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ABSTRACT 

This article is concerned with the flow of micropolar fluid over an unsteady stretching surface with 
convective boundary condition. The governing partial differential equations are first converted into ordinary 
differential equations using appropriate transformations and then solved for the series solutions. Influence of 
micropolar parameter, unsteadiness parameter, boundary parameter, Prandtl number and Biot number on the 
flow and heat transfer characteristics is examined. Numerical values of local Nusselt number and skin friction 
coefficient are presented and analyzed. It is observed that temperature is an increasing function of Biot 
number. 

Keywords: Heat transfer; Unsteady stretching surface; Micropolar fluid; Convective boundary condition. 

NOMENCLATURE 

xCf skin friction coefficient Rex Reynolds number 
f dimensionless velocity S unsteadiness parameter 
j microinertia T temperature 
h heat transfer coefficient T ambient fluid temperature 

g dimensional microrotation velocity fT hot fluid temperature 

1k thermal conductivity u, v velocity components 

k vortex viscosity   Biot number 

K micropolar parameter    spin gradient viscosity 

m0 boundary parameter 

N  angular velocity    thermal diffusivity 

xNu local Nusselt number ρ fluid density 
Pr Prandtl number µ dynamic viscosity 
qw surface heat flux  

1. INTRODUCTION

The dynamics of micropolar fluids has been 
attracted by the recent workers during the last few 
decades because traditional Newtonian fluids 
cannot precisely describe the characteristics of fluid 
flow with suspended particles. Eringen (1966) 
developed the theory that the local effects arising 

from the microstructure and the intrinsic motion of 
the fluid elements should be taken into account. The 
theory is expected to provide a mathematical model 
for fluid behavior observed in certain man-made 
liquids such as polymers, lubricants, fluids with 
additives, paints, animal blood, colloidal and 
suspension solutions, etc. The presence of dust or 
smoke, particularly in a gas may also be modeled 
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using micropolar fluid model. Consideration of 
micropolar fluid also has much importance in 
soldification of liquid crystal. Later Eringen (1972) 
extended the theory of thermo-micropolar fluids 
and derived the constitutive laws for fluids with 
microstructures. The rigid particles in a small 
volume element rotate about the centroid of the 
volume element in micropolar fluids. The 
pioneering work of Eringen (1966) was extended in 
boundary layer theory by Peddieson and McNitt 
(1970). Nazar et al. (2004) carried out a study to 
address the stagnation point flow of micropolar 
fluid over a linearly stretching surface. Ishak et al. 
(2008) reported heat transfer over a stretching 
surface with variable heat flux in micropolar fluid. 
Mixed convection flow of micropolar fluid over a 
nonlinear stretching surface has been discussed by 
Hayat et al. (2008). Stagnation point flow of 
micropolar fluid towards a vertical permeable 
surface is examined by Ishak et al. (2008). Series 
solutions for boundary layer flow of micropolar 
fluid in porous channel were presented by Sajid et 
al. (2009). Yacob et al. (2011) investigated melting 
heat transfer in boundary layer stagnation point 
flow towards a stretching/shrinking sheet in a 
micropolar fluid. Rashidi et al. (2010) studied the 
flow of micropolar fluid in a porous channel using 
differential transform method. Steady flow of a 
micropolar fluid driven by injection or suction 
between a porous and non-porous disks is addressed 
by Motsa et al. (2010). Micropolar fluid flow over a 
shrinking sheet is presented by Yacob et al. (2012). 
Hayat et al. (2011a) investigated the boundary layer 
flow of micropolar fluid with mixed convection and 
chemical reaction. Ishak et al. (2010) explored 
stagnation point flow of micropolar fluid over a 
shrinking sheet. Unsteady flow of micropolar fluid 
over a stretching surface with heat transfer was 
numerically investigated by Bachok et al. (2011). 

