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ABSTRACT

The effects of thermal anisotropy and mechanical anisotropy on the onset of Bernard-Marangoni convection
in composite layers with anisotropic porous material is studied. The upper fluid surface, free to atmosphere is
considered to be deformable. The eigen value problem is solved using a regular perturbation technique with
wave number @ as perturbation parameter. It is observed that both stabilizing and destabilizing factors can
be enhanced thermal anisotropic parameter and mechanical anisotropic parameter so that a more precise
control (suppress or augment) of thermal convective instability in a layer of fluid or porous medium is

possible.

Key words: Bernard-marangoni convection; Mechanical anisotropy; Thermal anisotropy.

NOMENCLATURE
A ratio of heat capacity Pr Prandtl number for fluid layer
D differential operator Pr, porous medium Prandtl number
d th%ckness of the fluid layer R Rayleigh number in the fluid layer
dp thickness of the porous layer Rm Rayleigh number in a porous medium
Da Darcy number T temperature
h heat transfer coefficient Ty temperature at the interface
M Marangoni ““T“ber W amplitude of perturbed vertical velocity
I,m wave number in x and y -

Vv velocity vector (u, v, w)

p pressure

1. INTRODUCTION

Convection within a two-layer system constructed
by a layer of fluid overlying a porous material
saturated with the same fluid has numerous
geophysical and industrial applications, such as the
manufacturing of composite materials used in the
aircraft and automobile industries, flow of water
under the Earth’s surface, flow of oil in
underground reservoirs and growing of compound
films in thermal chemical vapour deposition
reactors. A detailed review is given by Nield &
Bejan (2006), with current highly relevant literature
including Straughan (2001; 2008); Carr (2004);
Chang (2004; 2005; 2006); Shivakumara et al.
(2006; 2012); Suma et al. 2012; and Hill and
Straughan (2009).

The onset of pure Rayleigh convection in the
superposed liquid-porous layers, sandwiched by

two horizontal infinite rigid and thermal conductive
wall, heated from below Beavers and Joseph
(1967). The Darcy’s law is applied together with the
experimentally suggested slip condition proposed
by Beavers and Joseph (1967) at the liquid-porous
interface. They indicate that the neutral instability
curves for the onset of instability is bimodal which
possess two local minima. The key parameter is the
ratio between the depth of liquid layer and that of
porous layer. Its critical valueh; =0.13, below

which the instability is called the long-wave mode,
and above which the instability is called the short-
wave mode. After their work, several ( Hill and
Straughan 2009; Gangadharaih 2013 and Pearson
(1958) studied the coupled gravity and surface
tension driven instability problems in a similar
system, and all focused on the depth ratio as the
crucial parameter which can determine the mode of
convection.
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Nield (1977) has investigated the linear stability
problem of superposed fluid and porous layers with
buoyancy and surface tension effects at the
deformable upper free surface by using the
Beavers—Joseph slip condition at the interface. The
thermal stability for different systems of superposed
porous and fluid regions has also been analyzed by
Taslim and Narusawa(1989). Chen (1990) has
implemented a linear stability analysis to
investigate the effect of throughflow on the onset of
thermal convection in a fluid layer overlying a
porous layer with an idea of understanding the
control of convective instability by the adjustment
of throughflow. McKay(1988) has considered the
onset of buoyancy-driven convection in superposed
reacting fluid and porous layers. Nield (1988) has
argued about the modelling of Marangoni
convection in a fluid saturated porous medium and
has suggested the consideration of composite
porous—fluid layer system in analyzing the problem.
Khalili et al. (2001) have obtained the closed form
solution for Chen’s model by considering the upper
and lower boundaries are insulating to temperature
perturbations.

In all the above superposed fluid and porous layers
problems, the porous medium is considered to be
isotropic. Castinel and Combarnous (1975) were the
first to study both experimentally and theoretically
the onset of convection in a layer of porous medium
with anisotropic permeability. The onset of
buoyancy-driven convection due to heating from
below in a system consisting of a fluid layer
overlying a porous layer with anisotropic
permeability and thermal diffusivity has been
discussed by Chen et al(1990). Recently,
Shivakumara et al. (2011) have investigated the
criterion for the onset of surface tension-driven
convection in the presence of temperature gradients
in a two-layer system comprising a fluid saturated
anisotropic porous layer over which lies a layer of
fluid while the effect of internal heating on the
problem has been considered by Shivakumara et al.
(2012).

