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ABSTRACT 

The effect of a hydrophobic coating on the flow through circular pipes with Newtonian fluids has been 
investigated. Velocity fields inside a pipe were experimentally determined by the particle image velocimetry 
(PIV) technique. The test fluid presented a viscosity of about sixty times higher than water viscosity. Two 
glass pipe configurations were used: one uncoated and another covered with an extremely hydrophobic 
commercial product. Comparisons between coated and uncoated pipes were made at similar Reynolds (Re) 
numbers, all in the laminar regime (70-250). Results show that the hydrophobic effect consists in an 
observable slip velocity at the wall, with a reduction in shear rate near the pipe boundary. Pressure drop 
values were estimated from a modified Hagen-Poiseuille equation, taking into consideration the non-zero 
velocity at the boundary for both set of experiments, and the results show a 20% reduction in the pressure 
drop for the hydrophobic wall compared with the uncoated pipe case. 

Keywords: Slip velocity; PIV visualization; Hagen-poiseuille equation; Drag reduction. 

NOMENCLATURE ߛሶ |௪ shear rate at wall (s-1) ݒҧ mean velocity (m/s) ݒ௭ velocity along the z-axis (m/s) 
D inner diameter (m) 
Iݑ௦ slip velocity (m/s) 
L length of the tube (m) 
Q volumetric flow rate (m3/s) 

r radial position (m) 
R internal radius of the tube (m) 
Re Reynolds number  

μ dynamic viscosity (Pa s) 
ρ density (kg/m3) ܮ/ܲ߂ pressure drop per length unit (Pa/m) 

1. INTRODUCTION

A basic assumption in fluid mechanics is the so-
called no-slip boundary condition, which states that 
the velocity of a fluid in contact with a solid 
boundary equals the velocity of the solid; in other 
words, the fluid is attached to the surface. 
According to Rothstein (2010), in pressure driven 
laminar flows, superhydrophobic surfaces can 
reduce drag, producing slip lengths larger than the 
molecular scale. In his review work, the author 
focused on the micro and nano-scales attempts to 
produce slip. However, experimentally the slip 
phenomenon in laminar regime has barely received 
attention at least at a macroscopic scale; it seems 
that the research of Watanabe and co-workers 
(Watanabe et al. 1998, 1999; Watanabe and 
Udagawa 2001) were the first studies of drag 
reduction through macroscopic geometries by 

coating a surface with a hydrophobic material. First, 
Watanabe et al. (1998) determined the slip velocity 
in a 15×15×2000 mm rectangular channel for the 
case of highly water-repellent walls, while for the 
hydrophilic wall, no slip was reported. However, it 
is important to note that, for their experiments, the 
pressure drop was fixed (10.8 Pa/m), meaning that 
the volumetric flow rates (i.e. Reynolds numbers) 
were different. Two fluids were tested: tap water 
and a solution of 20% wt. glycerin in water. For the 
case of water, the mean velocities were 0.116 m/s 
and 0.094 m/s, for the hydrophilic and hydrophobic 
walls, respectively. They also reported experimental 
velocities for Reynolds numbers from 1000 to 1980, 
for the water-repellent case only. Velocity 
measurements were obtained using a hot film 
anemometer and the profile was compared to the 
analytical solution considering slip; experiments 
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Table 1 Flow parameters computed from experimental data 

Uncoated  Coated 

Flow rate 

×106 
Re ߛሶ |௪ ݑ௦ Δܲ/ܮ  

Flow rate 

×106 
Re ߛሶ |௪ ݑ௦ Δܲ/ܮ 

[m3/s] [ - ] [s-1] [m/s] [Pa/m]  [m3/s] [ - ] [s-1] [m/s] [Pa/m] 

45.5 74 143 0.0204 2932  47.6 80 122 0.0657 2530 

71.3 119 218 0.0363 4443  74.2 132 178 0.1253 3474 

126.9 239 359 0.1149 6549  127.3 254 312 0.2123 5333 

 

 

for any specific plot in Fig. 2 were due to the 
difficulty of controlling flow rates to a preset value. 
Some approaches to measure slip consist on 
determining pressure drop and flow rate and from 
these data, slip lengths or slip velocity are inferred 
(Choi et al. 2003; Ou et al. 2004; Jung and Bhushan 
2010), or gather it from friction factor values 
(Cottin-Bizonne et al. 2005). Others use optical 
methods (as Tretheway and Meinhart 2002) to 
determine velocity profiles; both methods present 
limitations, as pointed out by Cottin-Bizonne et al. 
(2005). Here, the optical approach was followed; 
shear rates at wall (ߛሶ |௪) were calculated with linear 
regressions of this experimental velocity (ݒ௭) vs. 
radial position (r), for the eleven data closest to the 
pipe wall, located at the tube radius (R). 