The flows over a stretching surface with heat 
transfer has received much attention in the past due 
to their potential applications in many industrial 
processes, for example, in continuous casting, glass-
fiber production, paper production, metal extrusion, 
hot rolling, wire drawing, drawing of plastic films, 
metal and polymer extrusion and metal spinning. 
Specially, aerodynamic extrusion of plastic sheets is 
very important operation in polymer industry. This 
process involves the heat transfer between the 
surface and the surrounding fluid. The melt issue 
from a slit is subsequently stretched to obtain the 
desired quality during the manufacturer of the sheet. 
Heat transfer in such process has important role in 
controlling the cooling rate. Interesting studies in 
this direction may be mentioned by Devi et al. 
(1991), Andersson et al. (2000), Nazar et al. (2004), 
Ishak et al. (2009), Hayat et al. (2012a), Makinde 
(2012), Shehzad et al. (2013a, 2013b) etc. In all 
these studies heat transfer is discussed either 
through the prescribed temperature or heat flux at 
the surface. Recently the more general concept of 
heat transfer in terms of convective condition has 
been proposed. The relevant information in this 
direction is very scrace. For instance Makinde 
(2010) investigated the heat and mass transfer 
effects in the steady flow of viscous fluid over a 

moving vertical plate with convective thermal 
condition. Makinde and Aziz (2010) discussed the 
buoyancy driven flow in a porous medium with 
convective heating. Boundary layer flow of non-
Newtonian fluid over a stretching sheet with 
convective boundary condition was examined by 
Hayat et al. (2011b). Hayat et al. (2012b) reported 
series solutions for mixed convection flow of 
Casson fluid over a linearly stretching surface in the 
presence of convective condition. Shehzad et al. 
(2013c) discussed the boundary layer flow of 
Jeffrey fluid with convective boundary condition in 
presence of heat and mass transfer near a stagnation 
point. It can be noted that no attempt is yet 
presented for unsteady flow subject to convective 
condition of heat transfer. Hence the present 
investigation looks at the unsteady flow caused by a 
stretching sheet with convective condition of heat 
transfer. Constitutive equations for micropolar fluid 
are taken into account. Transformation procedure is 
employed to reduce the partial differential equations 
into the ordinary differential equations. Series 
solutions are obtained using a powerful technique 
namely the homotopy analysis method (HAM) 
proposed by Liao (2003). This method has been 
already successfully applied recently for many other 
interesting problems (Abbasbandy and Shivanian 
(2011), Hayat et al. (2012c, 2012d), Rashidi and 
Erfani (2012), Rashidi et al. (2012), and Shehzad et 
al. (2015)). Convergence of the obtained series 
solutions is verified. Graphical results are presented 
and analyzed. 

2. MATHEMATICAL MODEL 

We consider two-dimensional time-dependent flow 
of an incompressible micropolar fluid over a 
stretching sheet. At time 0,t   the sheet is 

impulsively stretched with velocity  ,wU x t  along 

the  x -axis, keeping the origin fixed in the fluid of 
ambient temperature .T  The stationary Cartesian 

coordinate system has its origin located at the 
leading edge of the sheet with the positive x -axis 
extending along the sheet, while the y -axis is 

measured normal to the surface of the sheet. The 
governing flow and energy equations are (Bachok et 
al. 2011): 
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In the above expressions, u  and v  are the velocity 
components in the x  and y  directions 
respectively,   is the dynamic viscosity,   is the 
fluid density,   is the kinematic viscosity,   is the 

thermal diffusivity, N   is the microrotation or 
angular velocity, T  is the fluid temperature, 1k  is 

the thermal conductivity, h  is the convective heat 

transfer coefficient, /j c  is microinertia,    is 

the spin gradient viscosity and k  is the vortex 
viscosity. Here for 0,k   we have the case of 
viscous fluid. Furthermore, the boundary parameter  