The aim of the present paper is, therefore, to study
convective instability in a composite system solely
due to temperature dependent surface tension
effects at the upper deformable free surface of a
fluid layer overlying an anisotropic porous layer.
The effect of surface deformation on the onset of
Bernard-Marangoni convection and  both
mechanical and thermal anisotropy is considered by
simplifying it to a horizontally isotropic case. Such
a model is of physical relevance to practical
situations since many porous structures display
anisotropy where the permeability and in turn the
thermal conductivity in the vertical direction is
different to that in the horizontal plane. A modified
Darcy equation is employed to describe the flow
regime in the anisotropic porous medium and at the
interface of porous and fluid media the Beavers-
Joseph classical slip condition is used. The
boundaries are considered to be insulated to
temperature perturbations. A regular perturbation
technique with wave number as a perturbation
parameter is used to solve the eigen value problem

in a closed form. A wide-ranging parametric study
is undertaken to explore their impact on the stability
characteristics of the system.

2. FORMULATION OF
PROBLEM

THE

We consider a incompressible fluid-saturated
horizontal anisotropic porous layer of thickness
d, underlying a fluid layer of thicknessd ,the
lower boundary of the anisotropic porous layer is
taken to be rigid, while the upper surface has a
deflection Q(x,y ,t) from mean (see Fig.1).

)

Fluid

lz =d+Q (x,yt) Z¢

iy

Fig. 1. Physical model.

The lower hot rigid boundary z ,, =—d,, is kept at
a constant temperature Ty, while upper surface

z=d is free to atmosphere of constant

temperature Ty,. A Cartesian coordinate system (X,
y, z) is chosen such that the origin is at the interface
between the fluid layer and the anisotropic porous
layer and the z-axis is vertically upward. The
surface tension o is assumed to vary linearly with
temperature in the form o=o0p—ocr (T —Ty),

where oy is the constant reference value.

The governing equations for the fluid and porous
layer are:

Fluid layer:
VV =0
1)
2 ﬂa-r(\/a-V)\/A =—Vp+ag[1-a(T To) |+ uVA
a
(@)
LY, VT =&V 3)
Porous layer:
Ve Vi =0 @)
N, A
%Xm =—VimPm —uK ! Vi +20 [l_a(Tm _TO):|
()

oT -
AFm"’(Vm'Vm)Tm:Vm'(’fm'Vme) (6)

Here V' is the velocity vector, p is the pressure, g

is the gravitational acceleration,T is the
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temperature, while V., Py, Tpare the

corresponding quantities in the porous layer, k¥ is
the thermal diffusivity, g is the fluid viscosity, ¢ is
the porosity of the porous medium, A is the ratio of
heat capacities, py is the fluid density, K is the

permeability tensor and &y, is the thermal

diffusivity tensor. The permeability and thermal
diffusivity tensors of the porous medium are
assumed to be constants and have principal axis
aligned with the coordinate system so that

K =K KT+ KR and ey = kg

+Kmy i+ kmyKK  We restrict to horizontal

isotropic media and consider

Ky =Ky (=Kp)and &y =Ky (= &pp )- It may

porous

be noted that the permeability and effective thermal
diffusivity in the horizontal and vertical directions
in an anisotropic porous layer are denoted by

Kh, &mn and K, &, , respectively.
The boundary conditions are

At the lower rigid boundary, z,, =—d,,

qm =0, T :Th

At the deformable free surface
@+u@+v@:W, kiVT .A+HT =0
ot OX oy

oo n .
2 :EVT £, pa-p+2ud,, =cV.A.

In order to investigate the stability of the basic
solution, infinitesimal disturbances are introduced
in the form

V=V, T=Ty(z)+T', p=pp@)+p’

V—m :V—rh 9Tm :Tmb (Z )+Tn’1 > Pm = Pmb @)+ pr'n

where the primed quantities are the perturbations
and assumed to be small. Substitute these equations
in Egs. (1)—(6)and linearized in the usual manner.

The pressure term is eliminated from Eqs.(2) and

(5) by taking curl twice on these two equations and

only the vertical component is retained. The
variables are then nondimensionalized using

d,d 2/1(‘, x/d and Tq—T, as the units of length,
time, velocity, and temperature in the fluid layer
and dp,,dp2/ Ky Ky /A and T, —T, as the

corresponding characteristic quantities in the porous
layer. Note that separate length scales are chosen
for the two layers so that each layer is of unit depth.
In this manner, the detailed flow fields in both the
fluid and porous layers can be clearly discerned for
all depth ratios ¢ =d /d, and

Then performing a normal mode expansion of the
dependent variables in both fluid and porous layers as

(W.T.Q)=[W (2),0(z).Z Jf (x.y) (7)

