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ABSTRACT 

The effect of vertical throughflow and time-periodic gravity field has been investigated on Darcy convection. 
The amplitude of gravity modulation is considered to be very small and the disturbances are expanded in 
terms of power series of amplitude of convection. A weak nonlinear stability analysis has been performed for 
the stationary mode of convection. As a consequence heat transport evaluated in terms of the Nusselt number, 
which is governed by the non-autonomous Ginzburg-Landau equation. Throughflow can stabilize or 
destabilize the system for stress free and isothermal boundary conditions. The amplitude and frequency of 
modulation, Prandtl Darcy number on heat transport have been analyzed and depicted graphically. Further, 
the study establishes that the heat transport can be controlled effectively by a mechanism that is external to 
the system. Finally flow patterns are presented in terms of streamlines and isotherms 

Keywords: Throughflow; Gravity modulation; Weak nonlinear theory; Ginzburg-Landau model. 

1. INTRODUCTION

The natural convection in fluid saturated porous 
media is of fundamental interest due to its practical 
applications such as geothermal energy utilization, 
enhanced recovery of petroleum reservoirs, 
insulation of reactor vessels, polymer engineering, 
ceramic processing and nuclear waste repositories, 
to mention a few. The enormous volume of work 
devoted to this field is well documented in the 
literature (Ingham and Pop 1998, Nield and Bejan 
2006, Vafai 2005). Because of these applications, 
together with the fact that porous media occur in 
many natural situations, several studies have been 
undertaken to analyze the effects of different 
phenomena connected with such media. An 
excellent review of most of these studies has been 
reported in Nield and Bejan (1992). A modified 
complex body force is important when the system is 
under vertical vibrations. In this case the density 
gradient is subjected to vibrations; the resulting 
buoyancy forces which are produced by the 
interaction of the density gradient with gravitational 
field have a complex spatio temporal structure. The 
time dependent gravity field is of interest in space 
laboratory experiments, in areas of crystal growth 
and large-scale convection of atmosphere other 
applications. Many theoretical and experimental 
studies dealing with materials processing or physics 
of fluids under the micro-gravity conditions aboard 
an orbiting spacecraft have been carried out by 
Nelson (1991). According to Wadih et al. (1988, 

1990), the vibrations can either substantially 
enhance or retard heat transfer and thus drastically 
affect the convection. The effect of modulated 
gravity on a convectively stable configuration can 
significantly influence the stability of a system by 
enhancing or decreasing its susceptibility to 
convection. Gershuni et al. (1970) and Gresho and 
Sani (1970) were the first to study the gravity 
modulation on the stability of a heated fluid layer. 
Their results show that the stability of the layer 
being heated from below is enhanced by g-jitter and 
being heated from below is enhanced by g-jitter. 
Some of the documented works on gravity 
modulation are Yang (1997), Malashetty and 
Padmavathi (1997), Bhadauria and Kiran (2014a-d, 
2015), Bhadauria et al. (2014, 2012, 2013) Kiran 
(2015a), Govender (2004, 2005), Malashetty and 
Swamy (2011) and Siddheshwar et al. (2012). The 
reader may also look at other studies related to time 
periodic excitation of the boundaries (Raji et al 
2010, Shivakumara et al. 2012, Jamai 2014, Kuqali 
et al. 2015). 

Several studies related to geophysical and 
technological applications involve non-isothermal 
flow of fluids through porous media, called 
throughflow (i.e., there is a flow across the porous 
medium and the basic flow not quiescent). Such a 
basic flow alters the basic temperature profile 
from linear to nonlinear with layer height, which 
in turn affects the stability of the system 
significantly. The effect of throughflow on the 
onset of convection in a horizontal porous layer 
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has been studied by (Wooding 1960; Jones and 
Persichetti 1986; Nield 1987; Shivakumara 1997). 
They show that a small amount of throughflow 
can have a destabilizing effect if the boundaries 
are of different types and a physical explanation 
for the same has been given. Khalili and 
Shivakumara (1998) have investigated 
throughflow and internal heat generation on the 
onset of convection in a porous medium. They 
found that, throughflow destabilizes the system 
even if the boundaries are of the same type; a 
result which is not true in the absence of an 
internal heat source. The non-Darcian effect on 
convective instability in a porous medium with 
throughflow has been investigated in order to 
account for inertia and boundary effects by 
(Shivakumara (1999), Khalili and Shivakumara 
(2003)). Shivakumara and Nanjundappa (2006) 
investigated the effect of quadratic drag and 
vertical throughflow on double diffusive 
convection in a horizontal porous medium using 
the Forchheimer extended Darcy model 
analytically. It is found that, irrespective of the 
nature of boundaries, a small amount of 
throughflow in either of its direction destabilizes 
the system; a result which is in contrast to the 
single component system. Shivakumara and 
Sureshkumar (2007) have studied convective 
instability in non-Newtonian fluid saturated 
porous medium in the presence of vertical 
throughflow and found that throughflow has 
stabilizing or destabilizing effect depending on the 
boundaries and the directions of the flow. Brevdo 
(2009), investigated three-dimensional absolute 
and convective instabilities at the onset of 
convection in a porous medium with inclined 
temperature gradient and vertical throughflow. 

