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ABSTRACT 

In this study, an exact solution of the Navier-Stokes and energy equations is obtained for the problem of 

unsteady three-dimensional stagnation point flow and heat transfer of viscous, incompressible fluid on a flat 

plate. An external flow with strain rate / (1 )a at  impinges obliquely on the flat plate when the plate is 

assumed to be with transpiration. This flow consists of an irrotational stagnation-point flow (Hiemenz) and a 

tangential component. The relative importance of these two flows is measured by a parameter  . Appropriate 

similarity transformations are introduced, for the first time, to reduce the governing Navier-Stokes and energy 

equations to a coupled system of ordinary differential equations.

 

The fourth-order Runge-Kutta method along 

with a shooting technique is applied to numerically solve the ordinary differential equations. The results 

obtained from numerical procedure are presented and discussed for a wide range of parameters characterizing 

the problem. The results achieved reveal that the transpiration rate has a considerable effect on the 

distributions of velocity components, temperature and pressure. Moreover, it is shown that the main 

consequence of the free stream obliqueness is to move the stagnation point away from the origin of the 

coordinate system.  

 
Keywords: Exact solution; Similarity transformations; Obliqueness; Transpiration. 

NOMENCLATURE 

a  flow strain rate  

b  constant 

, ,f g h  similarity functions  

Pr  Prandtl number  

p  pressure  

S  dimensionless transpiration rate  

T  temperature  

t  time   

t  dimensionless time   

, ,u v w  velocity components near the plate in  x, y 

and z directions  

, ,u v w  dimensionless velocity components near 

the plate in x, y and z directions  

, ,U V W  potential region velocity components .in x, 

y and z directions 

0W   transpiration rate 

 

, ,x y z  dimensionless Cartesian coordinates  

 
  thermal diffusion   

  similarity variable 

  dynamic viscosity  

  dimensionless temperature  

  ratio of shear flow to normally 

impinging flow 

  velocity ratio  

  density  

  kinematic viscosity  

  surface shear stress   

,x y   shear stress components in x and 

directions  

0  stagnation point 

w  wall 

  infinite 

 

 
 

 

1. INTRODUCTION The study of stagnation flow and heat transfer of a 
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viscous fluid in the vicinity of a plate or cylinder 

has been of considerable interest during the last 

decades. It is because of its great technical 

importance in many branches of industrial 

applications

 

such as drying of papers and films and 

high-pressure washers. Nonlinearity of the Navier-

Stokes and energy equations has been always a 

technical problem for these equations to be solved. 

Hence, researches seek similarity methods to 

resolve this problem. By applying the similarity 

solution method, the Navier-Stokes and energy 

equations are reduced to ordinary differential 

equations which are much easier to numerically 

solve. There are some fundamental publications 

regarding the problem of stagnation flow in the 

vicinity of a body in the last years. 

The two-dimensional and axisymmetric three-

dimensional stagnation-point flows on a cylinder 

were firstly studied by Hiemenz (1911) and 

Homann (1936). Problem of stagnation flow against 

an axisymmetric flat plate was investigated by 

Howarth (1954) and Davey (1951). Afterwards, 

Chiam (1994), Mahapatra and Gupta (2002), Reza 

and Gupta (2005) along with Lok and Amin (2006) 

