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ABSTRACT

The purpose of this paper is to develop an approximate method for the evaluation of the normal force acting on
a flexible plate normal to the wind flow and the deformation of the plate. A theoretical modelling is firstly
proposed to predict the relationship between the normal drag coefficient of a rigid curved-plate and the
configuration of the plate with the aid of a series of numerical analyses of structure and fluid dynamics. Then,
based on the theoretical modelling, an approximate method for the evaluation of the normal force acting on the
plate and the deformation of the plate is constructed using only the iteration of structure mechanics analysis,
instead of conventional complex iterations of fluid-structure coupling analysis. Simulation tests for 3D flexible
plates with different lengths and different material moduli are conducted. Also a comparative simulation test of
a 3D flexible plate used in a previous experiment is performed to further confirm the validity and accuracy of
the approximate method. Numerical results obtained from the approximate method agree well with those
obtained from the fluid dynamics analysis as well as the results of the previous wind tunnel experiment.

Keywords: Wind flow; Flexible plate; Fluid-structure interaction; Normal force; Approximate method.

NOMENCLATURE

A area of the plate

DC drag coefficient of a rigid flat-plate

normal to the flow

theoryDC _
drag coefficient of a rigid curved-plate

based on theoretical modelling

CFDNC 
normal force coefficient of a rigid

curved- plate obtained from CFD
simulation

realNC 
real normal force coefficient of a flexible

plate normal to the flow

theoryNC _
normal force coefficient of a rigid

curved-plate based on theoretical
modelling

ds an arbitrary infinitesimal element of rigid
curved-plate

E Young’s modulus
FN total normal force acting on an the plate

theoryNF 
total normal force acting on a rigid

curved-plate obtained from theoretical
modelling

)
~

(f correction function

L length of the plate
p average pressure acting on the plate

p-real real averaged pressure acting on a
flexible plate

theoryp average pressure acting on a rigid

curved-plate obtained from theoretical
modelling

s arbitrary location on the curved plate
T thickness of the plate
ux x component of displacement
uy y component of displacement
W width of the plate
V wind velocity
VN velocity component normal to the

curved surface
VT velocity component along the tangential

direction of the curved surface

 correction coefficient

 chord angle of the arbitrary
infinitesimal element along the curved
plate


~ chord angle of the curved plate

real
~ real chord angle of a flexible plate

normal to the flow
 Poisson’s ratio
 density of air
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1. INTRODUCTION

A flexible plate normal to the wind flow is a typical
and classic problem of fluid-structure interaction
(FSI), of direct relevance to many natural
phenomena. For instance, leaves of plant, flexible
fiber, and plates roll up in a high wind to reduce the
drag and avoid damage as reported by Vogel (1989.
2009), Alben et al. (2002, 2004), Schouveiler and
Boudaoud (2006), and Gosselin et al. (2010).
Furthermore, this problem is also of relevance to
many practical applications such as commercial
plates and turbine blades (Maheri et al. (2007); Liu
2009; Hoogedoorn et al. (2010)). Many research
efforts (e.g., Fage and Johansen (1927), Kiya and
Arie (1977), Chein and Chung (1988), Kinsely
(1990), Okajima (1990), Letchford (2001), Shimada
and Ishihara (2002), and Breuer et al. (2003)) have
been contributed to the investigation of the dynamic
behaviors of the flow around a rigid-plate, such as
drag coefficient, lift coefficient, Strouhal numbers,
velocity fluctuation behind the plate, and vortex
behaviors. Relatively few studies (Vogel (1989,
2009), Alben et al. (2002, 2004), Schouveiler and
Boudaoud (2006), and Gosselin et al. (2010),
Campbell and Paterson, (2011); Lee and Lee,
(2012)) have been focused on the evaluation of the
wind pressure acting on a flexible plate and the
deformation of the plate. On the other hand, the
wind pressure acting on a deformable plate and the
deformation of the plate are important parameters in
the strength design of the plate and its supportive
structure in practical applications.

