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ABSTRACT 

The effects of thermal anisotropy and mechanical anisotropy on the onset of Bernard-Marangoni convection 
in composite layers with anisotropic porous material is studied. The upper fluid surface, free to atmosphere is 
considered to be deformable. The eigen value problem is solved using a regular perturbation technique with 
wave number a  as perturbation parameter. It is  observed that both stabilizing and destabilizing factors can
be enhanced  thermal anisotropic parameter  and mechanical anisotropic parameter so that a more precise 
control (suppress or augment) of thermal convective instability in a layer of fluid or porous medium is 
possible. 

Key words:  Bernard-marangoni convection; Mechanical anisotropy; Thermal anisotropy. 

NOMENCLATURE 

A ratio of heat capacity  
D differential operator  
d thickness of the fluid layer 

md thickness of the porous layer 

Da Darcy number  
h heat transfer coefficient 
M Marangoni number  
,l m wave number in x and y 

p  pressure 

Pr Prandtl number for fluid layer  
Prm porous medium Prandtl number  

R Rayleigh number in the fluid layer 
 

mR Rayleigh number in a porous medium 

T  temperature 

0T temperature at the interface 

W amplitude  of perturbed vertical velocity 

V


velocity vector (u, v, w) 

1. INTRODUCTION

Convection within a two-layer system constructed 
by a layer of fluid overlying a porous material 
saturated with the same fluid has numerous 
geophysical and industrial applications, such as the 
manufacturing of composite materials used in the 
aircraft and automobile industries, flow of water 
under the Earth’s surface, flow of oil in 
underground reservoirs and growing of compound 
films in thermal chemical vapour deposition 
reactors. A detailed review is given by Nield & 
Bejan (2006), with current highly relevant literature 
including Straughan (2001; 2008); Carr (2004); 
Chang (2004; 2005; 2006); Shivakumara et al. 
(2006; 2012); Suma et al. 2012; and Hill and 
Straughan (2009). 

The onset of pure Rayleigh convection in the 
superposed liquid-porous layers, sandwiched by 

two horizontal infinite rigid and thermal conductive 
wall, heated from below Beavers and Joseph 
(1967). The Darcy’s law is applied together with the 
experimentally suggested slip condition proposed 
by Beavers and Joseph (1967) at the liquid-porous 
interface. They indicate that the neutral instability 
curves for the onset of instability is bimodal which 
possess two local minima. The key parameter is the 
ratio between the depth of liquid layer and that of 
porous layer. Its critical value 0.13,ch  below 

which the instability is called the long-wave mode, 
and above which the instability is called the short-
wave mode. After their work, several ( Hill and 
Straughan 2009; Gangadharaih 2013 and  Pearson 
(1958) studied the coupled gravity and surface 
tension driven instability problems in a similar 
system, and all focused on the depth ratio as the 
crucial parameter which can determine the mode of 
convection. 
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Nield (1977) has investigated the linear stability 
problem of superposed fluid and porous layers with 
buoyancy and surface tension effects at the 
deformable upper free surface by using the 
Beavers–Joseph slip condition at the interface. The 
thermal stability for different systems of superposed 
porous and fluid regions has also been analyzed by 
Taslim and Narusawa(1989). Chen (1990) has 
implemented a linear stability analysis to 
investigate the effect of throughflow on the onset of 
thermal convection in a fluid layer overlying a 
porous layer with an idea of understanding the 
control of convective instability by the adjustment 
of throughflow. McKay(1988) has considered the 
onset of buoyancy-driven convection in superposed 
reacting fluid and porous layers. Nield (1988) has 
argued about the modelling of Marangoni 
convection in a fluid saturated porous medium and 
has suggested the consideration of composite 
porous–fluid layer system in analyzing the problem. 
Khalili et al. (2001) have obtained the closed form 
solution for Chen’s model by considering the upper 
and lower boundaries are insulating to temperature 
perturbations.  

In all the above superposed fluid and porous layers 
problems, the porous medium is considered to be 
isotropic. Castinel and Combarnous (1975) were the 
first to study both experimentally and theoretically 
the onset of convection in a layer of porous medium 
with anisotropic permeability. The onset of 
buoyancy-driven convection due to heating from 
below in a system consisting of a fluid layer 
overlying a porous layer with anisotropic 
permeability and thermal diffusivity has been 
discussed by Chen et al(1990). Recently, 
Shivakumara et al. (2011) have investigated the 
criterion for the onset of surface tension-driven 
convection in the presence of temperature gradients 
in a two-layer system comprising a fluid saturated 
anisotropic porous layer over which lies a layer of 
fluid while the  effect of internal heating on the 
problem has been considered by Shivakumara et al. 
(2012).  