scrutinized the steady two-dimensional stagnation 

point flow of an incompressible viscous fluid over a 

flat deformable sheet. The sheet is stretched in its 

own plane with a velocity proportional to the 

distance from the stagnation point. The flow 

impinges on the wall either orthogonal or at an 

arbitrary angle of incidence. Also, Stuart (1959), 

Tamada (1979),  Niimi et al. (1981) and Dorrepaal 

et al. (1986) obtained an exact solution of the 

Navier-Stokes equations representing the problem 

of two-dimensional stagnation-point flow of an 

incompressible viscous fluid impinging obliquely 

on a plane rigid wall. Afterwards, in Laboropulu et 

al. (1996), the obliquely impinging flow on a wall 

with suction or blowing was solved. Some other 

papers studied the steady or unsteady three-

dimensional case of stagnation flow along with heat 

transfer on a flat plate. Firstly, unsteady three 

dimensional stagnation point flow was discussed by 

Cheng et al. (1971). In another research, Wang 

(1984) solved the three dimensional flow over a 

stretching flat surface. Devi et al. (1986) studied 

unsteady three dimensional boundary layer flows 

due to a stretching surface. Shokrgozar and Rahimi 

(2009) considered the three dimensional stagnation 

flow and heat transfer on a flat plat with 

transpiration. Besides, the problem of three 

dimensional boundary layer flows due to a 

permeable shrinking sheet was studied by Bachok 

(2010). The study of stagnation flow on a cylinder 

has been an interest of many researches so far. 

Gorla (1976, 1977, 1977, and 1978) in a series of 

papers studied the steady and unsteady stagnation 

flow and heat transfer in the vicinity of a circular 

cylinder for the cases of constant or axial 

movement. Furthermore, Axisymmetric and 

nonaxisymmetric stagnation-point flow and heat 

transfer of a viscous, incompressible fluid on a 

moving cylinder in different physical phenomena is 

the main subject of papers conducted by Saleh and 

Rahimi (2004) and Rahimi and Saleh (2007, 2008). 

They investigated the effects of different forms of 

axial and angular cylinder motion on velocity and 

temperature profiles. Stagnation point flow 

impinging obliquely on a cylinder has been; also, 

investigated by a number of authors.  Firstly, 

Weidman (1976) conducted an investigation for the 

case of axisymmetric stagnation flow impinging 

obliquely on circular cylinder.  After that, Rahimi 

and Esmaeilpour (2010) solved the problem of 

axisymmetric stagnation flow obliquely impinging 

on a moving circular cylinder with uniform 

transpiration. Also, Rahimi and Mossavinik (2007) 

studied axisymmetric stagnation point flow and heat 

transfer obliquely impinging on a rotating circular 

cylinder.  

In this study, the exact solution of Navier-Stokes 

and energy equations is intended to be obtained for 

the problem of unsteady three dimensional 

stagnation point flow and heat transfer of a viscous, 

incompressible fluid impinging obliquely on a flat 

plate. The problem is investigated in the vicinity of 

the plate in the presence of suction and blowing 

effects. An external flow impinges obliquely on the 

flat plate with strain rate / (1 )a at . This flow 

consists of irrotational stagnation point flow 

(Hiemenz) and a tangential component. The 

governing equations are reduced to a coupled 

system of ordinary differential equations by using 

appropriate similarity transformations introduced 

for the first time. These ordinary equations are 

solved using numerical techniques. Velocity 

profiles, surface stress tensors, pressure profiles and 

temperature profiles are presented for a wide range 

of characterizing parameters. 

2. PROBLEM FORMULATION  

The problem of unsteady three-dimensional 

stagnation-point flow and heat transfer of a viscous, 

incompressible fluid impinging obliquely on a flat 

plate is aimed to solve for the first time. In order to 

solve this problem, three-dimensional Cartesian 

coordinate system ( , , )x y z  with corresponding 

velocity components ( , , )u v w  is selected, as it is 

illustrated in Fig. 1. An external potential flow 

impinges on the plate with strain rate / (1 )a at . 

This flow consists of irrotational stagnation point 

and a uniform shear flow parallel to the surface. 

