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ABSTRACT 

A multi-dimensional virtual characteristic-based scheme (MVCB) by the aid of artificial 
compressibility is developed for convective fluxes in laminar and turbulent incompressible flows. 
The proper combinations of compatibility equations are determined to obtain primitive variables 
on cell interfaces. The Reynolds averaged Navier-Stokes equations joined with Spalart-Allmaras 
turbulent model are solved by finite volumes. This scheme is applied to the flows between parallel 
plates, over backward-facing step, and in square lid-driven cavity at a wide range of Reynolds 
numbers. A FORTRAN 90 code has been written and all the results have come out from this code. 
Several comparisons confirm the scheme ability in accurate simulation of flows without need to 
any artificial viscosity in laminar and turbulent regimes. 

Keywords: Navier-Stokes equations; Reynolds averaging; Spalart-Allmaras model; multi-dimensional 
characteristics; artificial compressibility; Finite volume method. 

NOMENCLATURE ܣ area for 2D cell ܿ௕ଵ , ܿ௕ଶ , ܿ௧ଷ , ܿ௧ସ , ܿ௩ଵ , ܿ௪ଵ , ܿ௪ଶ , ܿ௪ଷ,  ߪ
ߢ ,

constants for Spalart-Allmaras 
equation 

,ࡱ  ݃ , flux vectors ݂ Fanning friction factor ௪݂ , ௧݂ଶ , ௩݂ଵ , ௩݂ଶ ࡲ
௜௝ߗ  , ߯ , ݏ , ݏ̂ , ݎ ,

functions for Spalart-Allmaras 
equation 

 time ݐ pressure ܴ݁ Reynolds number ݌ entrance length  ܲ mean pressure divided by density ࢋ࢒ source term matrix ࡴ

,ݑ primitive variables vector ࢁ  x, and y components of mean velocity ݒ
vector  ݑ௠ Average axial velocity ݈݋ݒ. cell volume ݔ,  ௪ distance to the nearest wall inݕ Cartesian coordinates ݕ
computational domain ߚ artificial compressibility parameter ߁ artificial compressibility matrix ߩ density ߥ kinematic viscosity ்ߥ turbulent eddy viscosity ̂ߥ modified turbulent viscosity ߲݈݋ݒ. lateral face of cell volume  

1. INTRODUCTION

Attempts for solving the incompressible Navier-
Stokes equations have been made to overcome the 
defect of velocity-pressure decoupling. Most 
approaches using primitive variables can be 

classified into two broad categories, namely the 
projection and artificial compressibility methods. In 
the projection methods (either pressure or velocity-
correction), at each time step, a sequence of 
decoupled elliptic equations for the velocity and 
pressure are solved. The CFRscheme proposed 
byHarichandan and Roy (2012) is included in this 
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category. The cell face center velocities are 
reconstructedexplicitly by solving the momentum 
equations on fluxreconstruction control volumes 
defined around the respective cell face centers. This 
is followedby solution of the cell center pressure 
field using adiscrete Poisson equation developed 
from thereconstructed velocities and updating the 
cell centervelocities by using an explicit scheme.A 
review of projection methods can be found in 
Guermond et al. (2006). 

 In artificial compressibility methods, the 
hyperbolic structure of equations is achieved by 
adding a pseudo-time derivative of the pressure to 
the continuity equation (Chorin 1997). 

Upwind schemes versus central differencing (or 
averaging) add inherent artificial viscosity based on 
the physics of the problem which eliminates the 
need for any artificial dissipation terms and 
coefficients. By the aid of artificial compressibility, 
various kinds of upwind schemes originally 
designed for compressible flows have been 
developed to incompressible problems.  Rogers and 
Kwak (1991) developed the flux-difference splitting 
of Roe in conjunction with the pseudo-
compressibility to incompressible Navier-Stokes 
equations. Upwind scheme is derived from one-
dimensional considerations, and applied to each 
coordinate direction normal and parallel to cell 
faces separately. Flux-difference splitting was used 
to bias the differencing based on the sign of 
eigenvalues of the convective flux Jacobian. Pappou 
and Tsangaris (1997) developed Steger and 
Warming’s flux vector splitting upwind method by 
the aim of artificial compressibility for steady 
laminar incompressible flows. Convective fluxes 
normal and parallel to control surfaces were 
decomposed to positive and negative parts in 
accordance with the sign of the eigenvalues of the 
Jacobian matrices. From various upwind 
discretizations, it was reported that MUSCL third-
order scheme with Van Albada limiter (to guarantee 
monotonic behavior in regions with steep pressure 
gradients) have a better behavior. The scheme being 
presented by Calhoon and Roach (1997) was 
utilized interpolating functions for evaluating the 
control surface fluxes including viscous terms. 
These functions were derived from direct 
integration of one-dimensionally linearized forms of 
momentum equations. Pressure was assumed to be 
piecewise linear between nodes for integrating 
procedure. The values achieved from interpolating 
functions for adjacent cells were different; so the 
averaged values were applied to gain a conservative 
procedure. These expressions being dependent to 
cell Reynolds number, hence, upwind nature of 
fluxes were obtained. It was claimed without any 
detail that an artificial compressibility term was 
applied to time marching procedure. The scheme 
was applied to lid-driven cavity in the laminar 
regime. 
Above mentioned upwind methods determine only 
the direction of propagation of information, i.e. 
upstream or downstream. In characteristic methods 
the paths of information propagation are 
determined. The majority of characteristic-based 