Barletta et al. (2010) analyzed the convective roll 
instabilities of vertical throughflow with viscous 
dissipation in a horizontal porous medium. The 
effects of hydrodynamic and thermal heterogeneity, 
horizontal throughflow on the onset of convection 
in a horizontal layer of a saturated porous have been 
investigated by Nield and Kuznetsov (2011). They 
found that the horizontal throughflow has no effect 
on the stability. When the permeability increases in 
the direction of the throughflow a small amount of 
throughflow may destabilize the transverse modes 
and so destabilize the layer as a whole. Reza and 
Gupta (2012) investigated the effect of throughflow 
on the onset of convection in a horizontal layer of 
electrically conducting fluid confined between two 
rigid permeable boundaries heated from below in 
the presence of uniform vertical magnetic field, 
they found that magnetic field inhabits the onset of 
steady convection, and a positive throughflow is 
more stabilizing than negative throughflow. Nield 
and Kuznetsov (2013) considering iso-flux and iso-
temperature boundaries they investigated the effect 
of onset of convection in a layered porous medium 
with vertical throughflow and found that 
throughflow has a stabilizing effect whose 
magnitude may be increased or decreased by the 
heterogeneity. Throughflow and internal heating 
effects on anisotropic porous medium investigated 
by Vanishree et al. (2014). They have presented 

onset of instability in the medium. They also 
suggest another method of controlling convection 
by externally controlling porous media damping 
and shear. This is 

in addition to the throughflow mechanism of 
regulating convection. 

From the above literature it is observed that, huge 
amount of analysis on throughflow has been 
investigated in deriving onset of convection for 
various flow models. Not much work found in the 
literature for nonlinear theories of throughflow 
models. Where these studies help us to analyze heat 
transfer in the system. As it is well known fact that 
nonlinearity arises due to the interaction of 
streamline flow with temperature or coupling nature 
of momentum and energy equation. At this stage 
one needs to account these effects to investigate 
heat transfer results in the system. The first 
nonlinear studies on throughflow under modulation 
is investigated recently by Kiran and Bhadauria 
(2015b) and Kiran (2015)b-c. They have considered 
different models for double diffusive convection 
with modulated gravity or temperature fields of the 
medium. The missing part of the continuation of 
their studies investigated in this paper where the 
effect of throughflow and gravity modulations are 
considered on fluid saturated porous medium while 
employing the Darcy model. A non-autonomous 
Ginzburg-Landau equation for the finite amplitude 
of convection is derived, and a method is presented 
here to determine the amplitude of this convection 
with a weakly nonlinear thermal instability for 
stationary mode under throughflow and gravity 
modulation. Heat transfer analysis discussed and 
presented results graphically with respect to each 
parameter of the system.. 

2. GOVERNING EQUATIONS  

An infinitely extended horizontal porous medium 
saturated by Newtonian fluid, confined between 
two free-free boundaries at z=0 and z=d, and heated 
from below is considered. The temperature 
difference across the porous medium is kept atΔT . 
We choose Cartesian frame of reference as, origin 
in the lower boundary and the z axis in vertically 
upward direction. The schematic diagram is shown 
in the Fig.1, throughflow has been considered in 
vertical upward and downward directions. Further 
Darcy law and the Oberbeck-Boussinesq 
approximation are taken under these assumptions; 
the equations which describe this system are given 
by (Bhadauria and Kiran 2013, Kiran and 
Bhadauria 2015a):  

0,q  


                                                              (1) 

0 ,
q

p g q
t K

 



  


