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ABSTRACT 

The steady two-dimensional mixed convective boundary layer flow of nanofluid over an inclined stretching 
plate with the effects of magnetic field, slip boundary conditions, suction and internal heat absorption have 
been investigated numerically. Two different types of nanoparticles, namely copper and alumina with water 
as the base fluid are considered. Similarity transformations are employed to transform the governing 
nonlinear partial differential equations into coupled non-linear ordinary differential equations. The influence 
of pertinent parameters such as magnetic interaction parameter, angle of inclination, volume fraction, suction 
parameter, velocity slip parameter, thermal jump parameter, heat absorption parameter, mixed convection 
parameter and Prandtl number on the flow and heat transfer characteristics are discussed. A representative set 
of results are displayed graphically to illustrate the issue of governing parameters on the dimensionless 
velocity and temperature. Numerical values of skin friction coefficient and the Nusselt number are shown in 
tabular form. A comparative study between the previously published work and the present results in a limiting 
sense reveals excellent agreement between them. 
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NOMENCLATURE 

a,c constants 
Cf skin friction coefficient 
(Cp)f specific heat capacity of the base fluid 
(Cp)s specific heat capacity of the nanoparticle 
f dimensionless stream function 
g gravitational acceleration vector 
Grx local Grashof number 
kf thermal conductivity of the base fluid 
ks thermal conductivity of the nanoparticle 
knf thermal conductivity of the nanofluid 
M2 magnetic interaction parameter  
p pressure 
Pr Prandtl number 
S suction parameter 
b thermal jump parameter 
Hs heat absorption parameter 
T fluid temperature 
Tw(x) surface temperature of the stretching plate 

ஶܶ ambient temperature  
Uw(x) stretching velocity 
Rex local Reynolds number 
(u,v) velocity components 
(x,y) cartesian coordinates 

 angle of inclination ߙ
  thermal diffusivity of the nanofluidߙ

߶ volume fraction 
  volumetric thermal expansion coefficientߚ

of the base fluid. 
  ௦ volumetric thermal expansion coefficientߚ

of the nanoparticle 
    volumetric thermal expansion coefficientߚ

of the nanofluid 
 electrical conductivity ߪ
  density of the base fluidߩ
 ௦ density of the nanoparticleߩ
  density of the nanofluidߩ
 velocity slip parameter ߛ
  viscosity of the base fluidߤ
  viscosity of the nanofluidߤ
  kinematic viscosity of the base fluidߥ
  kinematic viscosity of the nanofluidߥ
 mixed convection parameter ߣ
 similarity variable ߟ
Ψ stream function 
 dimensionless temperature ߠ

Subscripts 
f fluid 
s nanoparticle 
nf nanofluid 
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1. INTRODUCTION 

In recent era, thermal management of industrial and 
commercial products has become very much 
essential and this has attracted the attention of 
Scientists and engineers. Conventional heat transfer 
fluids including oil, water and ethylene glycol have 
low thermal conductivity and thus are inadequate to 
meet the requirements of today's cooling rate. An 
innovative technique to improve the thermal 
conductivities of such fluids is to suspend small 
solid particles in the base fluids to form slurries. 
Nanotechnology has been widely used since the 
material with size of nanometres possesses unique 
physical and chemical properties. 
 
The term nanofluid was first coined by Choi (1995) 
where he described the future and hope of this 
cation of nanotechnology. Nanofluids are a novel 
class of nanotechnology-based heat transfer fluids 
engineered by dispersing nanometre-scale solid 
particles with typical length scales on the order of 
1-100nm in traditional heat transfer fluids. The 
main characteristics of the nanofluids have better 
thermo physical properties such as high thermal 
conductivity, minimal clogging in flow passage, 
long term stability and homogeneity. The study of 
nanofluids has several industrial and engineering 
applications such as chemical production, solar and 
power plant cooling, cooling of transformer oil, 
production of microelectronics, automotive and air 
conditioning cooling, advanced nuclear systems, 
nano-drug delivery, micro fluidics, transportation, 
biomedicine, solid-state lighting and manufacturing. 

Further, the mixed convective heat transfer has been 
deriving considerable attention due to its essential 
role in various applications such as electronic 
devices, heat exchangers, nuclear reactors, food 
processing and solar collectors. However, 
Convection along inclined surfaces, bluff bodies 
has been receiving attention because of many 
industrial applications in fields such as 
electroplating, chemical processing of heavy 
metals, ash or scrubber waste treatment etc. 
 