The relative importance of these two flows is 

measured by the parameter  . After impingement 

of the fluid on x-y plane, two separated regions are 

produced. These regions are the potential region 

and the region of rapid changes of velocity 

components in x and y directions. If the flow 

pattern on the plate is bounded from both sides in 

one of the directions, for example x-axis, because of 

some physical limitations, a difference between the 

values of x and y velocity components will be 

captured in the region of rapid changes. A 

parameter characterizing this situation is  , the 

coefficient indicating the ratio of x to y velocity 

components in potential region when the flow 

impinges on the plate normally. This parameter is 

defined between 0 and 1, 0 1  , Ref [3]. The 

flow will be the axisymmetric if 1   and will be 
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considered the two-dimensional if 0  .  In such a 

situation, there is no velocity component in x-

direction. With the increase of   from 0 to 1, the 

problem crosses the line from two-dimensionality to 

axisymmetric three-dimensionality.  

 
Fig. 1. Schematic of the problem. 

 
The Navier-Stokes and enefffrgy equations 

governing this problem are as follow. 

0
u v w

x y z
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                         (5) 

Where , , ,p     and T are the fluid pressure, 

density, kinematic viscosity, thermal diffusivity and 

temperature, respectively. It is worth noting that the 

dissipation terms of the energy equation are 

negligible at the stagnation region.  

3. SELF-SIMILAR SOLUTIONS 

3.1. Fluid Flow Solution  

The velocity components and pressure term gained 

by solving the governing equations (1-4) in the 

potential region are expressed as follow, [9], [10] 

and [12], 

1 1

a x b z
U

at at
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( )]          ,0 1
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P P x z

at

a y W bx a z

  

 




  



    

  

       (9) 

Where 0,a p and 0W are a constant used in the 

strain rate relation, the stagnation pressure and the 

transpiration rate in z direction. Besides, b  is a 

constant indicating the importance of shear flow to 

irrotational stagnation flow. Moreover,   is a 

coefficient being the aspect ratio of potential 

velocity components in x  to y directions when the 

flow impinges on the plate along z-direction. This 

parameter is defined between 0 and 1, as it was 

explained in section 2. The solution of the 

governing Navier-Stokes and energy equations (1-

5) in the viscous region close to the plate must 

approach the solution of the outer inviscid flow. A 

reduction of the governing equations to ordinary 

differential equations in viscous region is 

accomplished by using suitably introduced new 

similarity transformations as bellow,  

1

z
a

at
 


                                     (10) 

( ) ( )

1 1

ax f b h
u a

at at

  



 

 
    (11) 

[ ( ) ( )]

1

a y f g
v

at

  



     (12) 

0(1 ) ( ) ( )
1

a W
w f g

at a


  



 
    

   

        (13) 

In the above relations,  is the similarity variable, 

the terms ( ), ( )f g   and ( )h   are similarity 

function which appear in similarity solution and the 

prime denotes differentiation with respect to η. 

Moreover, t  is the time which must be in the range 

of
1

t
a

    , mathematically. It is worth noting 

that for the case of normally impinging flow 0b   

with constant strain rate a , the similarity 

transformations introduced in (10) to (13) become 

similar to those obtained in Shokrgozar and Rahimi 

(2009). 

Inserting the similarity transformations (10) to (13) 

into the governing equations (1) to (4) causes the 

Continuity equation to be satisfied, automatically, 

and gives a coupled system of ordinary differential 

equations reduced from x-momentum and y-
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momentum and, also, an expression for the 

pressure, obtained by integrating Eq. (4) in z-

direction, as follow, 

 

2
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f f
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In which, 
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In the above equations, S is the dimensionless 

transpiration rate and is defined as,  

0W
S

a
      (19) 

Note that 0S  corresponds to suction into the 

plate and 0S  refers to blowing out of it.   