  
                                     (2) 

2( )  ,T

T
q T T

t
 

   



                               (3)

0 0[1 ( )],T T T    
                                      (4) 
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where q


 is velocity (u,v,w),  is viscosity, K is 

permeability, T  is the thermal diffusivity, T is 

temperature, T  is thermal expansion coefficient, 

 is density, 0T  is the temperature at which  =

0  is reference density and   is the ratio of heat 

capacities (for simplicity   is taken to be unity in 

this paper). The externally imposed thermal 
boundary conditions and time periodic gravity field 
considered in this paper are: 

0

0

   at   z=0, 

           at    z=d 

T T T

T T

  
                             

(5) 

0
ˆ(1 cos( t)) ,g g k  


                           (6) 

where   represents the amplitude of gravity 
modulation and   is the modulation frequency. 
The basic state is assumed to be quiescent and the 
quantities in this state are given by: 

0(0,0,w ),   = (z),  p=p (z),    = ( )b b bq T T z 


(7) 

 

 
Fig. 1. A Sketch of the Physical Problem. 

 
Substituting the Eq.(7) into Eqs.(1)-(4), we get the 
following relations which help us to define basic 
state pressure and temperature: 

0 ,b
b

dp
w g

dz K

                                              (8) 

2

0 2
,b b

T

dT d T
w

dz dz
                                             (9) 

0 0[1 ( )],b T bT T     (10) 

The solution of the Eq.(9) subject to the thermal 
boundary condition given in Eq.(5), is given by: 

.
1

Pez Pe

b Pe

e e
T

e





                                             (11)  

The finite amplitude perturbations on the basic state 
are superposed in the form: 

+ ',   = + ',    = + ',    = + '.b b b bq q q p p p T T T  
 

         (12) 

Since our study restricted to two dimensional 
convection we introduce stream function  as 

'  &  'u w
z x

  
  
 

. Also the non-dimensional 

physical variables resealed as: 

* * *( , , ) ( , y ,z ),x y z d x / *,Tp p
K




2
* t=

T

d
t



*' 'Tq q
d


 * * =T T TT     and *

2
.T

d


    

Substituting the Eq. (12) in Eqs. (1)-(4), using the 
above dimensionless quantities andeliminating the 
pressure term we obtain the following 
dimensionless governing system (dropping the 
asterisk): 

2 21
( )  ,

Pr m

T
Ra g

t x
  

   
 

                       (13) 

2 ( , )
( ) .

( , )
bT T T

Pe T
x z z t x z

    
      
      

(14) 

The dimensionless parameters in the above 

equations are: 
2

0

T

w d
Pe


  is Péclet number, 

2

PrD
T

d

K




 is Prandtl Darcy number, 

T

T

g TdK
Ra





 is thermal Rayleigh number and

(1 cos( t))mg k  


. The Eq. (14) show that, the 

basic state solution influences the stability problem 

through the factor bT

z




, which is given by Eq. (11). 

Assuming small variation of time, and re-scaling it 

as 2t  , the stationary mode of convection of 
the system will be discussed. The nonlinear system 
of coupled Eqs. (13, 14) may be written into the 
matrix form:

2
22

D

22

Pr
   

( , )

Pr ( , )

m

b

D

Rag
x

T T T VPez x z x z




 


                                 
                 (15) 

The solution of the above system (15), is evaluated 
by considering impermeable stress free thermal 
boundary conditions followed by (Kiran (2015)a,c,d 
Bhadauria and Kiran (2013)): 

ψ=T=0      on z=0 and z=1                           (16) 

3. HEAT TRANSPORT FOR STATIONARY 

INSTABILITY 

In order to derive the solution of the above system 
and to resolve nonlinearity we introduce the 
following asymptotic expansions (given by 
Bhadauria and Kiran (2014a, b), Kiran 2015a-d): in 
the above equation (15): 
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
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  

      

  


    


    
     

             (17) 

where 0R  is the critical value of the Rayleigh 

number at which the onset of convection takes place 
in the absence of gravity modulation. The 
expression of   (following the studies of Govender 
2004,2005, Bhadauria and Kiran 2015) is consistent 
with the basic state solution provided that 0  

vanishes at the lowest order. In addition, unless 1
vanishes, the equations obtained at order  and 2  
present a singularity in the solution. These 
observations (of Bhadauria and Kiran 2015) 
indicate that, the effects of gravity modulation 

should be introduced at 2
2    thereby enabling 

consistency. Now the system will be evaluated for 

different orders of  . 