0m  has a range 00 1.m   It should be notedthat 

when 0 0m    called strong concentration  then 

0N    near the wall. This represents the 
concentrated particle flows in which the 
microelements close to the wall surface are unable 
to rotate. The case 0 1 / 2m   corresponds to the 

vanishing of antisymmetric part of the stress tensor 
and it shows weak concentration of microelements. 
It is assumed that the stretching velocity  txU w ,  

and the surface heat flux  txqw ,  are 
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where a , b  and c  are rate constants with ,0a  

0b  and 0c  (with ).1ct  The particular forms 

of  txU w ,  and  txqw ,  have been chosen in order 

to be able to devise a new relation which transform 
the governing partial differential equations (1) to (4) 
into a set of ordinary differential equations, thereby 
facilitating the exploration of the effects of the 
controlling parameters. The spin-gradient viscosity 
  can be defined as 
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where the material parameter (or micropolar 

parameter) 
kK   is the dimensionless viscosity 

ratio. 

The continuity equation (1) is satisfied by 

introducing a stream function   such that 
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Now Eqs. (2)-(5) are reduced as 
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where primes denote differentiation with respect to 
,   /Pr   is the Prandtl number, acS /  is the 

unsteadiness parameter and   2/1
1/

Uw
vxkh  is 

the Biot number. 

The skin friction coefficients xCf  and local Nusselt 

number xNu  with heat transfer wq  are given by 
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The local Nusselt number and skin friction 
coefficient in dimensionless forms becomes 
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where vaxx /Re 2  is the local Reynolds number. 

3. CONVERGENCE OF THE HOMOTOPY 

SOLUTIONS 

It is well known that the series solutions involve the 
non-zero auxiliary parameters f , g  and .  

Such parameters are useful in adjusting and 
controlling the convergence of the HAM solutions. 
Hence for the range of admissible values of ,f  

g  and ,  we display the  -curves of the 

functions  ,0f    0g  and  0   for 20th-order of 
approximations. Here Figs. 1-3 show that the range 
of admissible values of ,f  g  and   are 
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,2.035.1  f  25.045.1  g  and 

.30.045.1    The definitions of square 

residual errors are: 
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f
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Figure 4: (a) describes the lowest possible error of 
f  for ].90.0,30.1[ f  Fig. 4: (b) shows the 

lowest possible error of g  for g [-1.30, -0.85]. 

Fig. 4(c) describes the lowest possible error of   
for ].95.0,05.1[   Here Fig. 4 is plotted to 

ensure the convergence of the quantities in the Figs. 
.31   

 

 
Fig. 1.  -curve for the function f. 

 

 
Fig. 2.  -curve for the function g. 

 

 
Fig. 3.  -curve for the function θ. 

 

Fig. 4(a).  -curve for the residual error 
f
m . 

 

 

Fig. 4(b).  -curve for the residual error 
g
m . 

 

 

Fig. 4(c).  -curve for the residual error 

m . 

 

 
Fig. 5. Effects of K on 'f . 
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Table 1 Convergence of homotopy solution for 
different order of approximations when ,2.0K  

,6.0,5.0  S  ,7.0Pr   10 m  and 

0.7f g        

Order of 
approximations 

(0)f   (0)g   (0)  

1 1.13125 0.38500 0.37315 
5 1.16799 0.51648 0.36819 
10 1.16798 0.51697 0.36761 
15 1.16798 0.51697 0.36754 
20 1.16798 0.51697 0.36754 
25 1.16798 0.51697 0.36754 
30 1.16798 0.51697 0.36754 
40 1.16798 0.51697 0.36754 

 

4. DISCUSSION 

This section aims to study the influence of physical 
parameters on the velocity, micro-rotation velocity 
and the temperature fields. This objective is 
achieved through plots of Figs. 5-14 for the effects 
of micropolar parameter ,K  unsteadiness parameter 

,S  boundary parameter ,0m  Prandtl number Pr  

and Biot number   on the velocity component ,f   
the micro-rotation velocity g  and the temperature 

profile   respectively. Further, numerical values of 
the skin-friction coefficient and the local Nusselt 
number are computed in the Tables 2 and 3. Figs. 5-
14 address the variations of micropolar parameter 