In general, it is extremely difficult to derive an
analytical solution for the evaluation of the wind
pressure acting on a flexible plate because of the
strong nonlinearity in the coupling of the fluid flow
and the plate deformation. Rigorous evaluation
requires complex fluid-structure coupling analysis
although many numerical methods have been
developed as reviewed by Hou et al. (2012) and
Degroote (2013), such as the arbitrary Lagrangian-
Eulerian (ALE) finite element method (Kim et al.
(2007), Peskin (2002)) and the Boltzman-Lattice
method (Feng and Michaelides (2004), Lee et al.
(2012)). Complex iteration procedures of numerical
calculations related to the alternative fluid and
structure analyses are cumbersome and error-prone
in the rigorous FSI numerical analysis. Therefore,
developing a relatively simple numerical method to
evaluate the wind pressure acting on a deformable
plate is quite useful in various practical
applications.

In this paper, we are interested to develop an
approximate numerical method for the evaluation of
the normal force acting on a flexible plate normal to
the wind flow and the deformation of the plate. The
averaged pressure is defined by the normal force
divided by the plate area. A theoretical modelling is
proposed to approximately describe the relationship
between the normal drag coefficient of a rigid
curved-plate in the flow and its configuration with
the aid of a series of regular numerical calculations

of fluid dynamics and structure mechanics. Based
on the theoretical curve of the normal drag
coefficient and the configuration of the rigid
curved-plate, an approximate method for the
evaluation of the normal force acting on the plate
and the deformation of the plate is constructed
using only the iteration of structure mechanics
analysis, instead of conventional complex iterations
of fluid-structure coupling analysis. Simulation tests
for 3D flexible plates with different lengths and
different material moduli are conducted. Also a
comparative simulation test of a 3D flexible plate
used in a previous experiment is performed to
further confirm the validity and accuracy of the
approximate method.

2. APPROXIMATE METHOD

In this section, a theoretical formulation to describe
the relationship between the normal drag coefficient
of a rigid curved-plate and the configuration of the
plate is first derived. Then, based on the theoretical
formulation, an approximate numerical method is
constructed to evaluate the normal force acting on a
flexible plate and the deformation of the plate using
only the iteration of structure mechanics analysis,
instead of the conventional complex fluid-structure
coupling analysis.

2.1 Theoretical Modelling

A flexible plate with upper end fixed normal to the
wind flow is considered, as shown in Fig. 1(a). The
length, width, and thickness are denoted by L, W,
and T, respectively. The plate subjected to wind
pressure tends
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Fig. 1. The schematic of a flexible plate normal
to wind flow.
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to bend towards the flow direction to reduce drag.
Dashed line denotes the plate before deformation.
The displacements of free end are denoted by ux and
uy. The deformed configuration is described by the
chord angle 

~ between the vertical line and the line
connecting the fixed end and the free end of the
plate. In general, this is a complex fluid-structure
coupling problem, the pressure acting on the plate is
complicatedly distributed on the plate surfaces and
fluctuates around its mean value over time (Fage
and Johansen (1927), Chein and Chung (1988), and
Lee and Lee (2012)). In present study, as the first
approximation, it is assumed that the deformed
plate in uniform and steady wind flow is under a
quasi-static state and that the mean pressure is
uniformly distributed on the plate surface.
Therefore, the deformed plate under the quasi-static
state in the wind flow can be considered as an
equivalent rigid curved-plate. Furthermore, the
effect of the viscous drag along the tangential
direction of the plate surface due to the fluid
viscosity on the deformation of the plate is
considered to be very slight compared to the wind
pressure normal to the surface so that only the
normal force is considered in the present study. In
addition, for the sake of simplicity, the effect of
gravity on the deformation of plate is not
considered hereafter.

Based on the above assumptions, consider the wind
flow acting on an arbitrary infinitesimal element ds
of a rigid curved-plate, as shown in Fig. 1(b). V is
the wind velocity, V_N and V_T are the velocity
components normal to the curved surface and along
the tangential direction of the curved surface, and s
is the Lagrangian coordinate defined along the mid-
plane of the plate from its fixed end to its free end,
respectively. Therefore, the total normal force
produced by the wind flow with velocity V on the
curved plate can be expressed by

dsWCVF D

L

theoryN
2

0
)cos(

2

1
  

(1)

Where )/225.1( 3　　 mkg is the density of air,  is

the tangential angle of the curved plate at location s,
and

DC is the drag coefficient of an equivalent rigid

flat-plate (L×W×T) normal to the flow.
DC can be

find from books of fluid mechanics (e.g. White
1998) for regular 3D plates or can be obtained from
fluid dynamic analysis using a computational fluid
dynamics (CFD) codes. Generally,