schemes utilize flux splitting in directions 
perpendicular to cell faces. 
Boukir et al. (1994) analyzed high order in time 
splitting characteristics combined with finite 
element spatial discretization for incompressible 
Navier-Stokes equations. The characteristic curves 
were obtained by means of solution to the Cauchy 
problem with k-th order in time approximated 
velocity field. Then, weighted values of velocities 
along characteristics were used to approximate the 
time derivative for solving the Stokes equation. 

Drikakis et al. (1994) introduced the characteristic-
based (CB) scheme with artificial compressibility 
for solving laminar flows by Navier-Stokes 
equations. Locally one-dimensional flow is 
assumed and compatibility equations were derived 
from the split Euler equations. The variables on 
characteristics were computed by an upwind finite 
difference scheme with third-order interpolation 
formula based on the sign of local eigenvalues of 
Jacobian matrix. An upwind-type scheme for cross-
derivatives was applied. Flows in the cascade of 
circular airfoils and over backward-facing step were 
simulated. Zhao and Zhang (2000) developed 
Drikakis CB scheme in finite-volume framework, 
along with energy equation for simulation of 
laminar incompressible flows on the unstructured 
grids for a variety of benchmarks. Govatsos and 
Papantonis (2000) developed the CB scheme for 
steady turbulent flows. In which, standard k–ε 
model, together with standard wall functions were 
applied. The turbulence equations are numerically 
decoupled from the Navier–Stokes equations. The 
turbulence equations were discretized by an 
upwind-type scheme of second-order accuracy 
according to the velocity direction (Hirsch 1988). 
The laminar and turbulent flows in square channel 
with 90-degree bend and in the impeller of a water 
pump were simulated. Neofytou (2007) revised the 
CB scheme. To clarify the difference of revised 
form and original CB, it should be said that 
Drikakis obtained an algebraic expression with 
linear combination of split form of governing 
equations along characteristic paths. Compatibility 
equations were constructed following the 
determination of combination coefficients by 
assuming zero multipliers for spatial derivatives of 
algebraic expression. Neofytou pointed out that 
there was a relation between these coefficients that 
was forgotten in CB scheme and inserting this 
restriction formed the revised compatibility 
equations. However, Su et al. (2007) analyzed the 
formulations of the original CB scheme and proved 
the consistency with the governing flow equations 
after that convergence has been achieved. 
Comparisons of original and revised CB schemes 
were performed by simulation of flow over circular 
cylinder at Re = 40. The results of both schemes 
have identical accuracy and convergence rate, 
despite the fact that original form is simpler.  

The characteristic-based split (CBS) finite element 
scheme was founded byZienkiewicz and Codina 
(1995) for compressible and incompressible flows. 
The characteristic Galerkin convection-diffusion 
process was applied for a scalar quantity to  
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Table 1 Coefficients for the Spalart- Allmaras model ܿ௕ଵ = 0.1355 ܿ௕ଶ = ߪ 0.622 = 2 3⁄ ߢ  = 0.41 ܿ௪ଵ = 3.2391 ܿ௪ଶ = 0.3 ܿ௪ଷ = 2 ܿ௩ଵ = 7.1 ܿ௧ଷ = 1.3 ܿ௧ସ = 0.5 