3.1   At the Lowest Order 

At this order the system takes the following form: 

2
0

1

2 1

0
   

0

m

b

R g
x

T T
Pez x z


                     

              (18) 

The solution of the lowest order subject to the 
boundary conditions Eq. (16) is considered as: 

1 sin( )sin( )ck x z   ,                (19)
2

1 2 2

4
- cos( )sin( ),

(4 )
c

c

k A
T k x z

c Pe








           (20) 

where 2 2c k    is square of horizontal wave 
number. The critical value of the Rayleigh number 
and the corresponding wave number for the onset of 
stationary convection is calculated numerically and 
the expressions are given by: 

2 2 2

0 2 2

(4 )
,

4 c

c Pe
R

k





                                     (21) 

.ck                                                              (22) 

3.2 At the second order: At this order the system 
takes the following form: 

2
0

212

2 2 22
   

m

b

R g Rx
T T R

Pez x z


 

                    

        (23) 

The terms in RHS of the above system are defined 
as: 

21 0,R                          (24) 

22
( , )

,
( , )

T
R

x z





              (25) 

The second order solutions (subject to the boundary 
conditions Eq. (16) and using the first order 
solutions) of the system is given by: 

2 0  ,              (26) 

2 3
2

2 2 2 2

2 2
2

2 2 2

-2
sin(2 )

(4 )

-
cos(2 ).

(4 )

c

c

k
T A z

c Pe

Pek
A z

c Pe

 


 








          (27) 

The horizontally averaged Nusselt number Nu, for 
the stationary mode of convection is evaluated by: 

2
2

0
0

2

0
0

4 2
2

2 2 2

2
1 ,

2

4 ( 1)
    1 .

(4 )

c

c

c k

z

c bk

z

Pe
c

k T
x

z
Nu

k T
x

z

k e
A

cPe Pe
















 
   

 
  


 




               (28) 

The above results obtained in Eqs. (21, 22 and 28) 
is given by Bhadauria et al. (2012), Lapwood 
(1948) and Siddheshwar et al. (2012, 2013), for an 
isotropic porous medium in the absence of 
throughflow. 

3.3. At the third order: At this stage the system 
takes the following form: 

2
0

313

2 3 32

   
m

b

R g Rx
T T R

Pez x z


                    

    

(29) 

The terms in RHS are expressed by: 

2
1 1 1

31 0 2 2
1

cos( ) ,
Pr

T T
R R R

x x

  


  
    

  
 

     (30) 

1 2 1
32 ,

T T
R

z x




  
  

  
                                    (31) 

Using and substituting the first and second order 
solutions into Eqs. (30, 31), obtain the expressions 
for R31 and R32 easily. Now by applying the 
solvability condition for the existence of third order 
solution, the Ginzburg-Landau equation is obtained 
for stationary mode of convection with time-
periodic coefficients in the form: 

3
1 2 3

( )
( ) ( ) ( ) 0,

dA
Q Q A Q A

d

   


                    (32) 

where the coefficients are defined by:
2 2

0
1 2 2 2

4
,

Pr (4 )
c

D

R kc
Q

c Pe




 
    
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4 4
0

3 2 2 2 2

2
,

(4 )
cR k

Q
c Pe
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
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2 2 0 22 2 2

4
( ) [ cos( )] .

(4 )
ck

Q R R
c Pe
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

 
     

 

The Eq. (32) is known as Ginzburg-Landau 
equation and Bernoulli equation, obtaining its 
analytical solution is difficult due to its non-
autonomous nature. So that it has been solved 
numerically using the in-built function ND Solve of 
Mathematica 8 subjected to the suitable initial 
condition A0=a0 where a0 is the chosen initial 
amplitude of convection. In our calculations we 
may use R2=R0 to keep the parameters to the 
minimum. For un-modulated case, the analytical 
solution of the above Eq.(32) takes the form: 

2

1

2

3
1

2

1
,

Q

Q

A

Q
C e

Q


 
 
 


 
 

 
 
 

               (33) 

where 1Q , 3Q  same as in Eq. (32), 

2 2
2

2 2 2 2

4
( ) .

(4 )
cR k

Q
c Pe






 
    

and C1 which appears in 

Eq. (33), is an integration constant, can be found by 
using suitable initial condition. 

