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ABSTRACT

The non-autonomous Ginzburg-Landau equation with time-periodic coefficients is derived for two
modulated double-diffusive stationary convection involving couple stress liquid. The heat and mass
transports are quantified in terms of Nusselt and Sherwood numbers, which are obtained as functions
of the slow time scale. Effects of Prandtl number, Lewis number, solute Rayleigh number and couple
stress parameter have been discuused in detail.

Keywords: Rayleigh-Benard convection; Couple stress liquid; Temperature modulation; Gravity
modulation; Ginzburg-Landau equation.

NOMENCLATURE

a horizontal wave number
ac critical wave number
b basic state
c critical
C couple stress parameter
D d/dz
g gravitational acceleration, (0,0,−g)
î unit normal vector in x-direction
i

√
−1

ĵ unit normal vector in y-direction
k̂ unit normal vector in z-direction
kc wave number
l lower wall
Le Lewis number
osc oscillatory
Pr Prandtl number
p pressure
q velocity of the fluid (u,v,w)
RaT Rayleigh number

(RaT = βT gd(∆T )d3/νκT )
RaS concentration Rayleigh number

(RaS = βSgd(∆S)d3/νκT )

βS concentration analog of thermal expansion
coefficient

st stationary
t time
T temperature
βT thermal expansion coefficient
∆T temperature difference between the walls
u upper wall
ρ density
ε slow time scale
δ1 amplitude of temperature modulation
µ dynamic viscosity
ν kinematic viscosity
σ growth rate
ψ stream function

∇2
1

∂2

∂x2 +
∂2

∂y2 , horizontal Laplacian

∇2 ∇2
1 +

∂2

∂z2

0 reference state
′ perturbed value
∗ non-dimensional value

1. INTRODUCTION

The theory of couple stress liquids was de-
veloped by Stokes (1966) and is now be-

ing extensively used as a continuum model in
many liquid-based applications involving sus-
pended particles. The onset and heat trans-
port by thethermo gravitational convection in
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couple stress liquid investigated by Siddhesh-
war and Pranesh (2004). Subsequently, a num-
ber of investigators have reported double dif-
fusive convection in these liquids (See works
of Malashetty and co-investigators (2009, 2011,
2006, 2010) and Rani and Raddy (2013). Reg-
ulation of thermal or thermohaline convection
can be important in situation in which inclean
liquids are working media. It is here that
the works of Venezian (1969), Rosenblat and
Herbert (1970), Rosenblat and Tanaka (1971),
Roppo et al. (1984), Bhadauria and Bhatia
(2002), Siddheswar and Abraham (2003), Sid-
dheshwar and Bhadauria (2012), Siddheshwar
et al. (2012, 2013), Bhadauria (2003, 2006),
Bhadauria and Debnath (2004), Gresho and
Sani (1970), Wadih and Roux (1988), Kumar
(2012) and Banyal (2013) become important.
All the above works have the limited objective
of predicting the onset of convection.

A nonlinear study of thermal or thermohaline
convection problems can be done in one of the
following ways:-

(i) local nonlinear stability analysis- Lorenz-
model or Ginzburg-landau model.

(ii) Global nonlinear stability analysis- Lay-
punov method.
The Lorenz and Lyapunov aproaches to the ther-
mal problem have been reported by Siddhesh-
war and Pranesh (2004), and the Lorenz model
for modulated thermal or thermohaline system
is difficult to solve and the global nonlinear sta-
bility analysis cannot be quantify the heat and/
or mass transports. In this paper we consider
the mechanisms of external regulation of con-
vection;

Time-periodic boundary temperature (tem-
perature modulation).
Three types of temperature modulation are con-
sidered;

(i) the two boundaries are modulated in
phase.

(ii) the boundaries are modulated out of
phase.

(iii) one of the boundaries are modulated.
The first is an example of symmetric modu-
lation and the second and third are asymmet-
ric modulation. The analysis is made using a
Ginzburg- landau amplitude equation that has a
time-periodic coefficients. In this study we fo-
cus attention only on stationary convection.

