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ABSTRACT

The aim of the present numerical study to analyze the conjugate natural convection heat transfer in a
rotating enclosure with finite wall thickness. The enclosure executes a steady counterclockwise an-
gular velocity about its longitudinal axis. The staggered grid arrangement together with the Marker
and Cell (MAC) method was employed to solve the governing equations. The governing parameters
considered are the wall thickness, 0.05 ≤ D ≤ 0.2, the conductivity ratio, 0.5 ≤ Kr ≤ 10 and the
Taylor number, 8.9× 104 ≤ Ta ≤ 1.1× 106, and the centrifugal force is assumed weaker than the
Coriolis force. It is found that decreasing the conductivity ratio or/and rotational speed stabilize
of the convective flow and heat transfer oscillation. The global quantity of the heat transfer rate
increases by increasing the conductivity ratio and it decreases about 12% by increasing 20% wall
thickness for the considered rotational speeds.
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NOMENCLATURE

Cp specific heat capacity (J/kg K)
g gravitational acceleration (m/s2)
k thermal conductivity (W m−1 K−1)
ℓ width and height of enclosure (m)
Nu Nusselt number
p pressure (N/m2)
Pr Prandtl number
Ra Rayleigh number
Raω rotational Rayleigh number
t time (s)
Ta Taylor number
T temperature (K)

u, v velocity components (m/s)
x, y space coordinates (m)

α thermal diffusivity (m2/s)
β thermal expansion coefficient (1/K)
ν kinematic viscosity (m2/s)
τ dimensionless time
τp dimensionless time for one rotation
Θ dimensionless temperature
Ω angular rotation rate (rpm,rad/s)
ρ density (kg/m3)
φ angular position(rad)
µ dynamic viscosity (N s/m2)

1. INTRODUCTION

Natural convection in enclosures is a challeng-
ing topic of practical importance, because en-
closures filled with fluid are central compo-
nents in a long list of engineering and geophys-
ical systems as well as academic researches.
The conductivities of the material of the ther-
mal systems is very important in many situa-

tions, for example, in a high performance insu-
lation for buildings. This coupled conduction-
convection problem is known as conjugate con-
vection. Conjugate natural convection in a
rectangular enclosure surrounded by walls was
firstly examined by Kim and Viskanta (1984),
Kim and Viskanta (1985). Their results show
that wall conduction effects reduce the average
temperature differences across the cavity, par-
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tially stabilize the flow and decrease the heat
transfer rate. Kaminski and Prakash (1986) and
Misra and Sarkar (1997) performed a numeri-
cal study on conjugate convection in a square
enclosure with thick conducting wall on one of
its vertical sides. The influence of wall con-
duction on natural convection in an inclined
square enclosure was examined by Acharya
and Tsang (1987), Yedder and Bilgen (1997)
and Nouanegue, Muftuoglu, and Bilgen (2009).
Du and Bilgen (1992) found that the tempera-
ture distribution on the solid–fluid interface is
greatly influenced by the coupling effect be-
tween solid wall conduction and fluid convec-
tion. Mobedi (2008) focused on the horizon-
tal conductive walls of conjugate convection in
cavities and he showed that the heat transfer rate
is also affected by the combination of Rayleigh
number and the thermal conductivity ratio. Re-
cently, Zhang, Zhang, and Xi (2011) studied
conjugate heat transfer in a tilted enclosure with
time-periodic sidewall temperature. They found
that the heat transfer rate increases almost lin-
early with the thermal conductivity ratio and the
thermal diffusivity ratio due to wall conduction.