Many recent studies have been focused on the 
problem of magnetic effect on laminar mixed 
convection boundary layer flow over a stretching 
surface which has attracted considerable attention 
during the last few decades. Some of the industrial 
examples of the problem are extrusion processes, 
cooling of nuclear reactors, glass fibre production, 
hot rolling, wire drawing and crystal growing. 
Moreover, the fluids exhibiting boundary slip find 
applications in technological applications such as in 
the polishing of the artificial heart valves and 
internal cavities. Motivated by all these 
applications, the present work is dealt with a study 
concerned with these. 
 
Mucoglu and Chen (1979) analyzed the mixed 
convection along an inclined flat plate when the 
plate is subjected to a uniform heat flux. The fluid 
stream and heat transport due to a stretching 
boundary is important in the extrusion process. 
Numerous researchers have analyzed the 

hydromagnetic flow over inclined stretching plate 
considering various physical situations and few of 
them are Chamkha and Rahim (2001), Ramadan 
and Chamkha (2003), Alam et al. (2006),  Aydin 
and Kaya (2009) and Noor et al. (2012). Ishak et al. 
(2008) studied the steady two dimensional 
magnetohydrodynamic flow of an incompressible 
viscous and electrically conducting fluid over a 
stretching vertical sheet with the variable 
temperature. The comprehensive survey that took 
into account of the slip boundary conditions over a 
stretching surface  were investigated by Andersson 
(2002), Wang (2002), Martin and Boyd (2006),  
Cao and Baker (2009), Fang et al. (2009), Wang 
(2009), Aziz (2010) and Hayat et al. (2011). 
 
Recently, many articles concerning the study of two 
dimensional convective heat transfer of nanofluids 
have been published. The recent book by Das et 
al.(2007) and more recent review paper by Kakac 
and Pramuanjaroenkij (2009) examined an excellent 
aggregation of the study done on nanofluids. Oztop 
and Abu-Nada (2008) and Abu Nada and Oztop 
(2009) numerically analyzed the effects of 
inclination angle on natural convection heat transfer 
and fluid flow in a two dimensional enclosure filled 
with copper-water nanofluid. The two dimensional, 
steady boundary layer flow of a nanofluid past a 
moving flat plate in a uniform free stream was 
solved numerically using a Keller box method by 
Bachock et al. (2010). Khan and Pop (2010) 
proposed the laminar fluid flow, which results from 
the stretching of a plane surface in a nanofluid. The 
model used for the nanofluid incorporates the 
effects of Brownian motion and thermophoresis. 
The two dimensional convective laminar boundary 
layer flow of nanofluid over a flat plate was 
analyzed by Anjali Devi and Julie Andrews (2011) 
and it was found out that suspended nanoparticles 
enhance the heat transfer capacity of the fluids. 
Hassani et al. (2011) solved analytically the 
development of the steady boundary layer flow of a 
nanofluid past a stretching sheet using the 
Homotopy analysis method. The convective flow 
and heat transfer of an incompressible viscous 
nanofluid past a semi-infinite vertical stretching 
sheet in the presence of a magnetic field was 
examined by Hamad (2011). He found that the heat 
transfer rates decrease as the nanoparticle volume 
fraction increases. 
 
The heat transfer characteristics of steady two-
dimensional boundary layer flow over a moving 
surface in a nanofluid with suction or injection are 
numerically analyzed by Bachok et al. (2012) 
applying an implicit finite difference method. The 
outcomes suggest that the suction delays the 
boundary layer separation, while the injection 
accelerates it. Das (2012) demonstrated the 
convective heat transfer performance of nanofluids 
over a permeable stretching surface in the presence 
of partial slip, thermal buoyancy and temperature 
dependent internal heat generation or absorption. 
 
Turkyilmazoglu (2012) studied analytically the 
MHD flow and thermal transport characteristics of 
nanofluid flow past a continuously stretching or 
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stretching velocity, h1 is the velocity slip factor, h2 
is the thermal jump factor, ݒ௪ is the suction, B0 is 
the strength of the magnetic field and Q0 is the heat 
absorption coefficient (Q0 < 0). 