)),(( sF theoryN  is a function of the normal force

and the location s along the curved plate, and this
equation is actually an integral equation of fluid-
structure coupling. It is difficult to obtain the exact
solution. In order to express the total normal force

theoryNF 
in an explicit formulation, we assume that

the total normal force
theoryNF 

can be approximately

expressed by

,
~

cos)
~

(
2

1
)

~
( 22  fACVF DtheoryN 

(2-a)

WLA  (2-b)

Where A denotes the area of the plate, 
~ denotes

the chord angle of the curved plate (Fig. 1(a)) and is
used to characterize the configuration of the curved
plate, and )

~
(f is a correction function which is

used to correct the errors caused by the above
simplification because Eq. (2-a) is not a rigorous
solution of the integral equation of Eq. (1). Then the
average pressure

theoryp acting on the curved plate

can be calculated by


 ~

cos)
~

(
2

1)
~

( 22
_ fCV

A

F
p D

N
theory  (3)

From Eq. (3), the normal drag coefficient of the
curved plate can be expressed by











~
cos)

~
(

5.0

)
~

(

5.0

)
~

(
)

~
(

2

22

_

fC

AV

F

V

p
C

D

Ntheory
theoryN



 (4)

And the conventional drag coefficient is expressed
by
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Observing Eq. (4) and Fig. 1(a), it is recognized that
0

~
 and 2/

~
  correspond to the two special

cases of a rigid flat-plate normal and parallel to the
wind flow, respectively. Therefore, according to
fluid mechanics, the normal drag coefficient

)
~

(theoryNC 
should satisfy

DtheoryN CC  )0( and

0)2/(  theoryNC . The correction function )
~

(f

should satisfy 1)0( f and )2/(f . As a

result, )
~

(f is assumed here by


~

sin1)
~

( 2f (6)

Where parameter  is a constant which is

determined from the comparison between the curve

)
~

(theoryNC 
obtained from Eq. (4) and the curve

)
~

(. ExpNC 
obtained from experiment or

)
~

(. CFDNC 
obtained from a series of CFD

calculations of rigid curved-plates with chord
angles ),21;2/

~
0(

~
kiii  ，， . In the

present study, CFD calculations are employed to
determine the curve )

~
(. CFDNC 

. The geometries

of rigid curved-plates with chord angles
),...,2,1(

~
kii  used in the CFD calculations are

determined from a series of structure calculations of
a flexible plate subjected to a series of uniform
pressures as follows.

2.2 Determination of )
~

(f

In order to determine the correction function )
~

(f ,

a series of numerical calculations of structure
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mechanics and CFD calculations are conducted
using commercially available codes of MSC
Marc2010 and ANSYS Fluent 13.0, respectively.
Firstly, a flexible plate subjected to a series of
uniform pressures are conducted to determine a
series of related reconfigurations of the plate. Large
deformation, namely, the geometrical nonlinearity
of the deformation is considered. The pressure
applied to the flexible plate is given by below
equation

),,2,1;0(,
2

1
max

2 kiVVCVp iDii   (7)

Fig. 2. Flowchart of the theoretical modeling.

Where ),21( kiV i  ，， denote a series of given

wind velocities,
maxV is the maximum velocity

specified according to the design requirement of the
flexible plate, and

DC is the drag coefficient of a

rigid flat-plate normal to the flow as mentioned
before. Then, applying ),21( kip i  ，， of Eq.

(7) to a given flexible plate and conducting the
analysis of structure mechanics, we can obtain a
series of self-similar geometries

i
~

),21( ki  ，， of curved plates. According to

the experimental facts reported in many references
as mentioned above, it is well known that the value
of the real normal drag coefficient

realNiC 
of a

flexible flat-plate normal to the flow is always
smaller than

DC because the deformation of the

flexible plate reduces the drag force. Therefore, for
a given

iV , the real averaged pressure
realip 

acting on a flexible plate is always lower than
ip

calculated by Eq. (7) because
DrealNi CC 

. In

other words, the
ip gives the upper bound of

realip 
for a given

iV . Similarly, the chord angle

i
~ of the deformed plate, obtained from the above

structure analysis related to
ip , is also not equal to

the real chord angle
reali

~ for a given
iV . The real

chord angle
reali

~ is always smaller than
i

~ and

ireali 
~~

0  
because

ireali pp  0 for a

given
iV . Hence,

i
~ also gives the upper bound of

reali
~ for a given

iV .