2. MATHEMATICAL FORMULATION

Considering the double diffusive convection in
couple stress fluid saturated porous layer, con-
fined between two parallel infinite horizontal
plates z = 0 and z = d at a distance apart. The
fluid layer is heated from below and cooled

from above to maintain a constant gradient tem-
perature 4T across the layer. We have taken a
cartesian frame of reference in which the origin
lies on the lower plate and z−axis as vertically
upward. The governing euations of motion of
an incompressible couple stress fluid in the ab-
sence of body couple are given by,

∇.~q = 0, (1)

ρ0[
∂~q
∂t

+(~q.∇)~q] =−∇p−ρ~g+(µ−µc∇
2)∇2~q,(2)

∂T
∂t

+(~q.∇)T = κT ∇
2T, (3)

∂S
∂t

+(~q.∇)S = κS∇
2S, (4)

ρ = ρ0[1−βT (T −T0)+βS(S−S0)] (5)

where ~q is the velocity, ρ0 is the density at
the reference temperature T0 (temperature of the
upper plate), p is the pressure, ρ is the density,~g
is the acceleration due to the gravity, µ is the dy-
namic coefficient of viscosity, µc is the couple
stress viscosity, T is the temperature , S is the
solute concentration, κT is the thermal diffusiv-
ity and κS is the solute diffusivity of the liquid,
βT is the coefficient of thermal expansion and
βS is the coefficient of solute expansion.

3. TIME-PERIODIC BOUNDARY TEM-
PERATURE

We assume the externally imposed boundary
temperatures to oscillate with time, according
to the relations used by Venezian (1969),

T = T0 +
4T

2
[1+ ε

2
δ1 cos(Ωt)] at z = 0

= T0−
4T

2
[1− ε

2
δ1 cos(Ωt +φ)] at z = 1 (6)

where ω is the modulation frequency , φ is
phase angle . The quantity ε2δ1 is the ampli-
tude of modulation, where ε and δ1 both are
small, resulting the modulation to be of small
amplitude.
The basic state is assumed to be quiescent, i.e.,

qb = 0, ρ= ρb(z), p= pb(z), T =Tb(z), S= Sb(z),

which satisfy the following equations,

∂pb

∂z
=−ρb~g (7)

1256
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∂Tb

∂z
= κT

∂2Tb

∂2z
(8)

ρH = ρ0[1−βT (TH −T0)+βS(Sb−S0)] (9)

According to the Venezian, we can write the
non-dimensionlized basic temperature as,

Tb(z, t) = T0 +1− z+2
δ1F(z, t) (10)

where,

F(z, t) = Re
[
{A(λ)eλz +A(−λ)exp−λz}e−iωt

]
(11)

A(λ) =
1
2
(e−iφ− e−λ)

(eλ− e−λ)
; λ = (1− i)

√
ω

2

Taking curl on both side of Eq. (2) and intro-
ducing stream function u =− ∂ψ

∂z and w =− ∂ψ

∂x ,
we get

ρ0

[
∂

∂t
(∇2

ψ) − (ψ,∇2ψ)

∂(x,z)

]
= µ∇

4
ψ−µc∇

6
ψ

− αT g
∂T
∂x

+βT g
∂S
∂x

(12)

Now consider small infinitesimal perturbations
to the basic state solution in the form,

ψ=ψb+ψ, T =Tb+Θ, ρ= ρb+ρ
′, S= Sb+S′

Substituting above in Eqs.(1),(2),(3)and (4), we
get the following equations,

ρ0

[
∂

∂t
(∇2

ψ) − (ψ,∇2ψ)

∂(x,z)

]
= µ∇

4
ψ−µc∇

6
ψ

− βT g
∂Θ

∂x
+βSg

∂S
∂x

(13)

∂Θ

∂t
− ∂(ψ,Θ)

∂(x,z)
= κT ∇

2
Θ+

∂ψ

∂x
∂Tb

∂z
(14)

∂S
∂t
− ∂(ψ,S)

(x,z)
=−∂ψ

∂x
+κS∇

2S (15)

where,

∇
2 =

∂2

∂x2 +
∂2

∂z2

The equations (13)-(15) are rendered dimen-
sionless using the following transformations,

ψ = κT ψ
∗,(x,z) = d(x∗,z∗), t =

d2

κT
t∗,

Θ = (∆T )Θ∗,

S = (4S)S∗, Tb = (4T )T ∗b , ω =
Ω

ε2
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Fig. 1.Variation of Nusselt number Nu with
time τ for in phase temperature modulation

(φ = 0) for different values
of(a)Pr,(b)δ1,(c)Le,(d)RaS,(e)C,( f )ω.