 
discretize the total derivative along the 
characteristics. This process involves splitting the 
equation into two parts which one of them contains 
the convective term and the other one includes 
diffusion and source terms. It was shown that 
Navier-Stokes equations in the conservative form 
could be discretized in time using the characteristic 
Galerkin method if the variation of pressure is 
known. Afterwards, semi-implicit and explicit 
forms of fractional step algorithm were introduced; 
where intermediate momentum is computed and 
after determination of pressure and velocity fields 
the other transport equations, e.g. energy, turbulent 
quantities, could be computed. Explicit form with 
artificial compressibility with and without 
intermediate step was applied to steady 
incompressible flows over an airfoil and lid-driven 
cavity (Zienkiewicz et al. 1995).  Nithiarasu and 
Liu (2006) applied the CBS scheme to solve 
turbulent incompressible flows at moderate 
Reynolds numbers. Boussinesq’s hypothesis was 
applied to Reynolds stresses. Also, Wolfesstain, 
Spallart-Allmaras, and standard κ-ε models were 
used for turbulence modeling. The scheme was 
tested for the channel, backward-facing step, 
cylinder, and flow in upper human airway. 

Razavi et al. (2008) proposed an upwind scheme 
based on multidimensional characteristics (MCB) 
for laminar incompressible Navier-Stokes 
equations. Compatibility equations were applied to 
compute convective fluxes normal to the cells faces. 
The results of flow in lid-driven cavity were 
compared with that of CB and averaging schemes. 
Later, the MCB scheme was developed for body-
fitted grids (Zamzamian and Razavi 2008) and 
examined for flow over backward-facing step and 
cylinder. The MCB scheme demonstrated very 
good accuracy and convergence. 

Here, virtual wave propagation paths are obtained 
and used to determine the convective fluxes. The 
major features include grid independence, keeping 
the conservative nature of multidimensional 
characteristics, and throwing away the elaboration 
by means of omitting spatial derivatives. The 
scheme is applied and tested on laminar and 
turbulent flows, which shows very good 
performance regarding the others.  

2. GOVERNING EQUATIONS 

Non-dimensional system of Reynolds averaged 
Navier–Stokes (RANS) equations joined with 
artificial compressibility, in vector form are 
expressed as follows, ∂∂t ඵ .dA୴୭୪ࢁ + Γර ሺ۴dy − ۳dxሻப୴୭୪. = Γඵ .dA୴୭୪ࡴ  

ࢁ = ቎ܲߥ̂ݒݑ቏ ,              Γ =  ൦ ଶߚ 0 0 0   0  1 0 0   0  0 1 0   0   0 0 1൪ 

ࡲ =
ێێۏ
ێێێ
ۍ ܲݑ + ଶݑ − ൬1 + ்ܴ݁ߥ ൰ ݒݑݔ߲ݑ߲ − ൬1 + ்ܴ݁ߥ ൰ ߥ̂ݑݔ߲ݒ߲ − ൬1+ܿ௕ଶܴ݁ߪ ൰ ሺ1 + ሻߥ̂ ۑۑےݔ߲ߥ߲̂

ۑۑۑ
ې
 

ࡱ =
ێێۏ
ێێێ
ۍێ ݒݑݒ − ൬1 + ்ܴ݁ߥ ൰ ܲݕ߲ݑ߲ + ଶݒ − ൬1 + ்ܴ݁ߥ ൰ ߥ̂ݒݕ߲ݒ߲ − ൬1+ܿ௕ଶܴ݁ߪ ൰ ሺ1 + ሻߥ̂ ۑۑےݕ߲ߥ߲̂

ۑۑۑ
ېۑ
 

ࡴ = ቈ0,0,0, cୠଵሺ1 − f୲ଶሻsොνො − cୠଶReσ ሺ1 + νොሻ ቆ∂ଶνො∂xଶ + ∂ଶνො∂yଶቇ
− 1Re ቂc୵ଵf୵ − cୠଵ

κଶ f୲ଶቃ ൬ νොy୵൰ଶ቉்
 

 (1) 