The needed boundary conditions for solving the set 

of similarity equations (14) to (16) are,  

0 :  0,   0,  0,  0,  0f f g g h             (20)  

 : 1,  1,  0f h g              (21) 

3.2. Heat Transfer Solution  

To transform the energy equation into a 

dimensionless, similarity form for the case of 

defined wall temperature, we introduce 

( )

w

T T

T T


 







     (22) 

In which, T is the free stream temperature and 

wT is the wall temperature. Making use of similarity 

transformations (10) to (13) and (22), the energy 

equation is written as 

1
Pr (1 ) 0

2
f g S   

 
       

 
    (23)  

Where Pr is the Prandtl number and is defined 

as, 

Pr   



          (24) 

The boundary conditions needed to solve the 

equation (23) are as follow, 

0 :  1            (25) 

:  0         (26) 

Besides, the heat loss per area from the plate can be 

obtained by using the following relation,  

1 2

1 2

1
( ) ( ) (0)

(1 )
w

dT a
Q k k T T

d t


 
   


 

   (27) 

A finite difference procedure including tri-diagonal 

matrix algorithm (TDMA) is used to discretize the 

governing equations (14) to (18) and (23) 

describing the sets of laws. Also, the fourth-order  

Runge-Kutta  method  of  integration  along  with  a  

shooting  method is applied to numerically solve the 

governing equations. The numerical procedure is 

repeated until the difference between the results of 

two repeated sequences of each of the equations 

becomes less than 0.00001.   

The results are presented for different values of 

, ,S  and Pr numbers in section 4. 

3.3. Shear Stress 

The shear stress on z=0 plane is achieved by using 

the following relation, 

0
x y

z

u v
e e e ex y x yz z

   


  
    

  
     (28) 

By using the similarity transformations introduced 

in relations (10) to (12), the shear stress 

components at the wall become, 

3/2
0

1(1 ) z

u xf h
x z tt

 
  



  
      

    

     (29) 

3/2

( )

(1 ) 0

v y f g
y z t z

  
   

       

      (30) 

There are some dimensionless parameters used in 

(29) and (30) equations. These parameters are 

defined as follow,           

,     ,     ,     
b a a

x x y y t at
a


  

         (31) 

In which, ,x y and t are dimensionless forms of 

coordinates ,x y  and time. Moreover,  is the 

dynamic viscosity. Besides,  is the parameter 

indicating the relative importance between the 

normally impinging flow and the uniform shear 

flow parallel to the surface. If 0  , the shear 

flow is negligible and in the case of   , the 

flow includes only shear flow. 

In an obliquely impinging flow, the obliqueness 

causes the stagnation point to be shifted toward the 
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incoming flow in x-direction. In order to calculate 

the position of the stagnation point in an obliquely 

stagnation flow, equation (32) is introduced. In this 

equation, sx is the distance between the origin of 

the coordinate system and the location of the 

stagnation point.  

1 2(0)
(1 )

(0)
s

h
x t

f

 
  


    (32) 

4. PRESENTATION OF RESULTS 

In this section, the results achieved by numerically 

solving the coupled system of self-similar equations 

(14) to (18) and (23) will be presented.   

 

 
(a) 

 
(b) 

Fig. 2. Distributions of 'f  profiles for different 

values of S  parameter when (a) 0.1   and 

(b) 0.9  . 

 
As we know, S parameter represents the suction 

into the plate  0S   or blowing out of it  0S  . 

Here, the effects of transpiration rate S  on 

dimensionless velocity profiles in x and y directions 

are presented for three dimensional cases, defined 

with 0.1  and 0.9  , in Figs. 2 and 3. 

According to these two figures, the thickness of the 

viscous layer in the region close to the plate is 

higher for negative values of S  compared to that 

when 0S  .
 
Moreover, it is clear from (a) and (b) 

parts of these figures that as the stagnation flow 

patterns approach the axisymmetric case, 0.9  , 

the viscous layer thickness decreases and the 

amount of velocity components increases at any 

specified values of S and . Furthermore, 

distributions of the velocity component in z-

direction along with ( )f  and ( )g  functions are 

illustrated in figure (4) in terms of selected values 

of S and  parameters. As it is shown in this figure, 

the more the amount of S , the more the value of 

( )f   and, also, the absolute value of w-component 

will be in all three dimensional cases. Besides, it is 

revealed that the influence of suction or blowing 

intensity on ( )g  distributions is more considerable 

when 0  . 