The dimensionless equations are written as

1
Pr

[
∂

∂t
(∇2

ψ
∗) − ∂(ψ∗,∇2ψ∗)

∂(x∗,z∗)

]
= ∇4ψ∗−C∇6ψ∗

−RaT
∂Θ∗

∂x∗ +RaS
∂S∗
∂x∗ (16)

∂Θ∗

∂t
= ∇

2
Θ
∗+

∂ψ∗

∂x∗
∂T ∗b
∂z∗

+
∂(ψ∗,Θ∗)

∂(x∗,z∗)
(17)

∂S∗

∂t
=−∂ψ∗

∂x∗
+

1
Le

∇
2S∗+

∂(ψ∗,Θ∗)

∂(x∗,z∗)
(18)

where asterisks denote dimensionless values.
And Pr= ν

κT
,the Prandtl number, RaS= βSg∆T d3

νκT
,

solute Rayleigh number, RaT = βT g∆T d3

νκT
,

Rayleigh number, C= µd2

µ1
, the couple stress

parameter,Le= κS
κT

, the Lewis number.
The boundary conditions for the perturbed state
are given by,

ψ = ∇
2
ψ = Θ = 0 at z = 0,1 (19)

The asterisks denote the non-dimensional val-
ues. After dropping the asterisks we can write
the above equations as,

1
Pr

[
∂

∂t
(∇2

ψ) − ∂(ψ,∇ψ)
∂(x,z)

]
= ∇4ψ−C∇6ψ

−RaT
∂Θ

∂x +RaS
∂S
∂x (20)

∂Θ

∂t
= ∇

2
Θ+

∂ψ

∂x
∂Tb

∂z
+

∂(ψ,Θ)

∂(x,z)
(21)

∂S
∂t

=−∂ψ

∂x
+

1
Le

∇
2S+

∂(ψ,Θ)

∂(x,z)
(22)
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Fig. 2.Variation of Sherwood number Sh
with time τ for in phase temperature

modulation (φ = 0) for different values
of(a)Pr,(b)δ1,(c)Le,(d)RaS,(e)C,( f )ω.

Now using the value of Tb in Eq. (21) , we have
the following equations,

1
Pr

[
∂

∂t
(∇2

ψ) − ∂(ψ,∇ψ)

∂(x,z)

]
= ∇

4
ψ−C∇

6
ψ

− RaT
∂Θ

∂x
+RaS

∂S
∂x

(23)

∂Θ

∂t
=∇

2
Θ+

∂ψ

∂x

[
−1+ε

2
δ1

∂F
∂z

]
+

∂(ψ,Θ)

∂(x,z)
(24)

∂S
∂t

=−∂ψ

∂x
+

1
Le

∇
2S+

∂(ψ,Θ)

∂(x,z)
(25)

We will use the time variations only at the slow
time scale τ = ε2t ε2

Pr
∂

∂τ
(∇2)−∇4 +C∇6 RaT

∂

∂x −RaS
∂

∂x
−(−1+ ε2δ1

∂F
∂z )

∂

∂x −ε2 ∂

∂τ
−∇2 0

∂

∂x 0 − 1
Le ∇2



×

 ψ

Θ

S

=


1

Pr
∂(ψ,∇2ψ)

∂(x,z)
∂(ψ,Θ)
∂(x,z)
∂(ψ,S)
∂(x,z)

 (26)

Now we use following perturbations in equation
(3.),

RaT = RaT0 + ε2RaT2 + ...