where ߚ denotes the artificial compressibility 
parameter, ݑ and ݒ the mean velocity components, 
and ܲ the mean pressure divided by density. The 
laminar shear stress and Reynolds stress tensors are 
derived by Boussinesq’s assumption. ்ߥ shows the 
turbulent eddy viscosity which is calculated by 
means of turbulence model. The last row denotes 
the Spalart-Allmaras equation (SA) having the 
following specifications; ̂ߥ, the modified turbulent 
viscosity which can be expressed as Blazek (2001), ்ߥ = ߥ̂ ௩݂ଵ,   ௩݂ଵ = ߯ଷ ሺ߯ଷ + ܿ௩ଵଷሻ⁄ ,          ߯ = ߥ̂ ⁄ߥ , ௧݂ଶ = ܿ௧ଷ݁݌ݔሺ−ܿ௧ସ߯ଶሻ, ̂ݏ = ݏ + ቀ ఔෝ఑మ௬ೢమቁ ௩݂ଶ,  ݏ = ඥ2Ω௜௝Ω௜௝,      ߗ௜௝ = ଵଶ ൬డ௨೔డ௫ೕ − డ௨ೕడ௫೔൰,   ௩݂ଶ = 1 − ఞଵାఞ௙ೡభ, 

௪݂ = ݃ ቈ 1 + ܿ௪ଷ଺݃଺ + ܿ௪ଷ଺቉భల , ݃ = ݎ + ܿ௪ଶሺݎ଺ − ݎ ,ሻݎ = ఔෝ௦̂఑మ୷౭మ                                                           (2) 

where, ߥ shows the kinematic viscosity, and ݕ௪ 
denotes the distance to the nearest wall in 
computational domain. The constants of Eqs. (2) are 
introduced in Table 1. 

The scales used for non-dimensional form of RANS 
and SA model are as follows: ݑ௜∗∗ = ത௜U௥௘௙ݑ , ∗∗௜ݔ = ҧ௜L௥௘௙ݔ , ∗∗݌ = ҧ݌

ρ୰ୣ୤U୰ୣ୤ଶ  , 
ρ∗∗ = ρ

ρ୰ୣ୤  , ܲ∗∗ = ∗∗݌
ρ∗∗ , ∗∗ݐ = U௥௘௙L௥௘௙ݐ  , 
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∗்∗ߥ = ߥ்ߥ  , ∗∗ߥ̂ = ߥߥ̂  , ܴ݁ = ௥ܷ௘௙ܮ௥௘௙ߥ , 
ݏ̂ = ௥ܷ௘௙ܮ௥௘௙ ,∗∗ݏ̂ ∗∗ݏ̂ = ∗∗ݏ + 1ܴ݁ ቆ ௪∗∗ଶቇݕଶߢ∗∗ߥ̂ ௩݂ଶ, 
∗∗ݏ = ට2Ω୧୨∗∗Ω୧୨∗∗,Ω௜௝∗∗ = 12 ቆ߲ݑ௜∗∗߲ݔ௝∗∗ −  ,௜∗∗ቇݔ߲∗∗௝ݑ߲
ݎ = 1ܴ݁ ቆ  ௪∗∗ଶቇݕଶߢ∗∗ݏ̂∗∗ߥ̂

 (3) 

Reference values are taken to be the mean inlet 
values, otherwise described individually in some 
cases.  For facility the “**” has been omitted. 

Pressure and velocity components of flux vectors of 
Eq. (1), F and E, are computed by means of multi-
dimensional virtual characteristic-based (MVCB) 
method that expressed in section 4. Turbulent 
variables, ̂ߥ and ்ߥ, at the cell interfaces are 
computed by averaging. It is obvious that, for 
laminar case studies, ்ߥ is set to zero and 4th row 
of equations is omitted. Viscous terms are 
calculated on the secondary volumes. This 
procedure is clarified for a generic term by Eq. (4) 
and Fig.1. ቀడ௨డ௫ቁ௕௖ = ଵ஺ೀ್ಿ೎ ׭ డ௨డ௫ ݕ݀ݔ݀ =ௌೀ್ಿ೎ ଵ஺ೀ್ಿ೎ ׯ ை௕ே௖ைݕ݀ݑ
 (4) 
 

 
Fig. 1. A secondary volume for computing 

viscous terms. 
 

3. SPATIAL AND TIME 

DISCRETIZATIONS 

On a structured grid, Eq. (1) can be written in 
discrete form for cell (i,j) as, ܣ௜௝ ߲ ௜ܷ௝௞߲ݐ = −ܳ௜௝௞݇ = 1,2,3,4 

ܳ௜௝௞ = Γ ൥෍൫ܨ௜௝௞Δݕ − ൯௟ସݔ௜௝௞Δܧ
௟ୀଵ −  ௜௝௞൩ܨ௜௝ܣ

 