W Tm) =W (Zm)-Om (2m) Jfm (Xm->Ym) ®)
Wheref (x,y)and . (Xpy,yyn) are horizontal

plan forms satisfying Vﬁf =—a’f

and
v f.=—alf,. Here aandayare the

horizontal wave numbers in fluid and porous layer
respectively. For matching the solutions in two
layers to be possible, we should have
a/d =ay /dy, and hence ¢ =a/a,.we obtain the

following ordinary differential equations: S

(Dz—a2)2w -a’R0® ©9)
(Dz—az) O=W (10)
(£]o3 - jrn —-ei rp0n an
(Of —nan Jorn =W, (12)
where D and Dy, denote differentiation with

respect to z and Z, respectively, a=+I 2im?

and a, = 2+m?  are correspondingly the
overall horizontal wave numbers in the fluid and

porous layers.

The boundary conditions are
W =D0O+B;(©6-2)=0
DW +Ma*(©-2)=0

atz =1 (13)
atz =1 (14)

cr(D?-3a%)ow —(Bo+a2)a22 =0atz =1

(15)
Wy, =Dp0, =0 atz,=-1 (16)
and those at the interface (i.e z = 0) are
w :iwm 17)
e
DO=D,0, (18)
&
@:?@m 19)
e
[Dz—Saz}DW = DyW (20)
Daé‘rg&
_p3
{DZ— I Y DWW, @21)
Jbag & JDag

3. METHOD OF SOLUTION

For the assumed boundary conditions the eigen
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value problem 1is solved by wusing regular
perturbation technique with wave number@as a
perturbation parameter. The dependent variables in
both the fluid and porous layers are now expanded

. 2.
in powers of &~ in the form

b=

w.0)= (az)i W;,0,) (22)

Il
(=1

Wn-0n)- 3[% | 0 0) o)

Substitution of Eqs(22)and (23)into Egs.
(9)—(12) and the boundary conditions (13)—(21)

yields a sequence of equations for the unknown
functionsW; (2),0; () Wi (z) and Oy, (z) for
i=2012,...

At the leading order ina’ Egs. (9)—(12) become,

respectively,

DW,=0 24)
D%0,=-W, (25)
DZWpo=0 (26)
DnOmo=-Wpo 7

and the boundary conditions (13)—(21) become
Wpno=0, Dp®ne=0a z,=-1 (28)
W,=0,D0,=0,DW,=0at z =1 (29)

And at the interface(i.e z = 0)

Wozéwmo (30)
®0:%®m0 @31
DOy =DnOmy (32)
B _ B
R WDWO gTJD_agDmeO (33)
_ 4
OzerDafDmeO (34

The solution to the zeroth order equations is given
by

W, =0, 0= (35)
¢
Wi0=0, Opp=1 36)

At the first order in a?, Eqs (9) - (12) then reduce to

DW,=RE (37)
¢
D2 - —w, 39)
¢
D Wi =—&Rpy (39)
Dnzwgml_’?:_wml (40)

and the boundary conditions (13) - (21) become
Wip1=0,D4,0,;=0at z,=-1 41)

W1:0, D®1:0at z =1 (42)

D%N1+M(i[—zoj:m/vl —%20:0& z=1 (43)

And at the interface(i.e z = 0)

W, :awml (44)
0, :Z%®ml (45)
g
piw, -2 pw,=—%~ _p w
1 \/D_af 1 & Da§ m'¥ml (47)
__ =
D, = . DagDmel' (48)

Integrating Eq. (38) between z = 0 and 1, and Eq.

(40) between Zp, =—1 and 0, using the relevant

boundary conditions and adding the resulting
equations, we obtain the following solvability
condition:

1 0
1 & n
W, dz +— [ W0z =T+ L (49)
{ ./;Z,J1 ¢ ¢

The general solution of Egs. (37) and (39) are
respectively given by

4
z
W =R |c +0C,z +Cyz2 40,23+ 50
1 {1 2Z +C3 4 s (50)

2
WmI:R{cstcézm—D;jfT z,%]:l (51)

Substituting for W; and W,; from Egs. (49) and

performing the integration, we obtain an expression
for the critical Rayleigh number R¢ in the form

ne _ (308ByS(er £U-0)+ Enc1-0))

52
m Aj+A, (52)
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4. RESULTS AND DISCUSSION

The stability analysis of Bernard-Marangoni
convection in a two-layer system consisting of a
fluid layer overlying an anisotropic porous layer
investigated theoretically. The resulting eigen value
problem is solved using a regular perturbation
technique with wave number as a perturbation
parameter.