Natural convection in a rotating rectangular box
has been numerically studied by Buhler and
Oertel (1982). They found the roll cells changed
orientation with increasing the rotation speeds.
Hamady, Lloyd, Yang, and Yang (1994) in-
vestigated numerically and experimentally fluid
flow and heat transfer characteristics of a rotat-
ing square enclosure. They concluded that the
Coriolis force arising from rotation may have
a remarkable influence on heat transfer when
compared with non-rotating results and a cor-
relation of Nusselt number as function of Tay-
lor and Rayleigh number were built. Lee and
Lin (1996) and Ker and Lin (1996), Ker and
Lin (1997) studied a differentially heated rotat-
ing cubic enclosure. Significant flow modifica-
tion was obtained when the rotational Rayleigh
number greater than the Rayleigh number or
the Taylor number greater than the Rayleigh
number and examined effect of the rotation to
the flow stabilization. A significant increasing
or decreasing in heat transfer in a rotating and
differentially heated square enclosure could be
achieved due to rotational effects as reported
by Baig and Masood (2001) and Baig and Zu-
naid (2006). Jin, Tou, and Tso (2005) studied
numerically the rectangular enclosure with dis-
crete heat sources and found rotation results in
imbalance of clockwise and counterclockwise
circulations, increases heat transfer in the worst
stage, reduces the oscillation of Nusselt number,
and improves or reduces mean performance in

Fig. 1. Schematic representation of the
model.

each cycle. The effects of Coriolis force, cen-
trifugal force, and thermal buoyancy force were
segregated numerically by Tso, Jin, and Tou
(2007) on a differentially heated square enclo-
sure. The effects of the Coriolis and centrifugal
forces were found small and differentiated from
those other forces. Mukunda, Shailesh, Kiran,
and Shrikantha (2009) studied the behaviour of
the fluids rotating from zero to critical speed.

Best of authors knowledge, the study on conju-
gate convection in rotating enclosures with wall
conduction effect is not studied so far. So, the
problem of conjugate convection heat transfer
in a rotating enclosure is studied numerically in
the present study. The effects of wall thickness
and conductivity ratio wall to fluid as well as
the rotational speeds on characteristics of con-
vective flow and heat transfer performance are
considered.

2. MATHEMATICAL FORMULATION

A schematic diagram of a square enclosure with
finite wall thickness d of side ℓ executes a
steady uniform counterclockwise angular ve-
locity about its longitudinal as shown in Fig.
1., with the geometric layout and the Carte-
san coordinates (x,y) rotating with the enclo-
sure. The surface at y = ℓ/2 has constant hot
temperature (Th) and the surface at y = −ℓ/2
has a constant cold temperature (Tc). The tem-
peratures along the lateral wall are assumed to
be linearly distributed between Th and Tc, i.e.
(Th+Tc)/2+(Th−Tc)y/ℓ to consider conjugate
heat transfer in the lateral wall of the experi-
ments. The φ shown in the Fig. 1. is defined
as an angular position.
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The fluid is Newtonian and the flow is lami-
nar and incompressible. The density variation
of the fluid follows Boussinesq’s assumption
and changes with temperature only. The terms
representing the thermal and rotational buoyan-
cies and Coriolis force are, respectively, equal
to ρ0gβ(Tf −Tc), −ρ0gβ(Tf −Tc)Ω× (Ω× r),
and −2ρ0[1− β(Tf − Tc)] ·Ω×V. The conti-
nuity, momentum and energy equations can be
described as follows:

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

=− 1
ρ0

∂Pm

∂x

+ν
(

∂2u
∂x2 +

∂2u
∂y2

)
+2Ωv−2Ωvβ(Tf −Tc)

−Ω2xβ(Tf −Tc)+gβ(Tf −Tc)sin(Ωt) (2)

∂v
∂t

+u
∂v
∂x

+ v
∂v
∂y

=− 1
ρ0

∂Pm

∂y

+ν
(

∂2v
∂x2 +

∂2v
∂y2

)
−2Ωu+2Ωuβ(Tf −Tc)

−Ω2yβ(Tf −Tc)+gβ(Tf −Tc)cos(Ωt) (3)

∂Tf

∂t
+u

∂Tf

∂x
+ v

∂Tf

∂y
= α

(
∂2Tf

∂x2 +
∂2Tf

∂y2

)
(4)

and the energy equation for the impermeable
wall is:

∂2Tw

∂x2 +
∂2Tw

∂y2 = 0 (5)

where Pm is the motion pressure defined as:

Pm = p− 1
2

ρ0Ω2x2 − 1
2

ρ0Ω2y2

+ρ0gxsin(Ωt)+ρ0gycos(Ωt) (6)

Hence,

−∂Pm

∂x
=−∂p

∂x
+ρ0Ω2x−ρ0gsin(Ωt) (7)

−∂Pm

∂y
=−∂p

∂y
+ρ0Ω2y−ρ0gcos(Ωt) (8)

The governing equations (2)–(4) can be con-
verted to nondimensional forms using the fol-
lowing nondimensional parameters:

X =
x
ℓ
, Y =

y
ℓ
, τ =

tα
ℓ2 ,U =

uℓ
α
,V =

vℓ
α
,

Θ f =
Tf −Tc

Th −Tc
,Pr =

ν
α
, Ra =

gβ(Th −Tc)ℓ
3

να
,

P =
Pmℓ

2

ρα2 , Θw =
Tw −Tc

Th −Tc
, D =

d
ℓ

(9)

Raω =
βΩ2 (Th −Tc)ℓ

4

να
, Ta =

4Ω2ℓ4

ν2

The Coriolis buoyancy force is neglected, be-
cause |β(T − Tc)| << 1 in the present stud-
ies. The nondimensional continuity, momen-
tum, and energy equations are written as fol-
lows:

∂U
∂X

+
∂V
∂Y

= 0 (10)

∂U
∂τ

+U
∂U
∂X

+V
∂U
∂Y

=− ∂P
∂X

+Pr
(

∂2U
∂X2 +

∂2U
∂Y 2

)
+Ta0.5PrV︸ ︷︷ ︸

Coriolis force term

−RaωPrXΘ f︸ ︷︷ ︸
Centrifugal force term

+RaPrΘ f sin(0.5Ta0.5Prτ)︸ ︷︷ ︸
Buoyancy force term

(11)

∂V
∂τ

+U
∂U
∂X

+V
∂U
∂Y

=− ∂P
∂X

+Pr
(

∂2U
∂X2 +

∂2U
∂Y 2

)
−Ta0.5PrU︸ ︷︷ ︸

Coriolis force term

−RaωPrY Θ f︸ ︷︷ ︸
Centrifugal force term

+RaPrΘ f cos(0.5Ta0.5Prτ)︸ ︷︷ ︸
Buoyancy force term

(12)

∂Θ f

∂τ
+U

∂Θ f

∂X
+V

∂Θ f

∂Y
=

∂2Θ f

∂X2 +
∂2Θ f

∂Y 2

(13)

∂2Θw

∂X2 +
∂2Θw

∂Y 2 = 0 (14)

U =V = 0 on the walls and the boundary condi-
tions for the non-dimensional temperatures are:

Θw = Y +0.5 and Θ f = Y +0.5
at X =−0.5, X = 0.5 (15)

Θw = Θ f and
Θ f

∂Y
= Kr

∂Θw

∂Y
at X = D, X = 1−D (16)

Θw = 0 at Y =−0.5 and
Θw = 1 at Y = 0.5 (17)
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(a)

(b)
Fig. 2. (a) Grid independency study: Nu f
versus number of grid points, (b) Typical
computation process for present periodic

oscillation problem.

where Kr = kw/k f is the thermal conductivity
ratio.

The fluid motion is displayed using the stream
function Ψ obtained from velocity components
U and V . The relationships between the stream
function and the velocity components are: U =
∂Ψ/∂Y and V =−∂Ψ/∂X , which yield a single
equation,

∂2Ψ
∂X2 +

∂2Ψ
∂Y 2 =

∂U
∂Y

− ∂V
∂X

(18)

where Ψ = 0 at all walls of the enclosure. The
physical quantities of interest in this problem
are the average Nusselt number, representation
of the average heat transfer rate on the solid–
fluid interface that defined by:

Nu f =
∫ 0.5

−0.5

∂Θ f

∂Y
dX (19)

The time-integrated of the average heat transfer
rate in one cycle is:

Nu f =
∫ τp

0
Nu f dτ (20)

3. NUMERICAL METHOD AND VALI-
DATION

Staggered grid arrangement together with the
Marker and Cell (MAC) method by Harlow and
Welch (1965) are adopted to solve the govern-
ing equations (10)–(14) subject to the boundary
conditions (15)–(17). Due to lack of bound-
ary conditions for pressure, the use of the stag-
gered grid and MAC formulation provide an
advantage. That is, one may locate the sec-
ondary grid along the boundaries of the domain
where only specification of velocity boundary
conditions is required but not of the pressure.
The fictitious values of velocity outside the do-
main are obtained by extrapolation of the inte-
rior points as given by Hoffmann and Chiang
(2000). A second-order central difference ap-
proximation is used for the space discretization
and a first-order approximation is used for tem-
poral derivative. The solution of the Poisson
pressure equation is obtained by applying an it-
erative Gaussian-SOR method. The velocities
are then computed by the projection method.

In this study, the convergence criterion for the
Poisson equation is set as ε = 10−5 and the
time stepping is chosen, ∆τ = λ(1/4)(∆X)2Pr
to meet stability criteria where λ is the safety
factor with the value between 0 and 1. Uni-
form grid distribution is used for the whole en-
closure. The effect of grid resolution was ex-
amined in order to select the appropriate grid
density as demonstrated in Fig. 2(a) for Kr = 5,
D = 0.15, Ta = 8.97× 104, Ra = 1.2× 105 at
φ= 5π/4. The results indicate that an 120×120
mesh can be used in the final computations. A
typical computation process for the present pe-
riodic oscillation problem is shown in Fig. 2(b)
where, the final periodic oscillation of the Nu
is obtained after three rotations. Therefore, all
computations in this work were carried out be-
yond three rotations. As a validation, Fig. 3.,

Table 1 The difference of isotherms contour
level between present work with literature
result for a special case, D = 0, Pr = 0.7,
Ra = 1.2×105, Ta = 8.9×104 at some

heated position
Contour level φ = 0 φ = π/2 φ = 3π/2

1 0.32% 0.63% 0.16%
3 0.53% 0.53% 1.33%
5 0.32% 0.32% 0.32%
7 0.46% 0.46% 0.46%
9 0.36% 0.53% 0.92%
11 0.29% 0.29% 0.29%
13 0.12% 0.37% 0.86%
15 0.09% 0.21% 0.11%

948



H. Saleh and I. Hashim / JAFM, Vol. 9, No. 2, pp. 945-955, 2016.

Fig. 3. Comparison of computed isotherms of present work with literature results for a
special case, D = 0, Pr = 0.7, Ra = 1.2×105, Ta = 8.9×104.
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our results (left) for the isotherms compare well
with that obtained by Hamady, Lloyd, Yang,
and Yang (1994) (middle) and Tso, Jin, and Tou
(2007) (right) for a special case, D = 0, Pr =
0.7, Ra = 1.2× 105, Ta = 8.9× 104. In gen-
eral, we observe less than 1% difference of the
isotherms for various contour level at different φ
as shown in Table. 1. The isotherm contour for
level 3, φ = 3π/2 differs from that of Hamady,
Lloyd, Yang, and Yang (1994) by about 1.33%.
These differences may be attributed to the dif-
ferent method and meshes used by the Hamady,
Lloyd, Yang, and Yang (1994).

4. RESULTS AND DISCUSSION

The investigation in the undergoing numerical
study is executed for the fixed variables and
constants as tabulated in Table 2. The rotational
Rayleigh number, Raω, was not discussed ex-
cept to specify it explicitly. This is due to the
Raω not being an independent parameter but de-
pending on Pr and Ra as well as Ta. We note
that in the present research the Coriolis force
is stronger than the centrifugal force. The flow
and temperature fields inside the enclosure dur-
ing rotation will be shown in Fig. 4. and Fig.
5. The average Nusselt number over one pe-
riod will be presented in Fig. 6. Finally, plots
of the global quantity average Nusselt number
over one cycle will be displayed in Fig. 7.

