement of thermal 

boundary layer thickness. It is due to fact that more 

heat transfers from heated fluid to the melting 

surface due to higher melting parameter which 

results in the reduction of temperature distribution. 

Influence of heat generation/absorption on 

temperature profile is presented in Fig. 9. 

Temperature profile decreases with an increase in 

heat absorption parameter 0   while it increases 

with an increase in heat generation parameter 0  . 

It is also noted that thermal boundary layer 

thickness has opposite effects for heat generation 

and absorption parameters. In case of heat 

generation more heat produced which is responsible 

for enhancement of temperature profile. Effect of 

curvature parameter  on temperature profile is 

sketched in Fig. 10. It is found that temperature 

profile increases near the surface of cylinder while 

it decreases away from the surface. For higher 

values of curvature parameter, the radius of cylinder 

decreases which offers less resistance. Therefore 

temperature near the surface of cylinder increases. 

Influence of strength of homogeneous reaction 

K on concentration distribution is sketched in Fig. 

11. Concentration profile decreases while boundary 

layer thickness increases for higher values of 

strength of homogeneous reaction parameter. 

Behavior of strength of heterogeneous reaction 

parameter sK  on the concentration distribution is 

analyzed in Fig. 12. Concentration distribution 

decreases near the surface of cylinder and it 

increases away from the surface for higher values of 

sK . 

 
Fig. 9. Effect of   on θ.  
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Fig. 10. Effect of   on θ.  

 

 
Fig. 11. Effect of K  on g.  

 

 
Fig. 12. Effect of sK  on g.  

 

Table 1 shows the convergence analysis of the 

series solutions for momentum, energy and 

concentration equations. It is concluded that 21th  

order of approximations are sufficient for 

convergence analysis of momentum equation while 

25th  order of approximations are enough for energy 

and concentration equations. Table 2 presents 

behavior of various parameters on skin friction 

coefficient. Higher values of  ,  and Ha  result 

in enhancement of skin friction coefficient while it 

decreases for larger values of A , 1  and .M  Table 

3 shows the characteristics of various pertinent 

parameters on Nusselt number. It is noted that 

Nusselt number increases for higher values of  , 

Pr,    and A  while it decreases with an increase 

in M  and Ha . Tables 4 and 5 represent the 

comparison of skin friction coefficient and Nusselt 

number with the previous published work of Awais 

et al. (2013), Mahapatra and Gupta (2002), Pop et 

al. (2004) and Sharma and Singh (2009). The 

results show excellent agreement. 

 

Table 1 Convergence of series solutions for 

different order of approximations when 1λ = 1.2  

, γ = 0.1, β = 0.1,  M = 0.2,  Pr = 1.2,  

δ = 0.1, Sc = 1.2,  K = 0.5,  sK = 1.0, A = 0.2  

and Ha = 0.1  

Order of 

approximations 

-f′′(0) θ′(0) g′(0) 

1 1.0015 0.8856 0.4638 

5 1.2192 0.7345 0.3973 

10 1.2487 0.7064 0.3702 

15 1.2536 0.7042 0.3586 

21 1.2548 0.7081 0.3513 

25 1.2548 0.7096 0.3496 

30 1.2548 0.7096 0.3496 

 
Table 2 Numerical values of skin friction 

coefficient for different parameters when 

Pr = 1.2  and δ = 0.1  

A λ₁ γ β M Ha 1/2Ref xC  

0.0 1.2 0.2 0.1 0.2 0.1 0.6850 

0.1      0.6647 

0.3      0.5848 

0.1 1.0     0.7015 

 1.2     0.6647 

 1.5     0.6184 

 1.2 0.0    0.6359 

  0.2    0.6647 

  0.5    0.7069 

  0.2 0.1   0.6647 

   0.2   0.6936 

   0.3   0.7226 

   0.1 0.0  0.7248 

    0.2  0.6647 

    0.5  0.6003 

    0.2 0.0 0.6617 

     0.1 0.6447 

     0.4 0.7080 

5. CLOSING REMARKS 

In the presented analysis, we have explored the 

characteristics of melting heat transfer in the MHD 

stagnation point flow of Jeffrey fluid induced by an 

impermeable stretching cylinder with 

homogeneous-heterogeneous chemical reactions. 

Heat transfer characteristics are modeled and 

analyzed with heat generation/absorption. The key 

points are summarized as follows: 

 Melting parameter results in enhancement of 

velocity and associated boundary layer 

thickness. 
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 Velocity distribution decreases near the surface 

of cylinder while it increases away from the 

surface for higher values of curvature 

parameter. 

 Temperature distribution decreases for higher 

values of melting parameter while thermal 

boundary layer thickness increases. 

 Concentration distribution decreases for larger 

values of strength of homogeneous reaction K . 

 Higher values of strength of heterogeneous 

reaction sK result in enhancement of 

concentration profile. 

 

Table 3 Numerical values of Nusselt number for 

different parameters when 1λ = 1.2  and β = 0.1  

γ Pr δ M Ha A -θ′(0) 

0.0 1.2 0.1 0.2 0.1 0.1 0.6387 

0.2      0.7434 

0.5      0.8795 

0.2 0.8     0.6238 

 1.2     0.7434 

 1.4     0.7942 

 1.2 0.0    0.6603 

  0.1    0.7434 

  0.3    0.8591 

  0.1 0.0   0.8277 

   0.2   0.7434 

   0.4   0.6765 

   0.2 0.0  0.7438 

    0.1  0.7434 

    0.3  0.7399 

    0.1 0.0 0.7331 

     0.1 0.7434 

     0.4 0.7814 

 
Table 4 Comparison of skin friction coefficient 

( f (0) )  with Mahapatra and Gupta (2002), 

Pop et al. (2004) and Sharma and Singh (2009) 

for various values of A  when 1γ = 0,λ = 0 , 

β = 0,  Ha = 0,  δ = 0  and M = 0  

A 

Mahapatra 

and Gupta 

(2002) 

Pop et 

al. 

(2004) 

Sharma 

and Singh 

(2009) 

Present 

results 

0.1 -0.9694 -0.9694 -0.969386 -0.96939 

0.2 -0.9181 -0.9181 
-

0.9181069 
-0.91811 

0.5 -0.6673 -0.6673 -0.667263 -0.66726 

0.7    -0.43346 

0.8    -0.29929 

0.9    -0.15458 

1.0    0.00000 
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Table 5 Comparison of Nusselt number ( -θ (0) ) 

 with Mahapatra and Gupta (2002) and Awais 

et al. (2014) for various values of A  and Pr  

when 1γ = 0,λ = 0,  β = 0,  Ha = 0,  δ = 0  

and M = 0  

Pr A 
Mahapatra and 

Gupta (2002) 

Awais et 

al. (2014) 

Present 

results 

1.0 0.1 0.603 0.602156 0.6022 

 0.5 0.692 0.692460 0.6926 

1.5 0.1 0.777 0.776802 0.7768 

 0.5 0.863 0.864771 0.8646 
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