The aim of the present paper is, therefore, to study 
convective instability in a composite system solely 
due to temperature dependent surface tension 
effects at the upper deformable free surface of a 
fluid layer overlying an anisotropic porous layer. 
The effect of surface deformation on the onset of 
Bernard-Marangoni convection and both 
mechanical and thermal anisotropy is considered by 
simplifying it to a horizontally isotropic case. Such 
a model is of physical relevance to practical 
situations since many porous structures display 
anisotropy where the permeability and in turn the 
thermal conductivity in the vertical direction is 
different to that in the horizontal plane. A modified 
Darcy equation is employed to describe the flow 
regime in the anisotropic porous medium and at the 
interface of porous and fluid media the Beavers-
Joseph classical slip condition is used. The 
boundaries are considered to be insulated to 
temperature perturbations. A regular perturbation 
technique with wave number as a perturbation 
parameter is used to solve the eigen value problem 

in a closed form. A wide-ranging parametric study 
is undertaken to explore their impact on the stability 
characteristics of the system. 

2. FORMULATION OF THE 
PROBLEM 

We consider a incompressible fluid-saturated 
horizontal anisotropic porous layer of thickness 

md underlying a fluid layer of thickness d ,the 

lower boundary of the anisotropic porous layer is 
taken to be rigid, while the upper surface has a 
deflection  , ,x y t from mean (see Fig.1).  

 

 

 

 

 

 

 

Fig. 1. Physical model. 
 

The lower hot rigid boundary ,m mz d    is kept at 

a constant temperature
 

,hT while upper surface 

z d  is free to atmosphere of constant 
temperature .hT A Cartesian coordinate system (x, 

y, z) is chosen such that the origin is at the interface 
between the fluid layer and the anisotropic porous 
layer and the z-axis is vertically upward. The 
surface tension ߪ is assumed to vary linearly with 
temperature in the form 0 0( ),T T T    

 
where 0  

is the constant reference value. 

The governing equations for the fluid and porous 
layer are: 

Fluid layer: 

0V 


                  (1) 

    2
0 0 01

V
V V p g T T V

t
   
 

            

   
 

                   (2) 

  2T
V T T

t


   



                 (3) 

Porous layer: 

0m mV  


                                                        (4) 

 10
0 01m

m m m m
V

p K V g T T
t


  




       

  


 

                   (5) 

   m
m m m m m m m

T
A V T T

t


     





    (6) 

Here V


 is the velocity vector, p is the pressure, g  

is the gravitational acceleration,T is the 

A i t i

Fluid
x

 

z

 g


 

 , ,z d x y t 
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temperature, while mV


,
 mp , mT are the 

corresponding quantities in the porous layer,  is 
the thermal diffusivity,  is the fluid viscosity, is 

the porosity of the porous medium, A is the ratio of 
heat capacities, 0  is the fluid density, K


is the 

permeability tensor and
 m

is the thermal 

diffusivity tensor. The permeability and thermal 
diffusivity tensors of the porous medium are 
assumed to be constants and have principal axis 
aligned with the coordinate system so that 

1 1 1 1ˆ̂ ˆˆ ˆ ˆ
x y vK K ii K jj K kk     


 and ˆ̂

m mx ii 


 

ˆ̂
my jj  ˆ ˆ

mv kk  We restrict to horizontal 

isotropic porous media and consider 

 x y hK K K  and  .mx my mh    It may 

be noted that the permeability and effective thermal 
diffusivity in the horizontal and vertical directions 
in an anisotropic porous layer are denoted by  

,h mhK   and ,v mvK  , respectively. 

The boundary conditions are 

At the lower rigid boundary, ,m mz d 
 

0,m hq T T 
     

   

At the deformable free surface 

ˆ, . 0tu v w k T n HT
t x y

  
     

  
 

ˆ ˆ2 . , 2 . .nt a nnd T t p p d n
T

  
     


   

In order to investigate the stability of the basic 
solution, infinitesimal disturbances are introduced 
in the form 

 , , ( )b bV V T T z T p p z p      
 

  

 , , ( )m m m mb m m mb mV V T T z T p p z p      
 

where the primed quantities are the perturbations 
and assumed to be small. Substitute these equations  

in Eqs.    1 6 and linearized in the usual manner. 