,K  unsteadiness parameter S  and boundary 

parameter 0m  on the velocity field .f   Here Fig. 5 

shows the effects of micropolar parameter K  on 
the velocity .f   This Fig. shows that f   is an 

increasing function of .K  The boundary layer 
thickness increases when K  increases. The 
material parameter give rise to the fluid flow and an 
increase in the velocity and momentum boundary 
layer thickness is observed. Physically an increase 
in micropolar parameter leads to a decrease in the 
dynamic viscosity. This decrease in the dynamic 
viscosity is responsible for the enhancement in the 
fluid velocity. A decrease in the dynamic viscosity 
implies to the less viscous fluid. The less viscous 
fluid has higher velocity due to less resistance to 
flow. Fig. 6 shows the variations of unsteadiness 
parameter S  on .f   Here the velocity f   is found 

to decrease when S  increases. The boundary layer 
thickness also decreases when S  is increased. We 
observed that the unsteadiness parameter resists the 
fluid flow which yields a decrease in the velocity. 
Fig. 7 depicts the influence of boundary parameter 

0m  on .f   The boundary parameter reduced the 

velocity and momentum boundary layer thickness. 

Figs. 8-10 are plotted for the variations of ,K  S  

and 0m  on the microrotation velocity profile .g  

Fig. 8 presents the influence of K  on .g  It is 
observed that initially g  decreases by increasing 

.K  It can also be seen from this Fig. that the micro 
rotation velocity g  is greater when compared with 

Newtonian case )0( K  for large values of .K  

The boundary layer thickness also decreases as K  
increases. Fig. 9 depicts the effects of S  on .g  

Initially g  increases when S  increases but when 
we move away from the surface then both g  and 
boundary layer decrease. Fig. 10 depicts the effects 
of boundary parameter 0m  on micro-rotation 

velocity .g  The micro-rotation velocity g  is an 

increasing function of .0m  The boundary layer 

thickness is increased for large values of .0m  The 

micro-rotation velocity is increasing rapidly by 
increasing the values of boundary parameter .0m  It 

is also observed that for ,00 m  the micro-rotation 

velocity is zero. 

 
Fig. 6. Effects of S on 'f . 

 

 
Fig. 7. Effects of m0 on 'f . 

 

Figs. 11-14 illustrate the effects of ,S  ,0m  Pr  and 

  on the temperature profile .  Fig. 11 shows the 

variation of S  on .  It is noted that temperature 
profile   decreases when S  increases. The thermal 
boundary layer thickness also decreases for large 
values of  .S  An increase in unsteadiness parameter 
reduces the heat of fluid that leads to a decrease in 
the temperature and its related boundary layer 
thickness. Temperature is higher for smaller values 
of unsteadiness parameter and lower for larger 
values of unsteadiness parameter. Fig. 12 illustrates 
the effects of boundary parameter 0m  on 
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temperature profile .  From this Fig. one can see 
that the temperature profile and thermal boundary 
layer thickness increase when 0m  is increased. 

Influence of  Pr  on   can be seen in Fig. 13. From 
the definition of Prandtl number, it is seen that an 
increase in Prandtl number corresponds to a smaller 
thermal diffusivity. Due to smaller thermal 
diffusivity, a reduction in temperature and thermal 
boundary layer thickness appears. In fact fluids with 
smaller Prandtl number have higher thermal 
diffusivity and larger Prandtl fluids have lower 
thermal diffusivity. In industry, Prandtl number is 
used to control the cooling rate during the 
manufacture process. Fig. 14 shows the effects of 
  on .  It is evident from this Fig. that when   

increases temperature profile   as well as thermal 
boundary layer thickness increase. In fact the Biot 
number involves the heat transfer coefficient. The 
heat transfer coefficient increases with an increase 
in Biot number. An increase in heat transfer 
coefficient give rise to the temperature and thermal 
boundary layer thickness. Here we have seen that 
for ,0  there is no heat transfer at the wall. 
Further we examined that the temperature at the 
wall is increased suddenly for 5.0  but for 

0.1  and ,5.1  such increase in temperature is 
very slow. 