Fig. 4(a)-(h) shows the effects of rotation on
the flow field for different thermal conductiv-
ities at D = 0.15 and Ta = 8.9 × 104. There
are two basic flow structures, clockwise (neg-
ative sign) and counterclockwise (positive sign)
circulations, depending on the heated position
as well as the inertial forces. Starting from
φ = π/4 where the heated wall is above the cold
wall, one observes a clockwise circulation in-
duced by the buoyancy force. This flow circula-
tion persists up to φ = 5π/4. At the φ = 5π/4,
the gravitational force should reverses the flow
direction when the the enclosure keep station-
ary, but the flow inertia from the previous cir-
culation are superior compared to the buoyancy.
At φ = 3π/2, Fig. 4(g), the effect of gravita-
tional force now is to reverse the flow direction,
but the flow inertia in the core still exist. The
flows compete each other, where a clockwise
cell in the core and two smaller cells in the cor-
ners rotating in a counterclockwise where the
effect of the Coriolis force is small. With in-
creasing angle the gravitational force increases
so that the two vortex merge as shown in the Fig.
4(h). This is due to the Coriolis force directed
from the center. It is interesting to note that
the two swirling happen in the middle region

Table 2 Fixed variables and constants
Parameter symbol Magnitude

D 0.05 – 0.2
Kr 0.5 – 10
Th 282 (K)
Tc 273 (K)
ℓ 0.0508 (m)

Pr 0.7
Ra 1.2×105

Ω 8.5 – 30.0 (rpm)
Raω 496 – 2104
Ta 8.9×104–1.1×106

for higher thermal conductivities but later these
disappear by increasing the angle as depicted in
Fig. 4(a) at φ = 2π or 0 rad. These phenom-
ena indicate lower thermal conductivities stabi-
lize the fluid flow. Note that this sequence re-
peats itself, the fully clockwise cell then transi-
tion here as totally counterclockwise cell. It is
observed that during rotation, the strength of the
flow circulation of higher conductivities is al-
ways stronger than lower conductivities. Also,
note that the flow patterns between Kr = 1 and
Kr = 0.5 were different enough in some angular
locations. The streamlines in all of the subplots
(a)–(h) present centrosymmetry shape.

Fig. 5(a)-(h) exhibits the effects of rotation on
the temperature field in the wall and fluid region
for different thermal conductivity ratio at D =
0.15 and Ta = 8.9×104. The heated wall posi-
tions move according to the angles of rotation.
Starting from φ = π/4 where the heated wall
above the cold wall. The solid wall temperature
rise and followed by increasing the fluid adjoin-
ing the wall which creates a clockwise motion
as shown in the previous figure. For larger Kr,
more heat is transferred from the walls to the
fluid that eventually intensified the natural con-
vection. The isotherms are more distorted as the
rotational angle takes higher up to φ = π, see
Fig. 5(e). This is due to the Coriolis effect aids
the main flow by the buoyancy force. Later, the
isotherms distortion decrease by increasing the
rotational angle. Later at φ = 7π/4, Fig. 5(h)
and φ = 2π, Fig. 5(a), the isotherms of higher
conductivities more distorted near the hot inter-
face, but the isotherms of higher conductivities
less distorted near the cold interface. It is also
observed that almost straight lines were shown
in the solid wall isotherm at any angular loca-
tion. These phenomena indicate that conduction
plays an important role in both solid walls.

Fig. 6(a),(b) and (c) depict the variation of
the average Nusselt number, Nu f , over one pe-
riod for different thermal conductivity ratio at
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Fig. 4. Streamlines [Kr = 1 (solid lines) and Kr = 0.5 (dashed lines)] evolution during one period for
D = 0.15 and Ta = 8.9×104 when (a) φ = 0, (b) φ = π/4 , (c) φ = π/2, (d) φ = 3π/4, (e) φ = π, (f)

φ = 5π/4, (g) φ = 3π/2, (h) φ = 7π/4.
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Fig. 5. Isotherms [Kr = 1 (solid lines) and Kr = 0.5 (dashed lines)] evolution during one
period for D = 0.15 and Ta = 8.9×104 when (a) φ = 0, (b) φ = π/4 , (c) φ = π/2, (d) φ = 3π/4,

(e) φ = π, (f) φ = 5π/4, (g) φ = 3π/2, (h) φ = 7π/4.
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(a) (b)

(c)
Fig. 6. Average Nusselt number against φ for the different values of Kr (a), D (b) and Ta (c).