The pressure term is eliminated from Eqs.  2 and 

 5 by taking curl twice on these two equations and 

only the vertical component is retained. The 
variables are then nondimensionalized using 

2, / , /d d d  and
 0 uT T  as the units of length, 

time, velocity, and temperature in the fluid layer 

and  2, / , /m m mv mv md d d  and 0lT T
 
as the 

corresponding characteristic quantities in the porous 
layer. Note that separate length scales are chosen 
for the two layers so that each layer is of unit depth. 
In this manner, the detailed flow fields in both the 
fluid and porous layers can be clearly discerned for 
all depth ratios md d  and  

Then performing a normal mode expansion of the 
dependent variables in both fluid and porous layers as 

     , , , , ( , )w T W z z Z f x y                     
(7) 

       , , ,m m m m m m m m mw T W z z f x y      (8)
 

Where ( , )f x y and
 

 ,m m mf x y  are horizontal 

plan forms satisfying  2 2
h f a f     and

2 2
mh m m mf a f   . Here ma and a are the 

horizontal wave numbers in fluid and porous layer 
respectively. For matching the solutions in two 
layers to be possible, we should have 

,m ma d a d and hence .ma a  we obtain the 

following ordinary differential equations: S 

 22 2 2D a W a R                    (9) 

 2 2D a W   
  

            (10) 

2 2 21
m m m m m mD a W a R


  

     
  

              (11)
 

 2 2
m m m mD a W                   (12) 

where D and mD denote differentiation with 

respect to z  and mz respectively, 2 2a l m 

and 2 2
ma l m    are correspondingly the 

overall horizontal wave numbers in the fluid and 
porous layers.  

The boundary conditions are 

( ) 0 at 1iW D B Z z             (13)

 2 2 0 at 1D W Ma Z z                   (14) 

   2 2 2 2
03 0 at 1Cr D a DW B a a Z z      

                 (15) 

0 at 1m m m mW D z                   (16) 

and those at the interface (i.e z = 0) are 

m
T

W W





 

                               (17) 

m mD D  
                               (18) 

T
m




  

 

                  (19) 

4
2 23 m m

T
D a DW D W

Da


 

                       (20) 

3
2

m m
T

D D W D W
Da Da

 
  

  
  

  
         (21) 

3. METHOD OF SOLUTION 

For the assumed boundary conditions the eigen 
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value problem is solved by using regular 
perturbation technique with wave number a as a 
perturbation parameter. The dependent variables in 
both the fluid and porous layers are now expanded 

in powers of 
2a  in the form 

     2

0

, ,
N i

i i
i

W a W


                                (22) 

   
2

2
0

, ,

iN

m m mi mi
i

a
W W



 
    

 
                 (23) 

Substitution of Eqs  22 and  23 into Eqs. 

   9 12 and the boundary conditions    13 21  

yields a sequence of equations for the unknown 
functions ( ), ( )i iW z z , ( )miW z  and ( )mi z for 

݅ ൌ  0, 1, 2, . . ..  

At the leading order in 2a  Eqs.    9 12 become, 

respectively, 

4
0 0D W 

  
                            (24) 

2
0 0D W  

                
(25) 

2
0 0m mD W 

                
(26) 

2
0 0m m mD W                     (27) 

and the boundary conditions    13 21 become 

0 00, 0 1m m m mW D at z                 (28) 

2
0 0 00, 0, 0 1W D D W at z                   (29) 

And at the interfaceሺ ݅. ݖ ݁ ൌ 0ሻ 

0 0m
T

W W





 

               (30) 

0 0
T

m



                  (31) 

0 0m mD D                        (32)

3
2

0 0 0m m
T

D W DW D W
Da Da

 
  


        (33) 

4
3

0 0m m
T

D W D W
Da


 


                              (34) 

The solution to the zeroth order equations is given 
by 

0 00, TW



  

 

               (35) 

0 00, 1m mW                                 (36) 

At the first order in ܽଶ, Eqs    9 12 then reduce to 

4
1

TD W R




  

                            (37)
 

2
1 1

TD W



  

 

               (38) 

2
1m m mD W R 

 
               (39) 

2
1 1m m mD W   

 
              (40)

 

and the boundary conditions    13 21 become 

1 10, 0 at 1m m m mW D z                    (41) 

1 10, 0at 1W D z                  (42)

 
 

2 3 0
1 0 1 0 0at 1T B

D W M Z D W Z z
Cr




 
      

 
 

   (43)

 

 

And at the interfaceሺ ݅. ݖ ݁ ൌ 0ሻ 

1 1
1

m
T

W W


                (44) 

1 13
T

m



                   (45) 

1 12

1
m mD D


                  (46) 

2
1 1 1m m

T

D W DW D W
Da Da

 
  


           (47)

 
2

3
1 1.m m

T
D W D W

Da


 


                (48) 

Integrating Eq.  38 between z = 0 and 1, and Eq.