 

 
        (a) 

 
(b) 

Fig. 3. Distributions of ' 'f g  profiles for 

different values of S  parameter when (a) 

0.1   and (b) 0.9   
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      (a) 

 
     (b) 

Fig. 4. Distributions of w-component of 

velocity, ( )f  and ( )g   functions for different 

values of S  parameter when (a) 0.1   and 

(b) 0.9  . 

 
In figure (5), the variations of ( )h   function with 

respect to   for different values of S  and   

parameters are illustrated. It can be found out from 

this figure that with enhancement of suction 

intensity, the value of ( )h   function increases as 

well.  

The pressure profiles inside the boundary layer are 

depicted in Fig. 6 for different values of 

transpiration rate S  and velocity ratio  . As it is 

captured, the increase in the value of S  parameter 

from -1 to 2 causes the pressure gradients to 

increase in the region close to the plate. This 

phenomenon brings about the increase in the 

absolute value of pressure at any specified values of 

 . Also comparing the results in parts (a) and (b) 

of this figure reveals the important note that the 

pressure gradients in the vicinity of the plate are 

more considerable for higher value of  , 0.9   

for instance. 

 

 

 
          (a) 

 
   (b) 

Fig. 5. Distributions of ( )h   profiles for different 

values of S  parameter when (a) 0.1   and 

(b) 0.9  . 

 
Dimensionless temperature distributions versus   

in terms of different values of S  parameter and 

selected values of Pr number are depicted in Fig. 7 

for 0.1   and in Fig. 8 for 0.9  .  As it can be 

found out from these two figures, the increase of S  

parameter from -1.0 to 2.0 brings about the decrease 

in the thermal boundary layer thickness and 

increase in the temperature gradient in the region 

near the wall at any fixed values of   and Pr 

numbers. It is worth noting that when the fluid is 

blown out of the plate, the temperature gradient 

near the plate tends to zero especially for fluids with 

a high Pr number. It means that there is no 

considerable heat transfer between the plate and 

fluid in such a situation. The obtained results also 

revealed that the increase of Pr number results in 

decrease in the thermal boundary layer thickness at 

any value of  , as expected.  

As it was mentioned before,   is a parameter being 

the ratio of the strength of outer shear flow to the 

outer normally impinging flow. In Figs. 9 to 12, 

sample forms of streamlines are presented for 

different values of   parameter when 

0.0,  =0.5S   . These streamlines are obtained by 

using the computed velocity components and are 
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illustrated in the x   plane when 0y  . Fig. 9 

shows the obtained streamlines for the case of 

0  . As it can be noticed in Figs. 10 and 11, the 

flow pattern is inclined to the left-hand side for 

positive values of  . The more the   parameter, 

the more deviation with respect to normal direction 

on the plate is captured for streamlines. Another 

considerable point in these two figures is that with 

increase of   parameter, the distance between the 

stagnation point position and the origin of the 

coordinate system enhances. Moreover, Fig. 12 

reveals that for negative value of  , the streamlines 

are deviated to the right-hand side.       

 

 
      (a) 

 
          (b) 

Fig. 6. Distributions of pressure profiles for 

different values of S  parameter when (a) 

0.1   and (b) 0.9  . 

 

Next, the distributions of shear stress components in 

x and y directions are shown in Figs. 13 and 14 for 

0.0   and 1.0  , respectively, and in terms of 

different values of transpiration rate S  and velocity 

ratio  . According to these two figures, the shear 

stress component in y-direction is independent of 

  and   parameters; however, the increase of the 

value of S  number causes this component to 

enhance. Besides, as it is captured in Figs. 13 and 

14, the x-component of the shear stress increases as 

the flow pattern crosses the line from two-

dimensionality towards the axisymmetric three-

dimensionality. Another important note is that the 

more the value of  , the more the amount of shear 

stress component in x-direction will be at any value 

of  .     