4. RESULTS AND DISCUSSIONS 

In this article, we study the combined effect of 
gravity modulation and vertical throughflow on 
densely packed porous medium. A weakly 
nonlinear stability analysis has been made to 
investigate the gravity modulation and vertical 
throughflow effects on heat transport. The effect of 
gravity modulation on the Bénard-Darcy convection 

has been assumed to be of third order 2( )O  which 

means only small amplitude gravity modulation is 
considered. Such an assumption will help us in 
obtaining the amplitude equation in simple and 
elegant manner and is much easier to obtain than in 
the case of the Lorenz model. The purpose of weak 
nonlinear theory is to study heat transfer, which 
linear study could not support. External regulations 
of Darcy convection are important to study heat 
transfer in porous media. The objective of this 
article is to consider such a candidates, gravity 
modulation and vertical throughflow for either 
enhancing or delaying the convective heat transfer 
as is required by a real application. Vad'asz (1998), 
pointed that there are some modern porous medium 
applications, such as mushy layer in solidification 
of binary alloys and fractured porous medium, 
where the value of PrD may be considered to be 
unity order, therefore the time derivative in the 
present study has been retained. Further, this is the 
reason that the values of PrD has been kept around 
one in our calculations. The value of 2 is consider 

very small around 0.1, since we are studying small 
amplitude modulation on heat transport. Also, since 

the effect of low frequencies, is maximum, on the 
onset of convection as well as on the heat transport, 
therefore the modulation of gravity is assumed to be 
of low frequency. 

The numerical results for Nu obtained from the 
expression in Eq. (28) by solving the amplitude Eq. 
(32), and the results have been presented in the 
Figs. 2-4. It is clear to see the expression in Eq. (28) 
in conjunction with Eq. (32) in which Nu is a 
function of system parameters. The effect of each 
parameter on heat transport is shown in Figs. 2-4 
where the plots of Nusselt number Nu versus τ are 
presented. It is found from the figures that the value 
of Nu starts with one and remains constant for quite 
some time, thus showing the conduction state 
initially. Then the value of Nu increases with time, 
thus showing the convection, on further increasing τ 
thus achieving the steady state. 

Now seeking the results of gravity modulation, in 
Fig. 2a, it is observed that, Nu increases with 
Prandtl Darcy number, the effect is clear for small 
values of PrD and lower values of time, hence the 
heat transfer, further increment in time the effect 
disappear and heat transport diminish. The reader 
may look at the studies of (Bhadauria et al. 2012, 
2013; Bhadauria and Kiran 2013; Kiran and 
Bhadauria 2015a) to see the variations in PrD in the 
absence of throughflow. The effect of Pe on heat 
transfer given in Fig. 2b is investigated for the cases 
of downward and upward throughflows, upward 
throughflow (Pe>0) has destabilizing effect where 
as downward throughflow (Pe<0) has stabilizing 
effect. The same results obtained by Nield (1987) in 
the case of fluid layer for small amount of 
throughflows. Our results are computable with the 
results obtained by Shivakumara and Sureshkumar 
(2007) and Suma et al. (2011). According to 
Shivakumara and Sureshkumar (2007) the 
destabilization effect may be due to the distortion of 
steady-state basic temperature distribution from 
linear to nonlinear by the throughflow. 

A measure of this is given by the basic state 
temperature and this can be interpreted as a rate of 
energy transfer into the disturbance by interaction 
of the perturbation convective motion with basic 
temperature gradient. The maximum temperature 
occurs at a place where the perturbed vertical 
velocity is high, and this leads to an increase in 
energy supply for destabilization. It can be noticed 
that the critical Rayleigh-Darcy number given by 
Eq. (21) is even function of Pe and as Pe increases 
R0 increases which is the case where onset of 
convection delays due to throughflow, the reason 
for this according to Reza and Gupta (2012), in the 
case of throughflow at the boundary, as we increase 
throughflow velocity a temperature boundary layer 
forms at the one of the plates, this decreases the 
effective thickness of the stratified layer of fluid 
while the temperature difference across the layer 
remains constant thus R0 would increases with Pe. 
However due to nonlinear effects we obtain the 
results opposite in heat transfer. 
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Fig. 2. Nu Versus t (a) PrD (b) Pe (c) δ2 (d) Ω (e, 
f) Comparisions. 

