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ABSTRACT 

Natural convection heat transfer in a two dimensional unsteady rotating differentially heated enclosure is 
studied numerically in this paper. The enclosure is filled with air and executes a steady counterclockwise 
rotation about the centre of the enclosure. A finite volume code on a staggered grid arrangement with TDMA 
algorithm is developed and employed to solve the governing equations subject to Boussinesq approximation. 
The numerical investigation is carried out for fixed Prandtl number equal to 0.71, Rayleigh number equal 
to1.1 ൈ 10ହ while Taylors number vary from5.2 ൈ 10ସ 3.3 ݐ ൈ 10ହand Rotational Rayleigh number from 
4.9 ൈ 10ଶ 3.1 ݐ ൈ 10ଷ.Results reveal that there are considerable change in heat transfer rates beyond 15 
rpm. The effect of rotation on the Nusselt number for a given Rayleigh number is shown in the present work 
which is not normally indicated and discussed in the available literature 

Key words: Rotating enclosure; Natural convection; Coriolis force; Heat transfer. 

NOMENCLATURE 

k thermal conductivity (W/m-K) 
L length of the enclosure (m) 
Nu local Nusselt number 
P dimensionless  pressure 
p,Pm pressure and motion pressure (N/m2) 
Pr Prandtl number 
Ra Rayleigh Number 
Raw rotational Rayleigh number 

system 
T temperature (K) 
t time (s)
Ta taylor number 
u, v dimensional velocity components (m/s) 
U, V dimensionless velocity components 
X, Y dimensionless Cartesian coordinate  
x,y dimensional Cartesian coordinate system 

Ω magnitude of angular rotation rate (rpm, 
rad/s) 

α thermal diffusivity (m2/s) 
τ dimensionless time 
θ dimensionless temperature 
߶ angular position of enclosure (o) 
ρ density (kg/m3) 
μ dynamic viscosity (Pas) 

Subscript 
c cold 
h hot 
f fluid 

Superscript 
- space average
= Time average 

1. INTRODUCTION

The fluid flow and heat transfer characteristics of a 
rotating enclosure were treated in detail according 
to its functional and practical importance in the 
thermal management. The unsteady rotating 

conditions are encountered in situations such as 
rotary machines, guided missiles and space-based 
manufacturing processes. Bobco (1981) introduced 
the application of natural convection in the design 
of a vented Gallileo mission descent module 
parachuting into the Jupiter atmosphere. It was 
reported by Yeh (1995) that the failure caused by 
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2 2

2 2
                   (4)

T T T T T
u v

t x y x y

     

          

Boundary Conditions are 
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0 0
2                            (5) 
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With the motion pressure defined as 

2 2 2 21 1
sin( ) cos( )

2 2mP x y gx t gy t
           

(6) 
As mentioned by Vanyo (1993) in a rotating 
Eulerian coordinate system the centrifugal term can 
be included in the pressure term and disappears 
from the typical rotating fluid computation. With 
Boussinesq approximation, the main part of the 
centrifugal force term is combined with the pressure 
term and others are caused by density change and 
centrifugal buoyancy. The governing equations can 
be converted to non-dimensional forms using the 
non-dimensional parameters as indicated in (7). 
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(7)

  The Coriolis buoyancy force is  neglected as 
ሺܶߚ| െ ܶሻ| ا 1in the present study [Jin et al. 
(2005)]. The dimensionless governing equations 
and boundary conditions are written as follows:-

 Continuity equation:      
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Energy equation: 

2 2
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Boundary Conditions: 
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The above formulation clearly shows that the flow 
to be examined is governed by dimensionless 
parameters, namely Prandtl number, Rayleigh 
number and Taylor number and rotational Rayleigh 
number. The rotational Rayleigh number reflects 
the effect of the rotational buoyancy force which 
depends on the other non-dimensional parameters. 
The rotational buoyancy becomes important when 
the rotational speed is high or the enclosure 
dimensions are too large, viz is whenΩଶL is much 
larger than g (Lin et al. 1996). 

The fluid motion is displayed using the stream 
function obtained from the velocity components ܷ 
and ܸand the temperature fields using the 
isotherms. In addition to the time evaluation of 
velocity and temperature fields, results for the local, 
spaced averaged and time space averaged Nusselt 
number ሺܰݑሻon the heated or cooled wall are 
important in thermal design and can be evaluated 
from 
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3. SOLUTION METHODOLOGY 

For this unsteady problem, a finite volume code is 
developed using the SIMPLE Scheme as 
explained by Patankar (1980) for coupling 
pressure and velocity on staggered grid 
arrangement. The TDM Aalgorithm is adopted to 
solve the governing equations (8-11) subjected to 
the boundary conditions (12). Due to the lack of 
pressure boundary conditions, the use of staggered 
grid arrangement provides an advantage. That is 
one may locate the secondary grid along the 
boundaries of the domain where the specification 
of velocity boundary conditions is required but not 
the pressure. An upwind difference scheme is used 
for the convective terms because of its simplicity 
and improved stability properties. The central 
difference scheme is used for the diffusion terms 
and a first order implicit scheme is used for the 
unsteady term. The discretized governing 
equations are solved iteratively through a line-by-
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