ψ = εψ1(x,z, t)+ ε2ψ2(x,z, t)+ ε3ψ3(x,z, t)...
Θ = εΘ1(x,z, t)+ ε2Θ2(x,z, t)+ ε3Θ3(x,z, t)...
S = εS1(x,z, t)+ ε2S2(x,z, t)+ ε3S3(x,z, t)...

(27)

where classical analysis shows that the first and
second order system have the solution of the
form: of different orders:
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Fig. 3.Variation of Nusselt number Nu with
time τ for out-phase temperature

modulation (φ = π) for different values
of(a)Pr,(b)δ1,(c)Le,(d)RaS,(e)C,( f )ω.

ψ1 = A1(τ)sin(kcx)sin(πz)
Θ1 = B1(τ)cos(kcx)sin(πz)
S1 =C1(τ)cos(kcx)sin(πz)
ψ2 = 0
Θ2 = B2(τ)sin(2πz)
S2 =C2(τ)sin(2πz)


(28)

Substituting Eq.(27) in Eq.(3.)and using Eq.
(28) in the resulting equation, we get

B1(τ) =− kc
δ2 A1(τ),B2(τ) =− k2

c
8πδ2 [A1(τ)]

2,

C1(τ) =− kcLe
δ2 A1(τ),C2(τ) =− k2

c Le
8πδ2 [A1(τ)]

2,

}
(29)

The first order system is an eigen-boundary
value problem whose eigenvalues RaT0 is given
by

RaT0 = RaSLe+
δ6

k2
c
+C

δ8

k2
c

(30)

The third order system is given by, −∇4 +C∇6 RaT0
∂

∂x −RaS
∂

∂x
∂

∂x −∇2 0
∂

∂x 0 − 1
Le ∇2



×

 ψ3
Θ3
S3

=
R31
R32
R33

, (31)

where,

R31 =
[

δ2

Pr
dA1

dτ
−R2

k2
c

δ2 A1

]
sin(kcx)sin(πz)(32)

R32 =
[ kc

δ2

dA1

dτ
+ δ1

∂F
∂z

kcA1−
k3

c

4δ2 A3
1 cos(2πz)

]
× cos(kcx)sin(2πz) (33)
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Fig. 4. Variation of Sherwood number Sh
with time τ for out-phase temperature
modulation (φ = π) for different values
of(a)Pr,(b)δ1,(c)Le,(d)RaS,(e)C,( f )ω.

R33 =
[kcLe

δ2
dA1

dτ
− k3

cLe2

4δ2 A3
1 cos(2πz)

]
× cos(kcx)sin(2πz) (34)

The Fredholm alternative condition for the
third order solution yields the Ginzburg-Landau
equation for the stationary instability with a
time-periodic coefficient in the form;

[
δ2

Pr
+ RaT0

k2
c

δ4 −RaSLe2 k2
c

δ4

]dA1

dτ
− f (τ)A1(τ)

+
k4

c

8δ4

[
RaT0 −Le3RaS

]
A3

1(τ) = 0 (35)

f (τ) =
k2

c

δ2 [RaT2 −2RaT0δ1f(τ)] (36)

and

f(τ) =
∫ 1

0

[
∂F(z,τ)

∂z
sin2(πz)

]
dz, (37)

The solution of Eq.(35), subject to the initial
condition A(0) = a0 where a0 is a chosen ini-
tial amplitude of convection, can be solved by
using Runge-Kutta method. In our computation
we assume RaT2 = RaT0 to keep the parameters
to minimum.
The horizontally averaged Nusselt number
Nu(τ), and Sherwood number Sh(τ) for station-
ary convection is given by;

Nu(τ) =
[Kc

2π

∫ 2π
Kc

x=0 (1− z+Θ2)z dx]z=0

[Kc
2π

∫ 2π
Kc

x=0 (1− z)z dx]z=0

(38)

Sh(τ) =
[Kc

2π

∫ 2π
Kc

x=0 (1− z+S2)z dx]z=0

[Kc
2π

∫ 2π
Kc

x=0 (1− z)z dx]z=0

(39)
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Fig. 5. Variation of Nusselt number Nu with
time τ for lower plate modulation (φ =−I∞)

for different values
of(a)Pr,(b)δ1,(c)Le,(d)RaS,(e)C,( f )ω for

temperature modulation.