Secondly, we use these curved plates with chord
angles

i
~

),21( ki  ，， as a series of rigid

curved-plates in the CFD calculations to solve the
corresponding normal drag
coefficients )

~
( iCFDNiC  ),21( ki  ，， . That is,

we obtain a curve of )
~

( iCFDNiC  ),21( ki  ，，

related to a series of rigid curved-plates with chord

angles i

~

 ),21( ki  ，， . On the other hand,

according to Eq. (4) and Eq. (6) with 0 , we

can obtain the theoretical formulation of normal
drag coefficien

0)
~

(  theoryNC . In consequence,

we obtain two curves of )
~

( iCFDNC 
and

0)
~

(  theoryNC . Plotting these two curves together

and comparing them with each other reveal the
deference between these two curves. Finally, select
a proper value of  through a process of trial and

error to make the difference between these two
curves as small as possible. That is, select a  to

make

)
~

(
~

cos)
~

()
~

( 2   CFDNDtheoryN CfCC   (8)

Then, Eq. (4) becomes a theoretical equation to
predict the normal drag coefficient )

~
(theoryNC 

for

a known rigid curved-plate with chord angle
i

~ .

The flow chart of the present theoretical modelling
is described in Fig. 2.

2.3 Algorithm to Solve the Average
Pressure Acting on a Flexible Plate
Normal to the Flow

Assume that the geometry and material properties
of a flexible plate are known, the velocity of
uniform and steady wind inflow is

0V , and the plate

normal to the flow is at a quasi-static state. Then,
the real average pressure in the sense of FSI can be
expressed by

_ ( ),real theory bendp p    (9-1)

if the following equation is satisfied.

_ _( ) ,theory bend bendp p  (9-2)

where, _bendp denotes the pressure applied to the

flexible plate in the structural analysis, bend is

the corresponding chord angle of the deformed

plate, and
~

_ ( )bendtheoryp   is the theoretical

average pressure obtained from Eq. (3). It is noted
that the theoretical average pressure is
approximately equal to the average pressure
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obtained from CFD analysis of a rigid curved-plate
with chord angle

bend
~ based on the preceding

Fig. 3. Flowchart of the calculation sequence of
the present approximate method.

theoretical modelling. In other words, Eq. (9-1)
means that the real pressure equals the theoretical
pressure obtained from Eq. 3 when the pressure
applied to the flexible plate in the structure
calculation equals the theoretical pressure acting on

the rigid curved-plate with the chord angle bend .

Then, based on Eq. (9), an algorithm is developed
to solve the real pressure i re alp  , chord angle
~

i real  , and normal drag coefficient
~

( )realN realC   for a flexible plate normal to the

wind flow of
0V using only iterative simulations of

structure analysis as follows.
0V is an arbitrary

given wind velocity. The flowchart of calculation
procedures of the approximate method is illustrated
in Fig. 3.

At the first iteration, nonlinear bending calculation
of the flexible plate subjected to a given pressure is
conducted. The initial pressure is calculated by Eq.
(6), that is,

2
1_ 0

1

2bend Dp V C  (10)

Where the drag coefficient
DC of a rigid plate

normal to the wind flow is obtained from CFD
analysis for the rigid plate with the same geometry
as the flexible plate. Then, a reconfiguration

bend1
~


of the flexible plate is obtained from the bending

analysis. Inserting this 1 bend  into Eq. (3) and Eq.

(4) yields 1_ 1( )theory bendp   and

1_ 1( )N theory bendC   , respectively. According to

the preceding subsections, 1_bendp and 1 bend 

give the upper bounds of the real pressure
0V re alp 

and real reconfiguration
0V real 
 , respectively.

Therefore, 1_theoryp obtained from Eq. (4) using

1 bend  gives the lower bound of the real pressure.

It is obvious that 1_bendp is not equal to

1_theoryp . Thus, we move to the second iteration

using 1_theoryp as the bending load applied to the

flexible plate as follows.

