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ABSTRACT 

In the present study, a method of Partial-Averaged Navier-Stokes (PANS) equations, purported to perform 
variable resolution modeling, is used to predict the heat transfer over a square cylinder in a cross-flow. The 
PANS closure is based on the RANS SST k-ω model paradigm. The simulations were carried out using an 
open source software, namely, Open FOAM, at Reynolds number = 22000. The open source code and the 
PANS model are validated against the experimental work reported in the literature and it was observed that 
both the mean flow properties and turbulent statistics were in good agreement with the experimental results. 
Further the capability of the PANS approach in predicting heat transfer in turbulent flow is also studied. An 
algebraic wall function is used for the near wall treatment of the energy equation. The computed, average and 
local Nusselt numbers are compared with the experimental and LES results reported in the literature. The 
phase-averaged analysis of the shedding phenomenon is studied to understand the heat transfer phenomenon 
at different faces of the cylinder and turbulent heat fluxes are also considered to understand the effect of 
turbulence on convection. 

Keywords: Turbulent heat transfer; Open FOAM; Partially-averaged navier-stokes (PANS); SST k-ω 
turbulence model. 

1. INTRODUCTION

The need for an accurate prediction of turbulent 
heat transfer through a bluff body is encountered in 
many industrial applications, which include, 
composite materials that are less impervious to heat 
used in aeronautics industry, cooling towers, turbo-
engines, cooling of electronic equipment and 
various heat exchange devices, etc. The complexity 
involved in these kinds of flow and heat transfer 
characteristics is due to separation of shear layers 
from the body and interaction of these shear layers 
in the near wake region formed by the separation 
behind the body. Therefore an accurate modeling 
technique is required to handle the complexity 
involved with a bluff body in a turbulent flow field. 
Thus the computational method which is to be used 
should be able to accurately capture the flow 
physics namely: recirculation, vortex shedding, 
wake region, and shear layer interaction, etc. 

The most widely used models in industrial CFD 
tools for the aforementioned types of problems are 
those based on the RANS paradigm, which captures 
the mean flow properties but fails to predict 
turbulent scales. On the other hand, the LES 
approach is very promising for capturing flow 
fluctuations and turbulent scales. But, LES 

approach is computationally quite expensive when 
it comes to industrial applications because of 
complex geometries and large values of Reynolds 
number involved. Therefore a model is required 
which is computationally less expensive and also 
captures the turbulence phenomenon. Girimaji et al. 
(2006, a) and Girimaji (2006, b) proposed the 
Partially-Averaged Navier-Stokes equations (PANS) 
approach to meet the said requirements. 

The PANS approach is a variable resolution method 
in which the extent of resolution is based on the 
turbulence kinetic energy distribution between 
eddies which are to be resolved and which are to be 
modeled. The details of the PANS approach can be 
found in Girimaji et al. (2006, a) and Girimaji 
(2006, b). Further Girimaji and Khaled (2005), 
Lakshmipathy and Girimaji (2006, 2007), Jeong 
and Girimaji (2010), Murthi et al. (2010), Basara et 
al. (2011), and Girimaji and Wallin (2013) have 
also provided the theoretical foundation. They have 
subsequently assessed the application of PANS 
approach to many isothermal flows associated with 
various geometries, such as, backward facing step, 
circular and square cylinders.  

However, before PANS approach can be applied to 
practical problems concerned with heat transfer, it 
has to be tested with one of the benchmark 
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problems. Flow over a heated square cylinder, 
maintained at a constant temperature, is considered 
in the present paper to test the effectiveness of the 
PANS approach. The reason for choosing this flow 
configuration is, one, a large number of 
experimental studies have been reported in the 
literature to study its flow dynamics and, second, its 
similarity to typical flow over bluff body 
configuration encountered in many practical 
situations. 

We first discuss experimental studies reported in the 
literature that are relevant to flow past a square 
cylinder. Durao et al. (1988) used laser-Doppler 
velocimetry (LDV) to measure the turbulent flow 
properties of a square cylinder with Reynolds 
number based on the cylinder height of 1.4×104. 
They performed experiments in a water channel 
with blockage ratio of 0.14. Similarly Lyn and Rodi 
(1994) and Lyn et al. (1995) also performed 
experiments with LDV at Reynolds number of 2.2 
×104. The former focused their studies on shear-
layer and recirculation regions and the later focused 
on near wake flow around the cylinder. Only few 
experimental studies have been reported in the 
literature on heat transfer from a square cylinder in 
cross flow. Igarshi (1985), Ahmed and Yovanovic 
(1997) and Yoo et al. (2003) provided the mean 
values of the Nusselt number and derived empirical 
correlation for the global Nusselt number with 
respect to Reynolds number. 