For the present study, water has been considered as 
the base fluid with Pr = 6.2 at 25o C. The nanofluid 
considered is water mixed with solid spherical 
copper and aluminium nanoparticles. The effective 
density, heat capacity, dynamic viscosity, thermal 
expansion coefficient, thermal diffusivity and the 
thermal conductivity of the nanofluids are given by 

ߩ ൌ ሺ1 െ ߶ሻߩ            , ௦ߩ߶
 

൫ܥߩ൯


ൌ ሺ1 െ ߶ሻ൫ܥߩ൯


 ߶൫ܥߩ൯
௦  

,    

ߤ  ൌ
ߤ

ሺ1 െ ߶ሻଶ.ହ 

ሺߚߩሻ ൌ ሺ1 െ ߶ሻሺߚߩሻ  ߶ሺߚߩሻ௦  ,  

ߙ ൌ
݇

൫ܥߩ൯


,  

݇

݇
ൌ

݇௦  2݇ െ 2߶൫݇ െ ݇௦൯

݇௦  2݇  ߶൫݇ െ ݇௦൯
 

Table 1 Thermo Physical properties of base fluid 
water, copper and alumina nanoparticles at 25oC 

(Oztop and Abu Nada (2008)) 

 
 

(Kg/m3) 

Cp 

(J/Kg.K) 

K 

(W/m.K) 

β x105 

k -1 

Water 997.1 4179 0.613 21 

Copper 8933 385 400 1.67 

Alumina 3970 765 40 0.85 

In order to seek the solution of the problem, the 
following dimensionless variables are introduced: 

߰ሺݔ, ሻݕ ൌ ߟ    ,ሻߟሺܨ ߥඥܽݔ ൌ ඨݕ
ܽ
ߥ

  , 

ሻߟሺߠ   ൌ
்ି ಮ்

்ೢ ି ಮ்
                                                        (5) 

where ߰ሺݔ,  ሻ is the stream function such that itݕ

satisfies Eq.(1) with ݑ ൌ
డట

డ௬
 , ݒ ൌ െ

డట

డ௫
 and ߠ is the 

dimensionless temperature. It is obtained that 

ݑ ൌ ܷ௪ሺݔሻܨᇱሺߟሻ ,           ݒ ൌ െඥܽߥ ܨሺߟሻ            (6) 

The momentum and energy equations together with 
the boundary conditions can be written as 

ᇱᇱᇱܨ  ሺ1 െ ߶ሻଶ.ହ ൜ሺܨܨᇱᇱ െ ᇱଶሻܨ ሺ1 െ ߶ሻ  ߶ ൬ఘೞ

ఘ
൰൨ െ

ᇱܨଶܯ    ߣ ሺ1 െ ߶ሻ  ߶
ሺఘఉሻೞ  

ሺఘఉሻ  
൨ ߠ sin ൠߙ ൌ 0           (7) 

1
ݎܲ

݇

݇
ᇱᇱߠ  ሺ1 െ ߶ሻ  ߶

൫ܥߩ൯
௦  

൫ܥߩ൯
  

൩ ሺߠܨᇱ െ  ሻߠᇱܨ

                    ܪ௦ߠ ൌ 0                                               (8) 

with boundary conditions as follows : 

ߟ  ݐܣ ൌ ሻߟሺܨ    ,0 ൌ ܵ, ሻߟᇱሺܨ ൌ 1   , ᇱᇱሺ0ሻܨߛ

ሻߟሺߠ      ൌ 1      ᇱሺ0ሻߠܾ

ߟ    ݏܣ ՜ ∞, ሻߟᇱሺܨ ൌ 0, ሻߟሺߠ ൌ 0                       (9) 

Here the primes denote differentiations with respect 
to ߟ. The corresponding dimensionless group that 
appears in the governing equations are defined by 

ݎܲ ൌ
ߥ

ߙ
 ,    ሺܴ݁௫ሻ ൌ

ܷ௪ሺݔሻݔ
ߥ

 , ଶܯ ൌ
ܤߪ

ଶ

ߩܽ
 

ሺݎܩ௫ሻ ൌ
ఉሺ்ೢ ି ಮ்ሻ௫య

ఔ
మ  , ܵ ൌ

௩ೢ

ඥఔ 
ߛ   ,  ൌ ݄ଵට



ఔ
 , 

ߣ   ൌ
ሺீೣ ሻ

ோೣ
మ ൌ

ఉ


ൌ ܾ   ,.ݐݏ݊ܿ ൌ ݄ଶට



ఔ
 

௦ܪ ൌ
ܳ

ܽ൫ܥߩ൯


   

3. NUMERICAL SOLUTION 

Equations (7) and (8) with boundary conditions (9) 
constitute a non-linear boundary value problem and 
cannot be solved analytically. So numerical solution 
of the non-linear problem is sought. The system of 
coupled non-linear differential equations with the 
boundary conditions are solved numerically in the 
symbolic computation software MATLAB R2012b 
(bvp4c) for several values of the physical 
parameters such as magnetic interaction parameter, 
angle of inclination, volume fraction, suction 
parameter, heat absorption parameter, velocity slip 
parameter and thermal jump parameter with fixed 
values of Prandtl number and mixed convection 
parameter. 
 