(a) (b)
Fig. 7. Global quantity average Nusselt number for various values of Ta against, (a) Kr and

(b) D.
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D = 0.15, different wall thickness at Kr = 5 and
Ta = 8.9× 104 and different rotational speeds
(Taylor numbers) at Kr = 5 and D = 0.15, re-
spectively. It observed that higher Kr lead to
stronger Nu f at any angular position as shown
in Fig. 6(a). Decreasing the fluid conductivities
can stabilize the heat transfer oscillating. It ob-
served from Fig. 6(b) that thicker wall lead to
stronger Nu f at the peak. The average Nusselt
number profiles display different characteristics
for the various Taylor numbers as presented in
Fig. 6(c). It observed that increasing the Taylor
number stabilize the Nu.

Fig. 7(a) and (b) show the the global quan-
tity average Nusselt number for different Tay-
lor numbers against the thermal conductivity
ratio at D = 0.15 and against the wall thick-
ness at Kr = 5, respectively. The global heat
transfer performance increases nonlinearly by
increasing the Kr as shown in Fig. 7(a). This
is expected because convective wall provides
more acquiescence to fluid flow. As a result of
this phenomenon, for higher values of conduc-
tivity, isotherms are denser near the hot inter-
face, which increases the temperature gradient
in this region. It is also observed that at fixed
Kr, higher rotational speeds lead to higher heat
transfer rate, except at Ta = 1.1×106 and Kr >
1 or when the fluid conductivity smaller than
wall conductivity. The results demonstrated
in Fig. 7(b) help to compare the heat trans-
fer appearance by adjusting the wall thickness.
The global heat transfer performance decreases
about 12% by increasing 20% wall thickness for
the considered rotational speeds. This result is
consistent with the previous outcome where the
solid wall becomes less and less conductive or
behave as an insulated material. It is also ob-
served that at fixed D, initially higher rotational
speeds lead to higher Nu f but later the Nu f was
dropped at maximum rotational speeds for the
considered D interval.

5. CONCLUSIONS

Detailed computational results for flow fields
and the conjugate heat transfer performance of
the rotating enclosure with finite wall thickness
have been presented in graphical forms. The
periodic oscillation of the flow and temperature
fields as well as the heat transfer were obtained.
The main conclusions of the present analysis are
as follows:

1. Decreasing the conductivity ratio or/and
rotational speed stabilize of the convective
flow and heat transfer oscillation.

2. The angular locations of the local maxi-

mum and minimum heat transfer are sen-
sitive to the conductivity ratio, the wall
thickness as well as the rotational speeds.
The local maximum or minimum point
tends to move to higher angle by expand-
ing the wall thickness and it moves to
lower angle when the conductivity ratio
made higher.

3. The global quantity of the heat transfer
rate increases by increasing the conductiv-
ity ratio and it decreases about 12% by in-
creasing 20% wall thickness for the con-
sidered rotational speeds.

REFERENCES

Acharya, S. and C. H. Tsang (1987). Influ-
ence of wall conduction on natural con-
vection in an inclined square enclosure.
Heat Mass Transf. 21, 19–30.

Baig, M. and M. Zunaid (2006). Nu-
merical simulation of liquid met-
als in differentially heated enclo-
sure undergoing orthogonal rotation.
Int. J. Heat Mass Transf. 49, 3500-3513.

Baig, M. F. and A. Masood (2001). Natural
convection in a two-dimensional differ-
entially heated square enclosure under-
going rotation. Numer. Heat Transf. Part
A 40, 181–202.

Buhler, K. and H. Oertel (1982). Thermal
cellular convection in rotating rectangu-
lar boxes. J. Fluid Mech. 114, 261-282.