Further a large number of studies concerning 
computational analysis of flow field calculations for 
a square cylinder using various modeling 
methodologies have been reported in the literature, 
but to the best of author’s knowledge, only a couple 
of studies have been reported concerning forced 
convective heat transfer in a flow past a heated 
square cylinder. Both Wiesche (2007) and Boileau 
et al. (2013) used LES approach to predict heat 
transfer around a square cylinder. Boileau et al. 
(2013) showed the effectiveness of LES with 
unstructured grid. However, as already stated, LES 
is still very expensive in terms of the computational 
resources required and is not feasible for industries 
to afford such computational demand. 

In the present work, flow dynamics and heat 
transfer from a square cylinder kept in cross flow 
are investigated using the PANS approach, which is 
a variable resolution model, capable of predicting 
scales of turbulence depending on the need. 
Therefore unsteady flow past a heated square 
cylinder, with diameter d, at fixed surface 
temperature (Tw) is investigated at a Reynolds 
number of Red = 2.2×104 for an incompressible fluid 
with Pr = 0.7 (air). The results obtained are 
compared with the experimental data of Lyn and 
Rodi (1994) and Lyn et al. (1995) and with the LES 
predictions of Boileau et al. (2013). Therefore the 
current study presents the capability of PANS 
approach to provide insight into the heat transfer in 
the wake region of a bluff body.  

The paper is organized as follows. In section 2 the 
equations governing the fluid flow and heat transfer 
are presented along with the detailed formulation of 

the PANS approach used in the present work. 
Section 3 provides the details about the geometry, 
physical conditions and numerical schemes used in 
the present study. Finally section 4 presents all 
results and their comparison with the experimental 
data. At last the unsteady flow field with heat 
transfer over a square cylinder is investigated and 
credibility of PANS approach is concluded. 

2. GOVERNING EQUATIONS 

2.1 Basis of PANS Approach 

In this section, the Partially-Averaged Navier-
Stokes (PANS) equations are briefly summarized as 
given by Girimaji et al. (2006, a) and Girimaji 
(2006, b). Starting from the instantaneous 
incompressible flow equations 
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We define  as an arbitrary filter which 

commutes with both spatial and temporal 
differentiations. Thus by applying this filter to the 
instantaneous velocity field it can be decomposed as 

i i iV U u                                                            (3)

where i iU V  is the filtered/resolved field, ui the 

residual/fluctuation field that needs to be modeled. 
Each of the filtered velocity field satisfies the 
continuity equations separately, such that 
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It is well understood that for this type of arbitrary 
filtering process, the average of the unresolved 
velocity and the correlation between resolved and 
unresolved velocities are non-zero, i.e., 

0, 0i i iu U u  . 

Now applying this arbitrary filter to the equation of 
motion we get 
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In equations (5) and (6), τ (ViVj) denotes the 
generalized central second moment tensor and is 
defined as the sub-filtered shear (SFS) stress. It is 
given by the expression 
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Based on equation (7) the sub-filter kinetic energy 
and dissipation are given as 

 1
;
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All properties with the subscript u indicate the 
PANS statistics. The RANS kinetic energy and 
dissipation are represented by k and ε, respectively. 
Equations (7) and (8) reduce to their RANS 
counterpart, when averaging is performed over all 
the scales of motion (denoted by an over bar). 
Further according to Germano (1992) the RANS 
statistics are related to its PANS counterpart as 
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It can be observed from the above set of equations 
(1) to (9) that the governing equations obtained 
after filtering are invariant to the filter used and 
consequently the modeling of SFS stress term must 
be invariant to the type of averaging. Hence to 
model the SFS term any modeling approach based 
on the RANS paradigm can be used.  

       The arbitrary filter used in equation (3) was 
defined by Girimaji et al. (2006, a) and Girimaji 
(2006, b) in terms of the fraction of kinetic energy 
and dissipation associated with the scales to be 
modeled rather than on basis of the cut-off wave 
number, as in LES. They quantified it as the ratios 
of the unresolved to total kinetic energy and 
dissipation and it is given by 
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Where fk and fε are termed as the resolution control 
parameters. It is well known that much of the 
kinetic energy is contained in large scales and most 
of the dissipation occurs in the smallest scales due 
to which 0 ≤ fk ≤ fε ≤ 1. Further they showed that, 
mathematically, when fk tends to zero, the model 
approaches DNS behavior as it resolves more scales 
of motion. 