The coupled non-linear boundary value problem of 
third order in F and second order in ߠ has been 
reduced to a system of simultaneous equations of 
first order for five unknowns. Thus, we set ݕଵ= F, 
 ᇱ. The reducedߠ = ହݕ , ߠ =ସݕ ,''ଷ= Fݕ ,'ଶ= Fݕ 
systems of equations are as follows: 
ଵݕ
′ ൌ  ଶݕ

ଶݕ
′ ൌ  ଷݕ

ଷݕ
′ ൌ െሺ1 െ ߶ሻଶ.ହሼሺݕଵݕଷ െ ଶݕ

ଶሻ ቈቆሺ1 െ ߶ሻ  ߶
௦ߩ

ߩ
ቇ 

                   െܯଶݕଶ  ߣ ቈሺ1 െ ߶ሻ  ߶
ሺߚߩሻ௦

ሺߚߩሻ
  ሽߙ݊݅ݏସݕ

ସݕ
′ ൌ  ହݕ

ହݕ
′ ൌ െܲݎ

݇

݇
ሼሺݕଵݕହ െ ସሻݕଶݕ ሺ1 െ ߶ሻ  ߶

൫ܥߩ൯
௦

൫ܥߩ൯


൩ 

                                                                       ܪ௦ݕସሽ 

and the corresponding initial conditions are 

ଵሺ0ሻݕ ൌ ܵ, ଶሺ0ሻݕ   ൌ 1  ݄ଵ݃ଵ, ଷሺ0ሻݕ ൌ ݃ଵ,  

ସሺ0ሻݕ ൌ 1  ݄ଶ݃ଶ, ହሺ0ሻݕ   ൌ ݃ଶ 

where ݃ଵ and ݃ଶ are unknown which are to be 
obtained. Note that bvp4c uses a collocation method 
and requires an initial guess for the desired solution 
for the ordinary differential equations (7) and (8). In 
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order to make an appropriate guess we start with a 
set of parameter values for which solution was 
known and progress until we obtain the solution of 
our problem. The above procedure is repeated until 
we get the results up to the desired degree of 
accuracy is 10-6. 

The asymptotic boundary conditions given by 
Eq.(9) were replaced by using a value of 15 for the 
similarity variable ߟ௫ as follows. 

௫ߟ ൌ 15, ᇱሺ15ሻܨ ൌ 0, ሺ15ሻߠ ൌ 0 

The choice of ߟ௫ ൌ 15 ensured that all numerical 
solutions approached the asymptotic values 
correctly. The numerical values for skin friction 
coefficient and the reduced Nusselt number are also 
obtained and are tabulated for different values of 
M2, ߶,  ߛ ,ߙ, ܵ, ܾ and Hs. 

Concerning this study, the physical quantities of 
practical interest are the skin friction coefficient Cf 
and the local Nusselt number Nux and are defined 
as 

ܥ ൌ
ఛೢ

ఘሺೢሺ௫ሻሻమ   and  ܰݑ௫ ൌ
௫ೢ

ሺ்ೢ ି ∞்ሻ
               (10) 

where the wall shear stress ߬௪ and the surface heat 
flux qw are given by 

߬௪ ൌ ߤ ቀ
డ௨

డ௬
ቁ

௬ୀ
 and  ݍ௪ ൌ െ݇ ቀ

డ்

డ௬
ቁ

௬ୀ
      (11) 

Substituting Eq.(11) in Eq.(10), the skin friction 
coefficient and reduced Nusselt number are 
obtained as 

ሺܴ݁௫ሻܥ
ଵ

ଶൗ ൌ
ଵ

ሺଵିథሻమ.ఱ  ሺ0ሻ                              (12)′′ܨ

௫ሺܴ݁௫ሻݑܰ
ିଵ

ଶൗ ൌ െ



 ሺ0ሻ                             (13)′ߠ

Table 2 Comparison of ࡲ′′ሺሻ and –  ᇱሺሻ  forࣂ
various values of M2 when ࢽ ൌ , ࡿ ൌ , ࣘ ൌ , 

࢙ࡴ ൌ , ࢈ ൌ , ࢻ ൌ ૢ, ࢘ࡼ ൌ  ࣅ ࢊࢇ ൌ . 