2 _ 1_bend theoryp p (11)

Similar to the calculation procedures at the first

iteration, 2 bend 
 is obtained from the bending

calculation, and then 2_ 2( )theory bendp   and

2_ 2( )N theory bendC   can be obtained from Eq. (3)

and Eq. (4). It is observed that

1 2

1 1 2 2

1_ 2 _ 2 2 _

0

( ) ( )

( )

bend bend

N theory bend N theory bend D

bend theory bend bend

C C C

p p p

 

 



 

   



 

  

  

 
 



(12)

Assume that 2_ 2( )theory bendp   is still not equal to

2_bendp and that the difference between the both

values is still significant. Thus, we move to the third
iteration using

3 _ 2 _bend theoryp p (13)

as the pressure applied to the flexible plate in the
bending calculation of the third iteration. Similar to
preceding iterations,

bend3
~
 is obtained from

bending calculation, and then a set of
)

~
( 3_3 bendtheoryp  , and )

~
( 3_3 bendtheoryNC  are obtained

using Eq. (3) and Eq. (4), respectively. It is
observed that

bendbendtheorybendbend

bendtheoryNbendtheoryNbendtheoryN

bendbendbend

pppp

CCC

_23_3_3_1

223311

231

)
~

(

)
~

()
~

()
~

(

~~~



















(14)

We must move to the next iteration if the difference
between

bendp _3
and )

~
( 3_3 bendtheoryp  is still

significant. Similar to the preceding iterations,
iteratively repeat the computational procedures as
described above until the difference between the

theoretical pressure _ ( )k theory k bendp  
 obtained

from Eq. (3) and the pressure _k bendp applied to

the flexible plate in the bending calculation at the k-
th iteration is equal to or less than a given small
value. In this study, the iterative calculation is
completed when this difference satisfies the
following criterion.
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Therefore, based on Eq. (15) the real pressure
acting on the given flexible plate normal to the wind
flow of

0V is defined by following equation.

theorykrealV pp _0


(16)

3. NUMERICAL SIMULATION
TESTS

In order to demonstrate the validity of the proposed
approximate method, numerical simulation tests for
several 3D flexible plates with different geometries
and different material moduli were conducted using
the approximate method. Furthermore, simulation
for a 3D flexible plate studied by Gosselin et al.
2010 was also carried out for a comparison.

3.1 Simulation Tests for Five Flexible
Plates

A 3D model of flexible plates normal to the wind
flow is depicted in Fig. 4. The upper end of the
model is clamped and the lower end is free. The
length, width and thickness of the plate model are
denoted by L, W and T, respectively. Five plates
with different lengths or different material constants
are used in the simulation tests. Table 1 and Table 2
give the geometries of five

Fig. 4. A 3-D simulation model.

plates and the material constants of three kinds of
materials. PP, PE and PET are the abbreviations of
polypropylene, polyethylene and polyethylene
terephthalate.

Following the computational procedures described
in Section 2, the determination of the theoretical

curve of ( ) ( )N theory N CFDC C    is firstly

carried out based on the theoretical modelling with
the aid of a series of structural and CFD analyses.
Then, iterative calculations of bending analysis are

conducted to solve the real averaged pressure acting
on the flexible plate and the deformation of the
plate for a series of given wind velocities according
to the algorithm of the approximate method. Both of
structure and CFD analyses are ordinary
calculations with definite boundary conditions and
easily to be performed, which are relatively simple
compared to complex conventional iterative fluid-
structure coupling calculations.

Table 1 Geometries of five flexible thin plates
Plate L (mm) W (mm) T (mm)

PP-100 100 100 1

PP-300 300 100 1

PP-500 500 100 1

PE-300 300 100 1

PET-300 300 100 1

Table 2 Material constants of three materials

Material
Young’s
Modulus

(GPa)
Poisson’s ratio Density

(103kg/m3)

PE 0.392266 0.41 0.91

PP 1.569064 0.41 0.91

PET 3.010642 0.39 1.39

In the CFD analysis, the undisturbed inflow is
assumed as uniform and the fluid is assumed to be
incompressible. The computation domain of CFD
analysis is 42L×24L ×11W with the origin of the
coordinates located at the center of the plate, as
shown in Fig. 5. The inlet, top, and bottom
boundary walls are set at the distance of 12L from
the center of the plate, respectively. The outlet is set
at 30L downstream from the plate center. A uniform
velocity flow is specified at the inlet, zero pressure
is specified at outlet, slip condition is specified
along the top and bottom boundary walls, and no-
slip condition is specified on the plate surface. The
large eddy simulation (LES) method is utilized in
the CFD analysis. According to ANSYS Fluent 13.0
User’s Guide (2010), in present CFD analysis, the
Reynolds number Re, the turbulence intensity I, the
turbulent kinetic energy k, and the turbulent length
scale l are calculated as follows:

Re /V L  (17)

0.1250.16 (Re)I   (18)

21.5 ( )k VI  (19)

l = 0.07L (20)

Where  (= 1.8×10-5 Pa·s) is the viscosity
coefficient of air at 20 degrees Celsius. The effect