2.2 RANS k-ω Type SFS Stress Closure 

For the SFS shear stress the Boussinesq assumption 
is invoked in combination with the averaging-
invariance property for arbitrary filters, 
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eddy viscosity. Therefore to obtain a closure for the 
SFS stress term, ku and εu have to be given or 
modeled. This can be achieved by using any of the 
previously proposed models of RANS paradigm. In 
the present work the SST k-ω model, given by 
Menter (1993, 1994), is used to close the set of 
equations (5) to (11). According to Menter (1994) 

equations for k and ω are 
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To derive the PANS SST k-ω model from the above 
closure, steps given by Girimaji et al. (2006, a) and 
Girimaji (2006, b) are followed and the final 
equations are  
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Table 1 Meshing strategies used in various studies 
 Type Nxy Nz N 

Barone and Roy (2006), 
DES simulation 

Coarse 9800 32 313,600 

Medium 39200 64 2,508,000 

Fine 88200 96 8,467,200 

Lubcke et al. (2001) 
LES, 32304 32 1,033,728 

RANS (2D) 
8750 

(125×70) 
NA 8750 

Jeong and Girimaji (2010) PANS-STD k-ε 
10165 

(95×107) 
27 274,455 

Present PANS 
15000 

(150×100) 
32 480,000 

span length used in the experiment of Lyn and 
Rodi (1994). 

3. At the inlet, a uniform flow (ux = U∞, uy = uz = 
0) based on Re = 2.2×104 and a uniform 
inflow temperature (Tamb) are prescribed. At 
the outlet atmospheric pressure condition is 
applied. 

4. For the top and bottom planes, a slip condition 
is applied, considering a thin boundary on the 
wind tunnel walls of the experiment and are 
maintained at free stream temperature. 

3.2 Numerical Treatment 

Simulations were performed using a finite-volume 
based open source code Open FOAM. The existing 
SST k-ω model code was modified according to the 
PANS equations. The spatial discretization was 
carried out using the standard Gaussian finite 
volume integration method with different 
interpolation schemes. For the gradient terms a 
linear interpolation of the second order accuracy 
was implemented. The second order linear 
interpolation scheme was used for the Laplacian 
terms while second order upwind scheme was used 
for the divergence terms. The temporal 
discretization was performed using the second order 
implicit method. The PIMPLE algorithm of Open 
FOAM, a combination of PISO and SIMPLE 
algorithms, was used to couple the momentum and 
pressure equations. This algorithm rectifies the 
second pressure correction and then corrects both 
pressure and velocity explicitly (Jasak, 1996). The 
pre-conditioner conjugate gradient (PCG) iterative 
method with a diagonal based incomplete Cholesky 
(DIC) was used to solve the pressure equation. For 
all other equations the preconditioned bi-conjugate 
gradient (PBiCG) solver with the diagonal 
incomplete LU (DILU) decomposition pre-
conditioner was applied. 

3.3 Averaging Procedure 

The data obtained was averaged in the spanwise 
direction, considering it to be statistically 
homogeneous, by taking values at eight different 
locations in the z-direction. Two types of averaging 
were performed as suggested by the experimental 
procedure of Lyn and Rodi (1994): 

1. Time-averaging was done for 400D/U0 seconds 
(approximately 40 periodic cycles) once the 

flow reached the statistically stationary state 
(after approximately 400 cycles). 
 

2. Phase averaging was done by averaging any 
flow property over a constant phase angle for 
every vortex shedding cycle. As given by Lyn 
and Rodi (1994), φ is obtained from a pressure 
signal p(t), measured by the spanwise 
averaging at center of the top face of cylinder, 
as shown in Figure 3a. The filtering of the 
instantaneous pressure signal p(t) was done 
through a low pass second-order Butterworth 
filter with cut-off frequency equal to the 
shedding frequency, as shown in Figure 3a. 
Time was non-dimensionalized as t+

= t/tc, 
where tc is the flow time. A pair of each peak 
and valley is defined as the half of the vortex 
shedding cycle. The shedding frequency was 
obtained by the fast Fourier transform of 
instantaneous pressure signal as shown in 
Figure 3b. The reference phase angle (φ = 0) 
was taken in accordance with the heat transfer 
study of Boileau et al. (2013) as shown in 
Figure 3a. For the flow properties, as the 
results are compared with those of Lyn et al. 
(1995), φ = 0 was taken at one of the peak of 
the periodic signal. 