M2 

Ishak et al.(2008) 

(when m =1 and n =1) 
Present Results 

 ሺ0ሻ′ߠሺ0ሻ െ′′ܨ ሺ0ሻ′ߠሺ0ሻ െ′′ܨ

0.0 

0.1 

0.2 

0.5 

1.0 

2.0 

5.0 

-0.5607 

-0.5658 

-0.5810 

-0.6830 

-1.0000 

-1.8968 

-4.9155 

1.0873 

1.0863 

1.0833 

1.0630 

1.0000 

0.8311 

0.4702 

-0.5608 

-0.5659 

-0.5810 

-0.6830 

-1.0000 

-1.8968 

-4.9155 

1.0873 

1.0863 

1.0833 

1.0630 

1.0000 

0.8311 

0.4703 

4. RESULTS AND DISCUSSION  

Physically realistic numerical values were assigned 
to the pertinent parameters in the system in order to 
gain an insight into the flow structure with respect 
to velocity, temperature, skin friction coefficient 
and the reduced Nusselt number. Two different 

types of nanoparticles namely copper and alumina 
with water as the base fluid are considered. The 
Prandtl number is kept constant at Pr= 6.2 and the 
mixed convection parameter is fixed at ߣ ൌ 1.5 for 
different values of physical parameters such as      
M2 = 0,1,2,4,  0 = ߙ, 30, 45, 60, ߶ ൌ 0.0,0.01, 
 = b = 0.0,0.1,0.2,0.3, S ,0.0,0.1,0.2,0.3= ߛ ,0.05,0.1
0.1,0.3,0.5,0.7 and  Hs = 0,-1,-3,-5. The numerical 
solutions are illustrated by means of graphs and 
tables. 

The accuracy of the numerical method was 
validated by direct comparisons with the numerical 
results reported earlier by Ishak et al. (2008) for a 
regular fluid and in the absence of volume fraction, 
suction parameter, slip parameters and heat 
absorption, the numerical results are presented in 
Table 2. It is seen from this table that excellent 
agreement between the results exists which justifies 
our numerical scheme in the case of m=1 and n=1 
to that of Ishak et al. (2008). 
 

Fig. 2. Dimensionless Velocity profiles for 
different M2. 

 

 
Fig. 3. Temperature distribution for different 

M2. 
 
Figs.(2)-(13) represent typical numerical results 
based on the numerical solution of Eqs. (7) - (9). 
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These results were held to illustrate the influence of 
the magnetic interaction parameter, angle of 
inclination, volume fraction, velocity slip 
parameter, thermal jump parameter, suction 
parameter and heat absorption parameter over the 
velocity and temperature in both the cases of 
copper-water and alumina-water nanofluids.  
  

 
Fig. 4. Dimensionless velocity profiles for 

different α 
 

 

Fig. 5. Temperature distribution for different α. 

 
Figs. 2 and 3 depict the dimensionless velocity and 
temperature distribution for various values of the 
magnetic interaction parameter for both copper-
water and alumina-water nanofluids when ߶ = 0.01. 
In general, velocity and temperature profiles tend to 
zero asymptotically in the direction of the stretching 
plate. The presence of transverse magnetic field sets 
in Lorentz force effect, which results in the 
retarding effect on the velocity field. As the values 
of magnetic interaction parameter M2 increase, the 
retarding force increases and consequently the 
velocity gets decelerated. The Lorentz force 
increases the nanofluid resistance which causes an 
increase in the temperature when M2 increases. 
Thus the presence of the magnetic field reduces the 
momentum boundary layer thickness while it 
enhances the thermal boundary layer thickness for 
both types of nanofluids. However, an increment in 

thermal boundary layer is not significant amount for 
both copper-water and alumina-water nanofluids. 
 

The influence of inclination angle on dimensionless 
velocity and temperature distribution for specific 
parameters for both copper-water and alumina-
water nanofluids are portrayed through Figs.4 and 
5. It is observed from Fig.4 that for increasing angle 
of inclination, the velocity gets accelerated. This is 
because the angle of inclination increases the effect 
of buoyancy force due to the thermal diffusion by a 
factor of ߙ݊݅ݏ. Consequently, the driving force to 
the fluid increases as a result, velocity of the 
nanofluid increases.  It is also elucidated that its 
effect enhances the momentum boundary layer 
thickness with increasing values of ߙ.  When ߙ 
increases, the temperature and the thermal boundary 
layer thickness reduce for both copper-water and 
alumina-water nanofluids as shown in Fig.5. 
However, the change is not significant. 