Du, Z. G. and E. Bilgen (1992). Cou-
pling of wall conduction with natural
convection in a rectangular enclosure.
Int. J. Heat Mass Transf. 35, 1969–1975.

Hamady, F. J., J. R. Lloyd, K. T. Yang and
H. Q. Yang (1994). A study of natu-
ral convection in a rotating enclosure.
J. Heat Transf. 116, 136-143.

Harlow, F. and J. Welch (1965). Numerical
calculation of time-dependent viscous in-
compressible flow of fluid with a free sur-
face. Physics of Fluids 8, 2182–2189.

Hoffmann, K. A. and S. T. Chiang (2000).
Computational Fluid Dynamics Volume
I. Kansas: Engineering Education Sys-
tem.

Jin, L. F., S. K. W. Tou and C. P. Tso
(2005). Effects of rotation on natural
convection cooling from three rows of
heat sources in a rectangular cavity.
Int. J. Heat Mass Transf. 48, 3982–3994.

954



H. Saleh and I. Hashim / JAFM, Vol. 9, No. 2, pp. 945-955, 2016.

Kaminski, D. A. and C. Prakash (1986).
Conjugate natural convection in a square
enclosure: effect of conduction in one of
the vertical walls. Int. J. Thermal Sci. 29,
1979–1988.

Ker, Y. T. and T. F. Lin (1996). A
combined numerical and experimental
study of air convection in a differ-
entially heated rotating cubic cavity.
Int. J. Heat Mass Transf. 39, 3193–3210.

Ker, Y. T. and T. F. Lin (1997). Time-
averaged and reverse transition in os-
cillatory air convection in a differ-
entially heated rotating cubic cavity.
Int. J. Heat Mass Transf. 40, 3335–3349.

Kim, D. M. and R. Viskanta (1984). Study of
the effects of wall conductance on natural
convection in differently oriented square
cavities. J. Fluid Mech. 144, 153–176.

Kim, D. M. and R. Viskanta (1985). Effect of
wall heat conduction on natural convec-
tion heat transfer in a square enclosure.
J. Heat Transf. 107, 139–146.

Lee, T. L. and T. F. Lin (1996). Transient
three-dimensional convection of air in a
differentially heated rotating cubic cav-
ity. Int. J. Heat Mass Transf. 39, 1243-
1255.

Misra, D. and A. Sarkar (1997). Finite ele-
ment analysis of conjugate natural con-
vection in a square enclosure with a con-
ducting vertical wall. Computer Meth-
ods in Applied Mechanics and Engineer-

ing 141, 205–219.

Mobedi, M. (2008). Conjugate natural
convection in a square cavity with
finite thickness horizontal walls.
Int. Comm. Heat Mass Transf. 35,
503–513.

Mukunda, P., R. Shailesh, A. Kiran and
S. Shrikantha (2009). Experimental
study of unsteady thermal convection
in heated rotating inclined cylinders.
Journal of Applied Fluid Mechanics 2,
39–43.

Nouanegue, H., A. Muftuoglu and E. Bilgen
(2009). Heat transfer by natural convec-
tion, conduction and radiation in an in-
clined square enclosure bounded with a
solid wall. Int. J. Thermal Sci. 48, 871–
880.

Tso, C. P., L. F. Jin and S. K. W. Tou (2007).
Numerical segregation of the effects of
body forces in a rotating, differentially
heated enclosure. Numer. Heat Transf.
Part A 51, 85-107.

Yedder, R. B. and E. Bilgen (1997).
Laminar natural convection in inclined
enclosures bounded by a solid wall.
Heat Mass Transf. 32, 455–462.

Zhang, W., C. Zhang and G. Xi (2011). Con-
jugate conduction-natural convection in
an enclosure with time-periodic sidewall
temperature and inclination. Int. J. Heat
Fluid Flow 32, 52-64.

955


	Introduction
	Mathematical Formulation
	Numerical Method and Validation
	Results and Discussion
	Conclusions