(5) 

where, A indicates the cell area and subscript k 
shows the rows of equations. For expansions of Q୧୨୩, see Appendix A. For computing ௜ܷ௝௞, the 

following fifth-order Runge-Kutta method is 
utilized (Blazek 2001), 

௜ܷ௝௞ሺ௟ሻ = ௜ܷ௝௞ሺ௡ሻ − ௟ߙ Δܣݐ௜௝ ܳ௜௝௞ሺ௟ିଵሻ 
݈ = 1,2, … ௟ߙ        5, = 14 , 16 , 38 , 12 , 1 

௜ܷ௝௞ሺ௡ାଵሻ = ௜ܷ௝௞ሺହሻ 
 

(6) 

4. MVCB SCHEME FOR 

CONVECTIVE FLUX 

COMPUTATION 

Taking the linear combination of governing 
equations results in (Zucrow and Hoffman 1977), ߱ଵ ൬߲߲ܲݐ + ଶߚ ݔ߲ݑ߲ + ଶߚ +൰ݕ߲ݒ߲ ߱ଶ ൬߲߲ݐݑ + ݑ ݔ߲ݑ߲ + ݒ +ݕ߲ݑ߲ +൰ݔ߲߲ܲ ߱ଷ ൬߲ݐ߲ݒ + ݑ ݔ߲ݒ߲ + ݒ +ݕ߲ݒ߲ ൰ݕ߲߲ܲ = 0 

(7) 

By defining the vectors, ࢃ૚ = ߱ଶ࢏ + ߱ଷ࢐ + ߱ଵࢃ ,࢑૛ = ሺߚଶ߱ଵ + ࢏ଶሻ߱ݑ + ଶ࢐߱ݒ + ߱ଶ࢑ , and ࢃ૜ ࢏ଷ߱ݑ= + ሺߚଶ߱ଵ + ଷሻ࢐߱ݒ + ߱ଷ࢑, the following 
relation can be obtained ݀ࢃ૚ܲ + ݑ૛ࢃ݀ + ݒ૜ࢃ݀ = ࢐ࢃ݀        ,0 ؠ .࢐ࢃ સ (8) 

Hence, one can determine the characteristic surface 
including ࢃ૚, ࢃ૛, and ࢃ૜ with a normal vector ሺࢸ = ݏ݋ܿ ߠ ࢏ + ݊݅ݏ ߠ ࢐ +  ࢑ሻ. Performing dotߟ
product ࢸ. ࢐ࢃ = 0, yields 

ቐ ሺߟሻ߱ଵ + ሺܿݏ݋ ሻ߱ଶߠ + ሺ݊݅ݏ ሻ߱ଷߠ = 0ሺߚଶ ݏ݋ܿ ሻ߱ଵߠ + ሺݑ ݏ݋ܿ ߠ + ݒ ݊݅ݏ ߠ + ሻ߱ଶߟ = 0ሺߚଶ ݊݅ݏ ሻ߱ଵߠ + ሺݑ ݏ݋ܿ ߠ + ݒ ݊݅ݏ ߠ + ሻ߱ଷߟ = 0 (9) 

There are two possibilities to have nontrivial 
solutions for Eq. (9), as ݑ ݏ݋ܿ ߠ + ݒ ݊݅ݏ ߠ + ߟ = ݑ (10) 0 ݏ݋ܿ ߠ + ݒ ݊݅ݏ ߠ + ߟ = ߟଶߚ  (11) 

Combining  Eqs. (9) and (10)  and plugging into Eq. 
(7) results in the first compatibility equation ݊݅ݏ ߠ ൬߲߲ܲݔ + ݐݑ߲߲ + ݑ ݔ߲ݑ߲ + ݒ −൰ݕ߲ݑ߲ ݏ݋ܿ ߠ ൬߲߲ܲݕ + +ݐ߲ݒ߲ ݑ ݔ߲ݒ߲ + ݒ ൰ݕ߲ݒ߲ = 0 

(12) 

The second compatibility equation, corresponding 
to Eq. (11) is obtained similarly as  
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ߟ− cos θ ൬߲߲ܲݔ + ݐݑ߲߲ + ݑ ݔ߲ݑ߲ + ݒ −൰ݕ߲ݑ߲ ߟ ݊݅ݏ ߠ ൬߲߲ܲݕ + +ݐ߲ݒ߲ ݑ ݔ߲ݒ߲ + ݒ ൰ݕ߲ݒ߲ + +ݐ߲߲ܲ ଶߚ ൬߲ݔ߲ݑ + ൰ݕ߲ݒ߲ = 0 

(13) 