 

 
Fig. 6. Dimensionless velocity profiles for 

different ߶. 
 

Fig. 7. Temperature distribution for different ߶. 

 
Fig.6 shows the graphical representation of the 
velocity for various values of the volume fraction of 
copper and aluminium nanoparticles. When the 
volume fraction of copper nanoparticles increases, 
the velocity in the boundary layer decreases and this 
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is because of the more collisions between solid 
particles and consequently lead to the reduction of 
nanofluid effective velocity.   
 

Fig. 8. Dimensionless velocity profiles for 
different . 

 

 
Fig. 9. Temperature distribution for different b. 

 

 
Fig. 10. Dimensionless velocity profiles for 

different S. 

 
Fig. 11. Temperature distribution for different S. 

 
In contrary, the nanofluid velocity gets accelerated 
by increasing the volume fraction of aluminium 
nanoparticles. This is because the density of 
alumina is less compared to copper, so that it 
accelerates the velocity due to increasing 
aluminium nanoparticles. It is interesting to note 
that the nanofluid momentum boundary layer 
thickness decreases slightly by adding the number 
of copper nanoparticles while the reverse is true for 
the momentum boundary layer in the case of 
aluminium nanoparticles. The consequence of the 
solid volume fraction ߶ for copper-water and 
alumina-water nanofluids over the temperature 
distribution is indicated in Fig.7. Increasing values 
of the solid volume fraction lead to both the 
enhancement in the temperature and as well as in 
the thermal boundary layer thickness for both types 
of nanofluids and temperature distribution tends 
asymptotically to zero as the distance increases 
from the boundary. This agrees with the physical 
behavior that when the volume fraction of copper 
and alumina increases, the thermal conductivity 
increases and hence the thickness of the thermal 
boundary layer also increases. 
 

 
Fig. 12. Dimensionless velocity profiles for 

different Hs. 
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Fig. 13. Temperature distribution for different  
Hs. 

 
In Fig. 8, the dimensionless velocity for various 
values of velocity slip parameter for both copper-
water and alumina-water nanofluids are 
represented. It is clear from the figure that the 
velocity component in the direction of wall is 
reduced with an increase in the velocity slip 
parameter for both the nanofluids and decreases 
asymptotically to zero at the edge of the momentum 
boundary layer. This yields a decrease in the 
boundary layer thickness. Thus, the momentum 
boundary layer thickness is reduced as the velocity 
slip parameter increases for both types of 
nanofluids and as a result, the velocity gets 
decelerated. Fig.9 reveals the influence of thermal 
jump parameter on temperature distribution for both 
copper-water and alumina-water nanofluids.  As the 
thermal jump parameter increases, less heat is 
transferred from the plate to the fluid and hence the 
temperature reduces for both types of nanofluids 
whereas change in the velocity of the fluid is not 
substantial with the increase of the effectiveness of 
the thermal jump boundary condition.  
 
Figs.10 and 11 demonstrate the effect of the 
variation of suction parameter on the velocity and 
temperature distribution in both copper-water and 
alumina-water nanofluids. In the case of suction the 
heated fluid is pushed towards the plate where the 
buoyancy forces can act to retard the fluid. This 
effect acts to decelerate the velocity. It is 
recognized that the effect of suction is to bring the 
fluid closer to the surface and hence to reduce both 
the momentum and the thermal boundary layer 
thickness for both types of nanofluids. The effect of 
the heat absorption parameter on the velocity for 
both copper-water and alumina-water nanofluids is 
presented in Fig.12. When the heat absorption 
intensifies, the velocity is found to suppress due to 
the reduction in the buoyancy force. Thus, the 
momentum boundary layer thickness of the 
nanofluid decreases. Fig.13 predicts the effect of 
heat absorption parameter on the temperature 
distribution for both types of nanofluids within the 
boundary layer. Owing to the presence of heat 
absorption (Hs < 0), it is apparent that there is a 

decrease in the thermal state of the fluid. As 
expected, heat absorption provides a decrease in the 
temperature of the fluid. Therefore, the thermal 
boundary layer thickness also reduces due to the 
increase in the heat absorption parameter. 
 