of the number of grids on the calculation accuracy
is investigated firstly using the geometry of PP-500
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plate with different numbers of grids from
1,133,500 to 5,269,000. The plate is assumed to be
rigid and normal to the wind flow. The drag
coefficient is calculated for each case of grid
number. As the result, the number of grids around
2,500,000 is adopted for all the plates based on the
considerations of acceptable computational
accuracy and cost. Fig. 5(b) demonstrates a typical
grid distribution around the rigid curved-plate of
PP-300 and the total number of grids of the
computational domain is 2,266,000.

Fig. 5. CFD computational domain (a) and grid
around the plate (b).

3.2 A Comparative Simulation Test

A comparative simulation test of a 3D flexible plate
used in a previous wind tunnel experiment by
Gosselin et al. (2010), as shown in Fig. 6, is also
conducted based on the present approximate
method to confirm the validity of the approximate
method. The length and width of the plate are 100
mm and 35 mm, respectively. The flexural rigidity
of the plate is 10-6 Nm. The Young’s modulus E =
3.1 GPa and Poisson’s ratio 3.0 are used. In
order to keep the same flexural rigidity as that used
in the experiment of Gosselin et al. (2010), the
thickness h of the plate is 0.0152 mm determined
from the following equation.

(Nm)10
)1(12

6
2

3



Eh (21)

Fig. 6. Simulation model for the comparative
test.

The computational domain for the comparative
simulation test is a square section duct with 0.180 m
in width and 4 m in length according to the
experiment of Gosselin et al. (2010). The boundary
conditions on the inlet, outlet, plate surface and
boundary walls are the same as described in Fig.
5(a). The calculation procedures of the simulation
test are the same as those described in subsection
3.1.

4. RESULTS AND DISCUSSION

Numerical results of simulation tests are presented
in the following figures. Effects of the number of
grids on the drag coefficient of a 3D vertical rigid
plate of 500 mm in length, 100 mm in width, and 1
mm in thickness are described in Fig. 7. It is seen
that the drag

Fig. 7. Effect of the number of grids on the
calculation results.

coefficient varies slowly and tends to converge a
stable value when the number of grids is larger than
2,000,000. As the result, the grid number around
2,500,000 was adopted for the CFD analyses of all
plates based on the considerations of acceptable
computational accuracy and cost.

Following the analysis procedures as described in
section 2, the theoretical curve )

~
(_ theoryNC with

 = 0.5 is determined with the aid of structure and

CFD analyses of five flexible plates listed in Table
1. The curve and the normal force coefficients
obtained from the CFD analyses of five plates are
presented in Fig. 8.
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Fig. 8. Theoretical curve of normal force
coefficient vs. chord angle of rigid curved-plates.

The normal force coefficients obtained from the
CFD analyses of five plates are displayed by five
kinds of marked points and the solid curve is the
theoretical curve. It is obvious that the theoretical
curve agrees well with the results obtained from the
CFD analyses of five plates with different length or
different modulus, although relatively large
difference can be found for large chord angle
beyond 60 degree. Therefore, it is reasonable that
using the proposed theoretical modeling method to
predict the relationship between the normal force
coefficient and the chord angle of rigid curved-
plate. We can calculate the normal force acting on a
rigid curved-plate based on the theoretical curve if
we know the chord angle of the curved-plate. In the
case of very large chord angle which means large
bending deformation of the plate, the theoretical
curve overestimates the normal force. For a more
accurate prediction of the normal force in the chord
angle range of larger than 60 degree, a different
parameter  may be selected. That is, the

theoretical curve may be defined in two ranges of
chord angle: 60

~
0   and 90

~
60   , selcting

different  for different range. This issue is a

further research subject which is ongoing now.

Results of the normal forces acting on the flexible
plates and the deformations of the plates are
presented versus to wind velocity in following
figures. Effects of the plate length on the normal
force acting on the three flexible plates at various
wind velocities are depicted in Fig. 9. The CFD
analysis results of normal force acting on the three
PP plates with lengths of 100 mm. 300 mm, and
500 mm are compared with those obtained from the
present approximate method. Here, the results of
CFD analyses are obtained from the analysis of 3D
rigid curved-plates which have the same geometries
obtained from the approximate method. An
enlarged draft for the data at low wind velocities is
also presented below. Marked points denote the
CFD results and solid, dashed and dotted curves
denote the results of approximate method. It is seen
that, when the wind velocity is lower than 5 m/s, the
longest plate of PP-500 gives the largest normal