First we will discuss Rayleigh-Benard convection
(in the absence of Marangoni number M =0 ) and
the results are presented for The results are

presented  for JDa =3.04x107 (which
correspond to 3-cm-deep porous layer consisting of
3-mm-diameter glass beads (Chen1990)B, =0.1,

g =0.725,f=1and Cr =0 the range of depth

ratio ¢ =107* approximating pure porous layer
case to ¢ =1 (two layers of equal depth).The case

I =107 corresponding to a porous layer with an
extremely thin overlying fluid layer, Fig. 2 shown,

an increase with the decreasing & . Physically,

this means that the conduction solution in the
porous medium becomes more stable and the
critical wavelength decreases as the horizontal
permeability  decreases.  Smaller  horizontal
permeability inhibits horizontal motion, and the
conduction solution is thus stabilized. The larger
resistance to horizontal flow also leads to a
shortening of the horizontal wavelength at onset. In
the same figure, it is seen that for a given & smaller
values of the horizontal thermal diffusivity
correspond to destabilization of the basic state, and
the onset of convection at a smaller wavelength,
This can be explained by the fact that, as 7

decreases, a heated fluid parcel loses less heat in the
horizontal directions, and hence retains its
buoyancy better. Therefore, the base state becomes
less stable, and the wavelength is reduced.

£

Fig. 2. Variation of R, with & for different

values of  when 4:10‘4

1555

Fig. 2. a Variation of R, with & for different
values of » when ¢ =0.1.

Ty

Fig. 3. Variation of RS, with ¢ for different
values of » when ¢ =0.2.

il

Fig. 4. Variation of RS, with ¢ for different
values of » when ¢ =0.5.
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Fig. 5. Variation of R, with & for different
values of » when ¢ =1.

Table 1 Critical values of Rayleigh number R,
with different values of ¢, nand &

Rm

Eon

£=01 [¢=02 [g=05 | ¢=1
0.1 10.026 | 5.554 |2.138 | 0.946
0.2 5061 | 3257 |1.702 | 0.878
04 D. 2455 | 1778 |1.234 | 0.767
06 |1 |1585 | 1214 ]0973 | 0.681
0.8 1.158 | 0917 |0.805 | 0.612
1.0 0905 | 0.735 |0.686 | 0.556
0.1 33375 | 14624 3987 | 1.405
0.2 16.793 | 8574 [3.174 | 1.304
04 D. |8.149 | 4681 [2502 | 1.139
06 [5 |5266 | 3.196 |1.816 | 1.012
0.8 38451 | 2416 |1.501 | 0910
1.0 3.005 | 1.935 |1.280 | 0.826
0.1 62.524 | 25960 |6.298 | 1.979
0.2 31460 | 15222 |5.014 | 1.836
04 . [15267 | 8309 [3.637 | 1.604
0.6 0 |9.866 | 5675 [2.868 | 1.425
0.8 7203 | 4288 |2376 | 1.281
1.0 5630 | 3436 | 2.02 1.164

For depth ratios ¢ =0.1,0.2,0.5,1.0 we have

computed Rf, for three values of 7, over a range of

& . The results are shown in Figs2a- 5, the

behaviour of Rf, is similar to that of above case

¢ =107 presented in Fig.2. The critical values of

RS for different values of, £and 7 are

tabulated in Table 1 since our main interest is to
look at the dramatic effects of mechanical, and
thermal anisotropic parameter on the onset of
Rayleigh-Benard convection. From the Table it is

seen that (i) increasing value of &, R, decreases
monotonically as the value of ¢ increases,(ii)
increasing value of 7, an decreases monotonically

as the value of ¢ increases and(iii) increasing 77 is
to delay the onset of Rayleigh-Benard convection

and (iv) the higher value of ¢ the porous layer

behaves like an essentially solid layer, the influence
of the permeability anisotropy is less significant
than that of the thermal diffusivity.

In the absence of thermal buoyancy (i.eR =0) we
merely consider the Marangoni convective
instability at the upper free surface. The critical
Marangoni number computed for different values of

Da and ¢ when ¢ = 0.725, g=1, £ =05,
Cr =0 and n = 0.5 are tabulated in Table 2. The
results of Shivakumara et al. (2011) are also
exhibited in the Table for the sake of comparison. It
is seen that our results are in good agreement with
those of Shivakumara et al. (2011) in the absence of
thermal bouncy (i.e.R =0). Figure 6 shows that
M. as a function of¢ for different values of
Crispation number Cr (i.e., influence of surface

tension) for fixed values of Da=4x

10,8, =0.1, & =0.725, B=1,R =0,
£=05=7 and Bj =0 (Since we are dealing
with layers of small thickness, the value of Bj