Table 3 Variation in 


ሺିࣘሻ.  -ሺሻ for Copper′′ࡲ

water and alumina-water nanofluids for 
different values of ࡹ, ,ࢻ ࣘ, ,ࢽ ,࢈  when ࢙ࡴ ࢊࢇ ࡿ

λ = 1.5 and Pr = 6.2 

M2 

1
ሺ1 െ ߶ሻଶ.ହ  ᇱᇱሺ0ሻܨ

Cu- water 
nanofluid

Al2O3- water 
nanofluid

ߙ ൌ 45, Ԅ = 0.01,  ߛ = 0.1, b = 0.1, S = 
0.5, Hs = -3 

0 
1 
2      
4 

-1.086133 
-1.395815 
-1.624076 
-1.966317 

-1.057378 
-1.374332 
-1.606043 
-1.951901 

 ߙ
M2 = 2, Ԅ = 0.01,  ߛ =  0.1, b = 0.1, S = 

0.5, Hs = -3 
0 

30 
45 
60

-1.684783 
-1.641822 
-1.624076 
-1.610477 

-1.666549 
-1.623731 
-1.606043 
-1.592489 

Ԅ 
M2 ߙ ,2 = ൌ 45,  ߛ =  0.1, b = 0.1, S = 

0.5, Hs = -3 
0.00 
0.01 
0.05 
0.10 

-1.574249 
-1.624076 
-1.831870 
-2.113713 

-1.574249 
-1.606043 
-1.740495 
-1.926910 

 ߛ
M2 ߙ ,2= ൌ 45, Ԅ = 0.01, b = 0.1, S = 0.5, 

Hs = -3 
0.0 
0.1 
0.2 
0.3 

-1.995563 
-1.624076 
-1.374991 
-1.194914 

-1.967426 
-1.606043 
-1.362349 
-1.185518 

b 
M2 ߙ ,2 = ൌ 45, Ԅ = 0.01, 0.1  = ߛ, S = 

0.5, Hs = -3 
0.0 
0.1 
0.2 
0.3 

-1.583322 
-1.624076 
-1.641463 
-1.651107 

-1.565389 
-1.606043 
-1.623380 
-1.632993 

S 
M2 ߙ ,2 = ൌ 45, Ԅ = 0.01,  0.1 = ߛ, b = 

0.1, Hs = -3 
0.1 
0.3 
0.5 
0.7 

-1.441110 
-1.531482 
-1.624076 
-1.718503 

-1.430539 
-1.517305 
-1.606043 
-1.696412 

Hs M2 ߙ ,2 = ൌ 45, Ԅ = 0.01,   0.1 = ߛ, b 
=0.1, S = 0.5 

0 
-1 
-3 
-5 

-1.590546 
-1.606746 
-1.624076 
-1.633904 

-1.572720 
-1.588801 
-1.606043 
-1.615832 

 
From Table 3, one can notice that the skin friction 
coefficient at the wall decreases in magnitude with 
an increase in the angle of inclination and the 
velocity slip parameter for both Cu-water and 
Al2O3-water nanofluids. It is noticed that in the no-
slip condition the highest wall shear stress occurs in 
magnitude. 
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Table 4 Variation in െ
ࢌ

ࢌ
 ᇱሺሻ for Cu - waterࣂ

and Al2O3-water nanofluids  for different values 
of ࡹ, ,ࢻ ࣘ, ,ࢽ ,࢈  = when λ = 1.5 and Pr ࢙ࡴ ࢊࢇ ࡿ