 40  between 1mz    and 0, using the relevant 

boundary conditions and adding the resulting 
equations, we obtain the following solvability 
condition: 

1 0

1 12 2
0 1

1 T
mW dz W dz

 
 

                       (49) 

The general solution of Eqs. (37) and (39) are 
respectively given by 

4
2 3

1 1 2 3 4 24
T z

W R c c z c z c z




 
     

  
         (50) 

2
2

1 5 6 42
T

m m m
Da

W R c c z z



 
   

  
                 (51) 

Substituting for 1W  and 1mW from Eqs. (49) and 

performing the integration, we obtain an expression 
for the critical Rayleigh number CR

 
in the form 

  0

1 2

3 B (1 ) (1Tc
m

Da
R

       


  
       (52) 
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Table 2 Critical Marangoni number for different values of depth ratio and Darcy number when 
0, 0.1,oBi B  0 and 0.5R      

  

Shiva kumara (2011)

cM  0Bi 
 

Da  

Present study 

cM  0Bi 
 

Da  

0.001         

0.1 

0.5 

1.0 

1.5 

2.0 

2.5 

5.178 

68.934 

72.414 

66.136 

62.091 

59.465 

3.198 

42.717 

64.118 

62.651 

60.058 

58.055 

2.631 

31.999 

58.314 

60.069 

58.567 

57.038 

2.324 

26.042 

53.799 

57.917 

57.317 

56.190 

5.176 

68.956 

72.423 

66.121 

62.089 

59.471 

3.196 

42.721 

64.123 

62.648 

60.065 

58.062 

2.642 

31.983 

58.323 

60.066 

58.572 

57.044 

2.333 

26.040 

53.789 

57.927 

57.307 

56.196 

 

 
Table 3 Critical values of Marangoni number  with different values of  for
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 410Cr       
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80.290 

72.118 
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71.834 

71.758 

36.5709 

36.5465 

36.5274 

36.5124 

36.4994 

0.1 

0.5 

1.0 

1.5 

2.0 

64.3399 

80.6547 

111.5191 

146.351 

179.151 

50.287 

72.038 

97.162 

120.253 

141.574 

29.9701 

36.5465 

42.0645 

45.8783 

48.6718 
 

 

The critical values of cM  for different values of , 

 andCr are tabulated in Table 3 when 
64 10 , 0.1,oDa B   0.725, 1,T   0R 

 
1and    since our main interest is to look at the 

dramatic effects of mechanical anisotropy 
parameter  and  thermal anisotropy parameter . It 

is noted that cM attains higher values at lower 

values of   and Cr That is, decrease in the 
mechanical anisotropy parameter is to delay the 
onset of Marangoni convection. This is because, 
decrease in  corresponds to smaller horizontal 
permeability which in turn hinder the motion of 
fluid in the horizontal direction. As a consequence, 
the conduction process in the porous medium 
becomes as observed more stable and hence higher 
values of cM  are needed for the onset of 

Marangoni convection. To the contrary, in the same 
Table it is observed that decreasing   is to hasten 
the onset of Marangoni convection. This may be 
attributed to the fact that the decrease in  amounts 
to decrease in the horizontal thermal diffusivity. 
Thus heat cannot be transported through the porous 
layer and hence the horizontal temperature 
variations in the fluid required to sustain convection 

are less efficiently dissipated for small . Hence, 
the base state becomes less stable leading to lower 
values of critical Marangoni number.  

The variation of cM  obtained as a function of 

depth ratio ζ for different values of Da when 
0, 0.725.i TB     , 1, 0.001Cr    and  

0.5    are presented in a Fig.7. As expected, 

the effect of decrease in Da  is to increase the 
critical Marangoni number. Furthermore, the 
variation in  has  a significant effect on the onset of 
convection for the values of 0.2,  while the 

curves of different Da  merge in to one when
0.2.   

5. CONCLUSSION  

The stability analysis of Bernard-Marangoni 
convection in a two-layer system consisting of a 
fluid layer overlying a anisotropic porous layer 
investigated theoretically.  It is observed that the 
mechanical and thermal anisotropy parameters 
influence the stability of the system significantly. 
Increasing the mechanical anisotropy parameter has 
a destabilizing effect on the system, while an 
opposite trend is noticed with an increase in the 
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