Now substituting Eq.(28) in Eq.(38)and
Eq.(39)and completing the integration, we get

Nu(τ) = 1+
k2

c [A1(τ)]
2

4δ2 (40)

Sh(τ) = 1+
k2

cLe2[A1(τ)]
2

4δ2 (41)

4. RESULT AND DISCUSSIONS

In this paper, effect of temperature and gravity
modulation on double diffusive convection in
a couple stress liquid has been investigated.
The effect of temperature modulation has been
discussed in three parts.
1. In-phase modulation (IPM)(φ = 0)
2. Out-phase modulation (OPM)(φ = π)
3. Lower boundary modulated only
(LBMO)(φ =−I∞)
From the figures, it can easily seen that the
value of Nusselt number Nu and Sherwood
number Sh is found as
NuIPM <NuLBMO <NuOPM
ShIPM <ShLBMO <ShOPM
The double diffusive convection in a couple
stress liquid has been investigated under the
influence of time-periodic temperature mod-
ulation. A weak non-linear stability analysis
has been used to investigate the effect of
modulation on the heat and mass transport.
Figs.1(a − f ) and 2(a − f ) are the plots of
Nusselt number Nu and Sherwood number Sh
with respect to slow time τ respectively for the
case of in-phase modulation. We find that for
small time τ, Nu and Sh remain constant, then
increase on increasing τ and finally become
steady on further increasing τ.

From Figs. 1(a, f ) we observed that the
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Fig. 6. Variation of Sherwood number Sh
with time τ for lower plate modulation

(φ =−I∞) for different values
of(a)Pr,(b)δ1,(c)Le,(d)RaS,(e)C,( f )ω.

effect of increasing amplitude of modulation δ

and the frequency of modulation ω is negligible
. From Figs. 1(c,d) we examined that on in-
creasing Lewis number Le and solute Rayleigh
number RaS, the value of Nusselt number is
also increases, thus the rate of heat transport
and hence advances the convection. From Fig.
1(a) we observed that on increasing the Prandtl
number Pr , the value of Nusselt number is also
increases but when time increases the effect of
increasing Pr is negligible. From Fig. 1(e) we
examined that on increasing the couple stress
parameter C, the value of Nusselt number is
decreases but when time increases the effect of
couple stress parameter is negligible. From the
Figs. 2(a− f ), we obtained the qualitatively
similar result as found in Figs. 1(a− f ).

In Figs. 3(a− f ) and 4(a− f ) we depict
the variations of Nu and Sh with slow time τ

for the case of out-phase modulation. From
Fig. 3(a), we find that the effect of increasing
Pr increases the value of Nu but when time
increases the effect of Pr is negligible. From
Fig. 3(b), we find that the effect of increasing
modulation amplitude δ on Nu is to increase
the magnitude of Nu, i.e. rate of heat transport
increases. From Figs. 3(c− d) we observed
the effect of increasing Le and RaS on Nu is
to increase the value of Nu. From Fig. 3(e)
we examined that on increasing C, the value
of Nu is decreases but when time increases the
effect of C is negligible. From Fig. 3( f ) shows
that an increase in frequency of modulation
ω does’t alter the value of Nu but wavelength
of oscillation decreases on increasing ω. Figs.
4(a − f ) are the plots of Sherwood number
Sh with the slow time τ and we obtained the
qualitatively similar results as found in Figs.
4(a− f ).

In Figs.5(a− f ) and 6(a− f ) we depict
the variations of Nu and Sh with the slow time
τ for the case of Lower boundary modulation
only. We find the similar results as found in
Figs. 3(a− f ) and 4(a− f ) .

5. CONCLUSION

The effect of gravity modulation in a couple
stress liquid has been investigated. GL equa-
tions have been used to solve the problem.
On the basis of above discussion we reach on
following conclusions:
1. The effect of increasing Pr, RaS and Le
on Nu and Sh are to increase the rate of heat
and mass transfer for each case of temperature
modulation.
2. The effect of increasing C on Nu and Sh is to
decrease the rate of heat and mass transfer for
each case of temperature modulation.
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