6.2 

M2 

െ
݇

݇
 ᇱሺ0ሻߠ

Cu- water 
nanofluid

Al2O3- water 
nanofluid

ߙ ൌ 45, Ԅ = 0.01,  0.1= ߛ, b =0.1, S = 
0.5, Hs = -3 

0 
1 
2      
4 

4.178185 
4.160056 
4.146794 
4.127127 

4.175867 
4.157336 
4.143889 
4.124037 

 ߙ
M2=2, Ԅ = 0.01,  0.1 =ߛ, b = 0.1, S = 0.5,  

Hs = -3 
0 

30 
45 
60 

4.143815 
4.145924 
4.146794 
4.147460 

4.140925 
4.143024 
4.143889 
4.144552 

Ԅ 
M2=2, ߙ ൌ 45,  0.1 =ߛ, b = 0.1, S = 0.5, 

Hs = -3 
0.00 
0.01 
0.05 
0.10 

4.074657 
4.146794 
4.439210 
4.815724 

4.074657 
4.143889 
4.424274 
4.784461 

 ߛ
M2=2, ߙ ൌ 45, Ԅ = 0.01, b=0.1 S = 0.5,   

Hs = -3 
0.0 
0.1 
0.2 
0.3 

4.192285 
4.146794 
4.114164 
4.089356 

4.188897 
4.143889 
4.111467 
4.086749 

b M2=2, ߙ ൌ 45, Ԅ = 0.01, 0.1 =ߛ, S = 
0.5, Hs = -3 

0.0 
0.1 
0.2 
0.3 

6.946265 
4.146794 
2.956203 
2.296890 

6.943669 
4.143889 
2.953720 
2.294782 

S M2=2, ߙ ൌ 45, Ԅ = 0.01,  0.1 =ߛ,b = 
0.1, Hs = -3 

0.1 
0.3 
0.5 
0.7 

3.568487 
3.857252 
4.146794 
4.431778 

3.566058 
3.854610 
4.143889 
4.428566 

Hs M2=2, ߙ ൌ 45, Ԅ = 0.01,  0.1 =ߛ, b=0.1, 
S = 0.5 

0 
-1 
-3 
-5 

3.213419 
3.617397 
4.146794 
4.509834 

3.213065 
3.615674 
4.143889 
4.506302 

 
However, the skin friction coefficient enhances in 
magnitude for both Cu-water and alumina-water 
nanofluids with increasing values of M2,  , b, S and 
Hs. From the foregoing discussions, it is noticed 
that the skin friction coefficient in magnitude 
attains the higher values in case of Cu nanoparticles 
than that of Al2O3 nanoparticles. 
 
It is observed from Table 4 that the reduced Nusselt 
number reduces with the increase in the magnetic 
interaction parameter, velocity slip and thermal 
jump parameters for both types of nanofluids. That 
is, as expected for the fluid flows at nanoscale, the 

rate of heat transfer at the wall decreases with an 
increase in the magnetic interaction parameter and 
the slip parameters. Moreover there is enhancement 
in the non-dimensional rate of heat transfer for 
increasing values of the angle of inclination, 
volume fraction, suction and heat absorption 
parameter for both types of nanofluids. It can also 
be seen from Table 4 that the reduced Nusselt 
number is positive for both types of nanofluids, and 
this is consistent with the fact that in the absence of 
viscous dissipation, heat flows from the surface of 

the fluid. Note that the entire values of  െ



 ᇱሺ0ሻߠ

are always positive, i.e. the heat is transferred from 
the hot sheet to the cold fluid. 

5. CONCLUSION 

In this work, the problem of nonlinear 
hydromagnetic mixed convective nanofluid slip 
flow with heat transfer over an inclined stretching 
plate in the presence of internal heat absorption and 
suction is investigated. The numerical results are 
presented for the physical governing parameters 
including the magnetic parameter, angle of 
inclination, volume fraction, suction parameter, 
velocity slip parameter, thermal jump parameter 
and heat absorption parameter for both copper-
water and alumina-water nanofluids. A systematic 
study on the effects of various parameters on the 
flow field, temperature, skin friction coefficient and 
the rate of heat transfer is carried out. From all the 
numerical computations, the main conclusions 
emerging from this study are as follows:  
 
 The effect of magnetic field is to reduce the 

dimensionless velocity, skin friction 
coefficient and the non dimensional rate of 
heat transfer while its effect is to enhance the 
temperature. This is consistent with the fact 
that the momentum boundary layer thickness 
reduces with increasing M2. However, the 
reverse effect is observed with the increase in 
the angle of inclination. 

 Increase in volume fraction of copper-water 
nanofluid lead to retardation in the velocity 
and the opposite effect is noticed for alumina-
water nanofluid. The inclusion of copper and 
aluminium nanoparticles into the base fluid has 
produced an enhancement in the temperature, 
skin friction coefficient in magnitude, reduced 
Nusselt number and as well as the thickness of 
the thermal boundary layer. 

 The individual effect of both the suction 
parameter and heat absorption parameter is to 
reduce the velocity, temperature and the skin 
friction coefficient for both the copper-water 
and alumina-water nanofluids. But the non 
dimensional rate of heat transfer enhances with 
increasing values of both parameters. 

 Increase in intensity of the velocity slip 
parameter ߛ leads to deceleration in the 
velocity and the the non dimensional rate of 
heat transfer while it accelerates the skin 
friction coefficient. The Momentum boundary 
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layer thickness is suppressed due to increasing 
values of the velocity slip parameter. 

 The thermal jump parameter reduces the 
temperature, skin friction coefficient, the 
reduced Nusselt number and the thermal 
boundary layer thickness.  

 The higher values of the skin friction 
coefficient and the reduced Nusselt number 
were obtained for copper nanoparticles 
compared to that of aluminium nanoparticles 
in the presence of heat absorption. 
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