4 RESULTS AND DISCUSSIONS 

Firstly the flow dynamics characteristics of flow 
over square cylinder are compared with the 
experimental results reported in the literature to 
evaluate the accuracy of the open source code and 
the PANS strategy used. Further onwards in all the 
results, velocity normalization is done by U∞ (free 
stream velocity) and length is normalized by d 
(cylinder diameter), unless specified otherwise. The 
sections at which various results are plotted are 
shown in Figure4. 

Initially a 2D steady RANS simulation using the 
SST k-ω model was carried out to determine the 
values of parameters k and ω. Using the values of k 

and ω, the Taylor scale of turbulence  1.5k    

was calculated, which was further used to determine 
the value of fk based on the expression given by the 
Girimaji and Khaled (2005)  
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above-mentioned Q-criterion iso-surface, the vortex 
shedding is very regular and the spatial stretching of 
these vortices leads to large coherent quasi 2D 
vortices. The reason for the damping of 3D 
turbulent wake can be attributed to large grid size 
used for the simulations. 
Similarly results are also compared with the 
experimental data in the base region (x = 1) in the 
cross-stream direction. Figure 9(a-e) shows that a 
good agreement with the experimental results is 
achieved by the present PANS SST k-ω model for 
the time-averaged values of both mean and 
fluctuating velocities in the transverse direction. 
The pronounced blockage effect caused by the 
square cylinder is clearly visible in Figure 9a 
showing the mean streamwise velocity which 
attains a maximum value close to 130% of the free 

stream velocity. Further the plot of uv  at x = 1 
(Figure 9e) shows that the current modeling 
strategy captures both the peaks, in the opposite 
directions, one in the shear layer of the wall (y ≈ 
0.72) and other near the center region of 
recirculating region (y ≈ 0.15)  as also observed by 
the experimental results of Lyn et al. (1995). 

So far the time-averaged flow properties were 
considered and the PANS modeling provided good 
predictions for both mean and fluctuating flow in 
both the streamwise and transverse directions. The 
PANS method also needs to be assessed for the 
periodic vortex shedding motion and the energy 
associated with it. For this purpose, the variation of 
turbulent quantities, namely, 2D turbulence kinetic 

energy   2 2 2k u v   and the Reynolds 

stresses  uv , along the phase angle of the 

vortex shedding cycle at two different streamwise 
locations (x = 2 and x = 6) are considered (Figure 

10), where denotes the phase averaging. The 

values are averaged over various cycles at a 
particular phase to obtain the phase-averaged values 
of the flow properties, as already explained in 
Section 3.3 

Figure 10a shows that both the predicted turbulent 
kinetic energy and velocity correlation are in 
phase at x = 2 for y ≥ 0.5, in accordance with 
experimental observations of Lyn et al. (1994). 
Figure 10a also shows that at x = 2 and at almost 
all y locations, except y = 0, Reynolds stress 

 uv does not change sign over the complete 

cycle. This is because the zone considered in 
Figure 10a is close to the cylinder base and it is 
strongly influenced by the separated shear layer. 

The small values of k  are correlated with the 

small (absolute) values of  uv which result 

into drawing of the free stream fluid into the base 
region. Near the centerline, for y = 0 and y = 0.25, 
an irregularity in the relationship between the 

phases of  uv and k can be observed. At x = 

6, unlike at the near wall regions, the Reynolds 

stress  uv does change its sign during the 

complete cycle. The peaks of both  uv and 

k are at different phase angles for all the y 

stations, but this difference is too small to 
conclude that both the quantities are out of phase 
as suggested by Lyn et al. (1995).  

4.1 Heat Transfer Characteristics  

As already stated in the Introduction, only 
experimental results are available for the heat 
transfer from a square cylinder in a cross flow. 
Igarshi (1985) provided the correlation for global 
Nusselt number: 

0.14
0.660.14 Re

wa
g

ll
Nu




 
  

 
                          (29) 

This correlation is known to be an accurate 
representation of the average Nusselt number 
results for square cylinder in a cross-flow 
(Sparrow et al., 2004). Igarshi (1985) also 
measured local Nusselt number profiles around 
the cylinder for different Reynolds number, but as 
Boileau et al. (2013) pointed out that none of 
these Reynolds number corresponds to the current 
case (Re = 22000). Therefore Boileau et al. (2013) 
scaled two Nusselt number profiles, corresponding 
to the closest Reynolds number (Re = 18500 and 
29600), using the correlation given by Equation 
(29) as 

0.660.14

exp
exp

Re

Re
current

s
wall

Nu Nu




  

        
          (30) 

and the local Nusselt number profile around the 
cylinder is calculated at Re = 22000. 