 
Fig. 8. Effects of K on g. 

 

 
Fig. 9. Effects of S on g. 

 
Fig. 10. Effects of m0 on g. 

 

 
Fig. 11. Effects of S on θ. 

 

 
Fig. 12. Effects of m0 on θ. 

 

 
Fig. 13. Effects of Pr on θ. 
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Fig. 14. Effects of γ on θ. 

 
Table 2 Numerical values of skin friction 

coefficient 
2/1

RexxCf  for various values ,K  S  

and .0m  

K S 0 0.0m   0 0.5m   0 1.0m   
1/2

Rex xCf  

0.1 0.5 -1.2233 -1.1961 -1.1674 
0.3  -1.3240 -1.2517 -1.1688 
0.5  -1.4135 -1.3050 -1.1706 
0.4 0.0 -1.1713 -1.0954 -1.0051 

 0.3 -1.2920 -1.2069 -1.1052 
 0.5 -1.4079 -1.3136 -1.2010 

 
To see the convergent values of ),0(f   )0(g  

and )0(   for the fixed values of emerging 
parameters, Table 1 is computed. This Table shows 
that series solutions for velocity and micro rotation 
converge from 10th order of approximations and for 
temperature it converges from 15th order of 
deformations. Also we observed that the values of 

)0(f   are higher in comparison to the values of 

)0(g  and ).0(   Tables 2 and 3 show the 
numerical values of skin-friction coefficient and 
local Nusselt number. From Table 2, it is noted that 
the magnitude of skin-friction coefficient increases 
for large values of K  and S  but it decreases for 

the larger values of .0m  The values of skin-friction 

coefficient are larger for smaller values of boundary 
parameter. It is also examined from this Table that 
all the values of skin-friction coefficient are 
negative. This negative sign is due to the drag force 
that surface exerts on the fluid. From Table 3, the 
values of heat transfer rate become large when we 
increase the values of ,  ,K  Pr  and .S  However 
the heat transfer rate becomes smaller with an 
increase in .0m  The reduction in the values of local 

Nusselt number is very small by increasing .0m   

5. CONCLUSIONS 

We have studied the time-dependent boundary layer 
flow of micropolar fluid with heat transfer. Heat 
transfer is characterized due to convective surface 
condition. The flow is caused due to the unsteady 

stretching surface. The main results are listed 
below: 
 Velocity f   is decreasing function of S  and 

.0m   

 Both temperature and thermal boundary layer 
thickness are decreased when Pr  increases. 

 Behavior of 0m  and Pr  on the temperature 

are quite opposite. 
 Microrotation profile decreases when 0m  is 

increased. 
 The values of skin-friction coefficient are 

reduced with the increasing values of boundary 
parameter. 

 Values of local Nusselt number increase when 
  and K  are increased. 

 
Table 3 Numerical values of Local Nusselt 

number )0(   for various values ,K  ,S  ,0m  

Pr,  and .  

  K  0m  Pr  S  (0)  

0.3 1.0 0.5 1.0 0.7 0.24235 
0.5     0.35805 
0.7     0.45015 
0.9     0.52521 
0.6 0.0    0.37935 

 0.3    0.38062 
 0.6    0.38169 
 0.9    0.38261 
 0.4 0.0   0.38232 
  0.2   0.38182 
  0.4   0.38128 
  0.6   0.38069 
  0.5 0.4  0.33757 
   0.8  0.39311 
   1.2  0.42239 
   1.5  0.43729 
   1.0 0.0 0.38161 
    0.5 0.40018 
    1.0 0.41514 
    1.5 0.42720 
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