The criteria for choosing this number of points is 
because for all cases with these data, the correlation 
coefficient is greater than 0.999; plots for these 
regression lines can be observed in Figs. 2b to 2d. 
The slope of each regression line corresponds to the 
shear rate. Slip velocities (ݑ௦) were extrapolated 
from these regressions, due to the fact that the PIV 
technique is unable to gather information exactly at 
the pipe boundary (Cottin-Bizonne et al. 2005). 
Note that even for the uncoated pipe, slips 
velocities were greater than zero, but smaller than 
those from the hydrophobic wall. In order to be 
consistent with the procedure followed here, these 
uncoated velocities were not forced to zero; though 
these non-zero values could be the result of 
experimental error in the measurements, most 
probably due to the proximity to the wall where 
laser reflections may interfere with the PIV system. 

Table 1 contains information calculated from the 
experimental profiles. The first two columns on 
each side are the flow rate and the corresponding Re 
numbers, respectively, the third column is the shear 
rate at the wall, followed by the extrapolated or slip 
velocity and finally, a computed pressure drop 
 .(ܮ/ܲ߂)

To estimate the pressure drop, an expression similar 
to the Hagen-Poiseuille equation was derived and 
modified to account for the non-zero velocity at the 
wall. The procedure for obtaining the required 
relation is by solving the Navier-Stokes equation 
for flow through a cylindrical geometry using for 
the wall, the boundary condition ݒ௭|௥ୀோ =  ௦. Theݑ

resulting profile is: ݒ௭ = ି୼௉ ோమସ ௅ ఓ ൤1 − ቀ௥ோቁଶ൨ +  ௦                             (1)ݑ

Integrating Eq. (1) over the section of the pipe and 
isolating the pressure drop per unit length gives: ି୼௉௅ = ଼ ఓగ ோర ሾܳ −  ௦ሿ                 (2)ݑ ଶܴ ߨ

It can be seen from Eq. (2) that for a fixed flow rate 
and viscosity, larger ݑ௦ values will reduce pressure 
drop linearly; however, there is not enough 
experimental data to find the relation between ݑ௦ 
and Re. Note that if ݑ௦ = 0 is set, the familiar 
results with the no-slip boundary are recovered. 

Trends of the calculated flow parameters are easily 
observed in Fig. 3, where results of Table 1 are 
plotted. 

4. CONCLUSIONS 

The effect of a hydrophobic coating applied to the 
inner surface of the laminar flow through a circular 
pipe was experimentally investigated with 
Newtonian fluids. From the PIV data, the slip 
velocity, pressure drop and the shear rate were all 
inferred. Because the PIV technique is a non-
intrusive technique, the flow was completely 
unaffected. Although parabolic profiles could be 
adjusted with correlation coefficients higher than 
0.99, some deviations between this fit and the actual 
data were observed in the region near the wall, 
hence, a linear regression for data close to the pipe 
boundary was employed. Note that with the 
visualization technique used here, velocities at 
distances from the wall of only 0.0473 mm and 
0.1291 mm, for the uncoated and coated cases, 
respectively, were gathered (i.e. extrapolation for 
slip velocities were made for very short lengths), 
while in the research of Watanabe’s group for the 
flow through a pipe and according to their plots, the 
closest measurement was made at a distance to the 
wall greater than 0.5 mm. 
It can be gathered from Fig. 2 that the hydrophobic 
effect provokes larger velocities near the pipe wall, 
which in turn cause that, even when the Re numbers 
are greater in all hydrophobic cases presented here, 
centerline velocities are slightly lower compared to  
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