Based on the effectiveness of the current modeling 
strategy for the flow dynamics shown in the 
preceding section, its capacity to predict convective 
heat transfer is also evaluated here. Table 3 shows 

the values of the global Nusselt number gNu

obtained by the space averaging the local Nusselt 
number profile around the square cylinder. It is 
observed that the current PANS model is more close 
to the experimental result than the LES with wall 
functions used by Boileau et al. (2013). 

A more detailed comparison of the time-averaged 
local Nusselt number distribution around the 
square cylinder with experiment data is shown in 
Figure 11. LES results of both the strategies (wall 
resolved and standard wall functions, termed as 
LES-WR and LES-WF, respectively) used by 
Boileau et al. (2013) are also considered to show 
the effectiveness of the current modeling strategy. 
From Figure 11 it can be observed that LES-WR 
of Boileau et al. (2013) provides better results as 
compared to its LES-WF and the present PANS 
method. As already discussed in Section 2, the 
near wall treatment for the energy equation is done 
in the present study by using the formulation 
given by Kader (1981) which is also applicable in 
the viscous shear layer.  

It can be observed from Figure 11 that the time- 
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           (a)          (b)     (c) 

 
     (d)              (e) 
Fig. 9. Comparison of transverse profile (x = 1) of time –averaged streamwise and transverse velocity, 

streamwise and transverse velocity fluctuations and velocity correlations respectively. (● Lyn et al. 
(1995) experimental,  Present PANS). 

 
averaged Nusselt number Nu  is well predicted on 
the front side, apart from the front corner, where it 
underpredicts the peak values. At the rear and side 

faces also Nu  is underestimated, probably because 
of the low velocity and smaller recirculation region 
predicted by the PANS model. Thus it can be 
concluded from Figure 11 that any type of wall 
function will fail to accurately predict the heat 
transfer in the region very close to the wall. This is 
due to the fact that any wall function is valid for 
either the flow with constant pressure gradient or 
for attached shear flows only. None of these 
conditions are satisfied in the case of square 
cylinder which involves separation at the top and 
bottom faces. 

Even though the wall function approach associated 
with PANS model is not able to predict the thermal 
behavior quantitatively, it can still be used to get an 
idea of the unsteady heat transfer mechanism from 
the square cylinder in the cross flow. The unsteady 
characteristics are studied by phase-averaging the 
Nusselt number profile and then superimposing it 
with streamlines (Figure 12). 

Figure 13 shows the phase-averaged quantities for 
different phases of the periodic flow. The Nu is 
higher at the front face than that at the top and 
bottom faces, because of the regular sweeping of 
near wall flow by the incoming cold flow, 
irrespective of the phase. At the rear face, due to 
continuous oscillation, the cold fluid is entrapped 
from the outer shear layer, thus the Nusselt number  
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(a)              (b) 

Fig. 14. Contours of turbulent heat flux at center plane, (a)  'ut and (b)  'vt . 

 

5 CONCLUSIONS 

An unsteady computational analysis of flow and 
heat transfer around a square cylinder at Re = 22000 
is carried out using a variable resolution model 
strategy, PANS. The PANS SST k-ω model is 
derived and implemented in an open source code 
Open FOAM to carry out the simulations. The flow 
dynamics and heat transfer results have been 
compared with the experimental data reported in the 
literature. The heat transfer results are also 
compared with LES predictions reported in the 
literature. The computational results predicted by 
the present model concerning flow properties are 
well in accordance with the experimental data. To 
simulate thermal behavior, energy equation is 
solved with the PANS SST k-ω model. For the near 
wall treatment of the heat flux, a wall function is 
used which is valid for all values of y+. The results 
show that the wall function approach is not able to 
accurately predict the time-averaged value of 
Nusselt number. But because of accurate predictions 
of flow dynamics, the blend of wall function for 
heat flux and PANS SST k-ω model, is able to 
predict the main features associated with the 
unsteady heat transfer. Therefore it can be 
concluded that the present PANS approach is very 
promising for flow dynamic predictions associated 
with complex industrial flows, as it is less 
expensive in terms of computational power. 
However for the prediction of heat transfer in such 
complex situation there is need for an improved 
scalar modeling and blend it with PANS method to 
obtain more accurate predictions. 
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