force because of its largest area normal to the wind
flow. However, as the wind velocity increases, the
normal forces acting on the relatively short plates of
PP-100 and PP-300 increase more rapidly and
successively exceed the normal force acting on the

longest plate of PP-500. The normal force acting on
the shortest plate of PP-100 has the largest value at
the wind velocities higher than 22 m/s and the
longest plate

Fig. 9. Effects of the plate length on the normal
force acting on the flexible plates at different

wind velocities.

of PP-500 gives the smallest one. Furthermore, it is
seen that both results obtained from the present
approximate method and the CFD analysis are in
good agreement, especially in the case of PP-100
plate. In the cases of PP-300 and PP-500 plates, the
difference between both results increases with the
increase of wind velocity. These features reflect the
effects of the bending deformations of flexible
plates on the normal force acting on the plates.
Longer plate is easily bended by the wind flow than
shorter one at the same wind velocity. Larger
bending chord angle leads to lower normal force
acting on the bended plate. For a more accurate
prediction of the normal force acting on the flexible
plate with a large chord angle, a different parameter
 may be selected, as mentioned above. In

addition, the average pressure acting on the plates
can be calculated by the normal force divided by the
plate area, referring to Eq. (3b).

Effects of material modulus on the normal force
acting on the three flexible plates with the same
geometry but different moduli are described in Fig.
10. The normal forces acting on a rigid plate having
the same geometry are also depicted in the figure
for a comparison. Similar to Fig. 9, the results
obtained from the present approximate method
agree well with those obtained from the CFD
analyses. The normal force acting on the PET-300
which has the highest modulus increases quickly. In
contrast, the normal force acting on the PE-300
which has the lowest modulus increases slowly.
Plate with high modulus is hard to be bended by
wind flow compared to the plate with low modulus.
Large bending deformation reduces the normal
force acting on the bended plate. These results are
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in consistence with the nature phenomena
frequently observed from the bended trees under
high wind.

Fig. 10. Effect of material modulus on the
normal force acting on the flexible plates at

various wind velocities.

The chord angles of five bended flexible plates at
various wind velocities, obtained from the present
approxvimate method, are described in Fig. 11. It is
clear that the flexible plate with low modulus or
large length has large chord angle which means
large bending deformation.

Fig. 11. Chord angles of five flexible plates at
various wind velocities.

Fig. 12. Comparison of drag force obtained from
the previous experiment and the present

approximate method.

Finally, the results of drag force obtained form the
comparative simulation are compared with the
previous experimental results (Gosselin et al.
(2010)) in Fig. 12. The drag force of a rigid plate
obtained from the previous experiment is also

depicted for a contrast. The drag values obtained
from the present approximate method are well
consistent with the previous experiment results.
These comparative simulation results further
confirm the validity and accuracy of the present
approximate method.

5. CONCLUSION

Based on the theoretical modelling, the construction
of the approximate method, and the numerical
simulation tests, this study leads to following
conclusions.

 An explicit theoretical formulation for the
prediction of the curve of the normal drag
coefficient of a rigid curved-plate versus to its
chord angle is derived through a theoretical
moldelling with the aid of a series of ordinary
nonlinear structure mechanics and CFD
analyses.. The formulation is simple and gives
good accuracy of pridiction. Further study is
needed to improve the prediction accuracy by
selecting different correction parameters for
different chord angle ranges.

 An approximate method to evaluate the normal
force acting on a flexible flat-plate normal to
the wind flow and the deformation of the plate
is developed using the present theoretical
formulation and  the iteration of only structure
analyses instead of complex fluid-structure
coupling analysis.

 Results of the numerical simulation tests for the
plates with different geometries and material
moduli demonstrate the validity and accuracy
of the approximate method. Moreover, the
comparative simulation test of a 3D flexible
plate used in a previous wind tunnel
experiment further confirm the accuracy of the
present approximate method. Therefore, it is
considered that the present approximate
method is relatively simple compared to
conventional complex fluid-structure coupling
analysis and is useful for the evaluation of the
normal force acting on the flexible plate
normal to the wind flow and the deformation
of the plate in the practice applications.
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