 

 
          (a) 

 
    (b) 

Fig. 7. Distributions of dimensionless 

temperature profiles for 0.1  and different 

values of S  parameter when (a) Pr 0.5  and 

(b) Pr 2.0 . 

 
In the next three figures, the influences of 

transpiration rate S along with   and   numbers 

on the position of the stagnation point are 

investigated. As it is clear in these figures, the 

increase of   parameter causes the stagnation point 

to be shifted away from the origin of the coordinate 

system at any fixed value of transpiration rate 

S and velocity ratio  . Moreover, it is revealed that 

in an obliquely impinging flow, the stagnation point 

is less displaced when the fluid is sucked into the 

plate  0S   in comparison with the situation 

where the fluid is blown out of the plate  0S  . 

Another interesting point is that as the flow patterns 

move toward the axisymmetric case  1.0  , the 
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stagnation point becomes closer to the origin at any 

amount of transpiration rate. This phenomenon is 

more noticeable in high values of   parameter.    

 

 
        (a) 

 

       (b) 

Fig. 8. Distributions of dimensionless 

temperature profiles for 0.9  and different 

values of S  parameter when (a) Pr 0.5  and 

(b) Pr 2.0 . 

 

 
Fig. 9. Streamlines in x   plane for the case of 

0.0   when 0.5,  S=0.0  . 

 
Fig. 10. Streamlines in x   plane for the case 

of 1.0   when 0.5,  S=0.0  . 

  

         
Fig. 11. Streamlines in x   plane for the case 

of 3.0   when 0.5,  S=0.0  . 

 

 
Fig. 12. Streamlines in x   plane for the case 

of 2.0    when 0.5,  S=0.0  . 

 
With the enhancement of Pr number, the 

temperature gradient increases in the region close to 

the wall. This fact is intended to be shown in Fig. 

18 for selected values of  parameters when 0.1S  . 

This figure illustrates that there is a considerably 

more heat transfer between the plate and fluids with 

high Pr number compared to the fluids with low Pr 
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number. Moreover, as it is captured, increase of the 

velocity ratio   results in increase of the 

dimensionless temperature gradient at 0.0  .  

 

 
Fig. 13. Distributions of shear stress components 

in x and y directions in terms of different values 

of   and S  parameters when 0.0  . 

    

 
Fig. 14. Distributions of shear stress components 

in x and y directions in terms of different values 

of   and S  parameters when 1.0  . 

 

 
 

Fig. 15. Stagnation point position for different 

values of  and   parameters when 1.0S   . 
 

 
Fig. 16. Stagnation point position for different 

values of  and   parameters when 0.0S  . 

 

 
Fig. 17. Stagnation point position for different 

values of  and   parameters when 2.0S  . 

 

 
Fig. 18. Dimensionless temperature gradient 

distributions at 0.0  versus Pr number in 

terms of selected values of  parameter when 

0.1S   

5. CONCLUSION 

In this paper, the unsteady three dimensional 

stagnation-point flow and heat transfer of a viscous, 

incompressible fluid yet obliquely impinging on a 
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flat plate with transpiration was investigated. By 

using firstly introduced similarity transformations, 

an exact solution of the governing Navier-Stokes 

and energy equations was obtained when an 

unsteady external flow with strain rate 

/ (1 )a at impinges obliquely on the flat plate. This 

flow consists of stagnation-point flow (Hiemenz) 

and a tangential component. The relative 

importance of these two flows is measured by a 

parameter  . The obtained results were presented 

for a wide range of parameters characterizing the 

problem. The results revealed that the transpiration 

rate S has a great influence on distributions of 

velocity components, temperature and pressure. 

Moreover, it was shown that   and   parameters 

have no effect on the amount of y-component shear 

stress, however, increase of the value of these two 

parameters causes the value of shear stress 

component in x-direction to enhance. It was also 

shown that the main consequence of the free stream 

obliqueness is to shift the location of the stagnation 

point towards the incoming flow.  
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