Their study was linear and found that, upward flow 
stabilizes more than downward flow for tow rigid 
plates. The reader may also look at the studies of 
Kiran and Bhadauria (2015b) and Kiran (2015a-d) 
for nonlinear thermal convection under throughflow 
and modulation effects. Their studies reveal that the 
direction of throughflow plays duel effect on heat or 
mass transfer in the system. Further, we found in 
Fig. 2c that the effect of amplitude of modulation is 
to increase the magnitude of Nu, thus increasing the 
heat transport and advancing the onset of 
convection. One may note that the following is in 
respect of effect of amplitude on heat transport: 

2 2 20.1 0.2 0.3Nu Nu Nu .       

Also, from the Fig. 2d, we observe that increasing 
upon the frequency of modulation decreases the 
magnitude of Nu, and so the effect of frequency of 
modulation on heat transport decreases. At high 
frequency the effect of gravity modulation on 
thermal instability disappears altogether. The above 
results agrees quite well with the linear theory 
results of temperature modulation (Venezian 1969), 
where the correction in the critical value of 
Rayleigh number due to thermal modulation 
becomes almost zero at high frequencies, hence it 
holds. The reader may also look at the studies of 
(Malashetty and Padmavathi 1997, Kiran 2015a, 
Bhadauria and Kiran 2014a, b), where gravity 
modulation is being discussed either for Newtonian 
or non Newtonian fluids of stationary or oscillatory 
mode of convection. One may observe the 
following for a particular wave number: 

50 20 2Nu Nu Nu .     

In Fig. 2e, the effect of throughflow in the upward 
direction Pe>0 (=1) is presented. In this case the 
system has more destabilizing effect than in the 
absence of vertical throughflow, similarly opposite 
results can be observed in the case of downward 
throughflow Pe<0  (Pe=-1). Though the critical 
Rayleigh Number is of even function in Pe, the 
averaged Nusselt number is of odd function of 
Pegiven in Eq. (28). Due to this the magnitude of 
Nusselt number affects the convective problem, 
hence the results. In Fig. 2f, we have shown 
comparison between the analytical solution Eq. (33) 
of un-modulated case and the numerical solution of 
the present problem. We observe that the values of 
magnitude of Nusselt number for un-modulated 
case are less than the modulated case. 

In Figs. 3 and 4 we have drawn the variation of 
stream lines and isotherms at different instants of 
slow times, respectively. From the Figs.3 a-f, it is 
clear that, the magnitudes of stream lines increase 
as time increase. The Figs. 4a-f shows the variation 
of isotherms at different instants of time. It is found 
from the figures that, initially isotherms are flat and 
parallel, thus heat transport is due to conduction 
only. However, as time increases, isotherms form 
contours, showing convective regime is taking 
place. 
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Fig. 3. Streamlineas for (a) t=0 (b) t=0.5 (c) t=1 
(d) t=2 (e) t=4 (f) t=9. 

 

Further, it is also clear from the Figs. 3e, f and 4e, f 
that after reaching certain instant there is no change 
in the magnitude of stream lines and isotherms, thus 
showing the steady state. The reader may also see 
the studies of (Badauria and Kiran 2014 a-c, Kiran 
2015a, c, Bhadauria et al. 2014, 2014d) for 
variations in streamlines and isotherms for gravity 
modulation. 

5. CONCLUSIONS  

The effect of gravity modulation and vertical 
throughflow on Bénard-Darcy convection by 
performing a weakly nonlinear stability analysis 
resulting in the real Ginzburg-Landau amplitude 
equation has been investigated. The following 
conclusions are made: 
 
1. Effect of PrD is to enhance the heat transport for 

lower values of time and diminishes for large 
values of time. 

2. Effect of throughflow is to increase the heat 
transport for upward direction (Pe>0) and 
opposite in downward (Pe<0) throughflow. 

3. On increasing the amplitude of modulation, heat 
transport in porous medium increases. 

4. On increasing the value of frequency of gravity 
modulation, the amplitude of modulation of 
heat transfer decreases. Effect of g-jitter 
becomes negligible at higher values of Ω. 

5. The magnitude of streamlines increases with 
time, after certain while no change in 
magnitude. 

6. Initially isotherms are flat due to conduction 
state, becomes contour showing the convective 
regime. 

 
Fig. 4. Isothermas for (a) t=0 (b) t=0.5 (c) t=1 (d) 

t=2 (e) t=4 (f) t=9. 
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