does not appreciably affect the results for B; =0,
Takashima(1981). From figure, it may be noted that
an increase in value of Cr is to decrease the value
of M. and thus making system more unstable. The
reason being that an increase in Cr is to increase
the deflection of the upper free surface, which in
turn, promotes instability much faster. It is also seen
that for a fixed value of Cr (S 1073), M, increases

initially with ¢ reaches a peak value, and then

starts decreasing before attaining an asymptotic
value with further increase in ¢ (see Fig.6).But

this trend goes on diminishing with an increase in
the value of Cr value ofCr=0.1 ,M_ remains

almost invariant with £

9] ] Ve 1 1]
Fig. 6. Variation of M. with ¢ for different
values of Cr when £=0.5=73, g =0.725
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Table 2 Critical Marangoni number for different values of depth ratio and Darcy number when
Bi =0,B,=0.1, R=0and 7=05=¢

Shiva kumara (2011) Present study
M, (Bi =0) M, (Bi =0)
¢ Da Da

0.001 0.003 0.005 0.007 0.001 0.003 0.005 0.005
0.1 | 5178 3.198 2.631 2.324 5.176 3.196 2.642 2.333
0.5 | 68.934 42.717 31.999 26.042 68.956 42.721 31.983 26.040
1.0 | 72414 64.118 58.314 53.799 72.423 64.123 58.323 53.789
1.5 | 66.136 62.651 60.069 57.917 66.121 62.648 60.066 57.927
2.0 | 62.091 60.058 58.567 57.317 62.089 60.065 58.572 57.307
2.5 | 59.465 58.055 57.038 56.190 59.471 58.062 57.044 56.196

Table 3 Critical values of Marangoni number M_ with different values of rand & for
Da=4x10"°,B, =0.1

M, withz = 0.5 M, with £=0.5

& n

Cr=10° |Cr=10" | Cr=107 Cr=10"° Cr=10" | Cr=107
0.1 80.850 72.118 36.5709 0.1 64.3399 50.287 29.9701
0.5 | 80.654 72.038 36.5465 0.5 80.6547 72.038 36.5465
1.0 | 80.505 71.924 36.5274 1.0 111.5191 97.162 42.0645
1.5 | 80.389 71.834 36.5124 1.5 146.351 120.253 45.8783
2.0 | 80.290 71.758 36.4994 2.0 179.151 141.574 48.6718

The critical values of M. for different values of &,
nandCr are  tabulated Table 3
Da=4x10"%B,=0.1, & =0.725({=1,R =0

and B =1 since our main interest is to look at the

dramatic  effects of mechanical anisotropy
parameter £ and thermal anisotropy parameter 7. It

in when

is noted that M. attains higher values at lower

values of & and Cr That is, decrease in the
mechanical anisotropy parameter is to delay the
onset of Marangoni convection. This is because,
decrease iné corresponds to smaller horizontal
permeability which in turn hinder the motion of
fluid in the horizontal direction. As a consequence,
the conduction process in the porous medium
becomes as observed more stable and hence higher
values of M. are needed for the onset of

Marangoni convection. To the contrary, in the same
Table it is observed that decreasing 7 is to hasten
the onset of Marangoni convection. This may be
attributed to the fact that the decrease in 7 amounts
to decrease in the horizontal thermal diffusivity.
Thus heat cannot be transported through the porous
layer and hence the horizontal temperature
variations in the fluid required to sustain convection

1557

are less efficiently dissipated for small7; . Hence,

the base state becomes less stable leading to lower
values of critical Marangoni number.

The variation of M, obtained as a function of
depth ratio { for different values of Da when
B =0, =0.725. ,B=1,Cr=0.001 and

&=0.5=n are presented in a Fig.7. As expected,

the effect of decrease in Da is to increase the
critical Marangoni number. Furthermore, the
variation in has a significant effect on the onset of
convection for the values of ¢ <0.2, while the

curves of different Da merge in to one when
§>0.2.

5. CONCLUSSION

The stability analysis of Bernard-Marangoni
convection in a two-layer system consisting of a
fluid layer overlying a anisotropic porous layer
investigated theoretically. It is observed that the
mechanical and thermal anisotropy parameters
influence the stability of the system significantly.
Increasing the mechanical anisotropy parameter has
a destabilizing effect on the system, while an
opposite trend is noticed with an increase in the
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value of thermal anisotropy parameter. And
decreasing the Crispation number leads to
stabilization of the system and the increasing slip
parameter is to delay the onset of Bernard-
Marangoni convection.. Thus, it is possible to either
augment or suppress the onset of Bernard-
Marangoni convection by suitably choosing the
parametric values.

-

=2

Fig.7. Variation of M with ¢ for different
values of Da when £=0.5=7n, &g =0.725.
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