To derive the expressions for 
ௗௗ௧= డడ௧ + ௗ௫ௗ௧ డడ௫ + ௗ௬ௗ௧ డడ௬ 

along characteristic lines one can assume a 
characteristic path ݂ሺݔ, ,ݕ ሻݐ = 0 on a characteristic 
surface. The gradient of ݂ is parallel to the normal 
vector of this surface and also, perpendicular to the 
tangent line in each point on it. Therefore, the 
following relation holds ߟ + ݐ݀ݔ݀ ݏ݋ܿ ߠ + ݐ݀ݕ݀ ݊݅ݏ ߠ = 0 (14) 

Combining Eqs. (10) and (14) results in, ܦ௦ = ݐ߲߲ + ݑ ݔ߲߲ + ݒ  (15) ݕ߲߲

where, ܦ௦ denotes the substantial derivative along 
characteristic lines on surfaces corresponds to Eq. 
(10) and pseudo-pathline (Zucrow and Hoffman 
1977). Similarly, substantial derivative 
corresponding to Eq. (11) can be obtained, 

ఏܦ = ݐ߲߲ + ቆݑ − ߟଶߚ ݏ݋ܿ ቇߠ ݔ߲߲ + ቆݒ − ߟଶߚ ݊݅ݏ ቇߠ ݕ߲߲  (16) 

where,  ܦఏ denotes the other kind of substantial 
derivative varying with ߠ. Applying Eq. (16), the 
compatibility Eq. (13) can be written as, −ߟሺߠሻ ݏ݋ܿ ߠ ݑఏܦ − ሻߠሺߟ ݊݅ݏ ߠ ݒఏܦ + +ఏܲܦ ଶߚ ൬߲ݔ߲ݑ + −ݕ߲ݒ߲ ଶݏ݋ܿ ߠ −ݔ߲ݑ߲ ݏ݋ܿ ߠ ݊݅ݏ ߠ −ݕ߲ݑ߲ ݏ݋ܿ ߠ ݊݅ݏ ߠ −ݔ߲ݒ߲ ଶ݊݅ݏ ߠ −൰ݕ߲ݒ߲ ݔ߲߲ܲ ቆݑ − ሻߠሺߟଶߚ ݏ݋ܿ +ߠ ሻߠሺߟ ݏ݋ܿ −ቇߠ ݕ߲߲ܲ ቆݒ − ሻߠሺߟଶߚ ݊݅ݏ +ߠ ሻߠሺߟ ݊݅ݏ ቇߠ = 0 

(17) 

where,  η could be derived from Eq. (11) as a 
positive function of  θ, ߟሺθሻ= 12 ቀ−ݑ cos θ − ݒ sin θ+ ඥሺݑ cos θ + ݒ sin θሻଶ +  ଶቁߚ4

(18) 

Eq. (17) contains local and substantial derivatives 

which make it complicated for using in numerical 
application. In the next step, it is shown that how 
the simpler relations can be achieved. By selecting 

compatibility equations for ߠ = 0, గଶ , ,ߨ ଷగଶ , and 

pseudo-pathline, the following equations are 
obtained after algebraic manipulations. For details 
see Appendix B. −ߟሺ0ሻܦ଴ݑ − ݑగܦሻߨሺߟ + గܲܦ − ଴ܲܦ = ߨሺߟ− (19) 0 2⁄ ሻܦగ ଶ⁄ ݒ − ߨሺ3ߟ 2⁄ ሻܦଷగ ଶ⁄ +ݒ గܦ ଶ⁄ ܲ − ଷగܦ ଶ⁄ ܲ = 0 

ݑ଴ܦሺ0ሻߟ− (20) + ݑగܦሻߨሺߟ − ߨሺߟ 2⁄ ሻܦగ ଶ⁄ +ݒ ߨሺ3ߟ 2⁄ ሻܦଷగ ଶ⁄ +ݒ ଴ܲܦ + గܦ ଶ⁄ ܲ + +గܲܦ ଷగܦ ଶ⁄ ܲ − ௦ܲܦ2 = 0 

(21) 

The most interesting feature of Eqs. (19) to (21) lies 
in the appearance of non-local derivatives which 
cause the data propagation on characteristic lines in 
a straightforward manner.  

For evaluating convective fluxes in Eq. (1), the 
values of variables on cell edge (shown by 
superscript “*”), are computed from characteristic 
lines by means of Eqs. (19) to (21). Hence, one gets 
the following ݑ∗ = ሺ0ሻߟ1 + ሻߨሺߟ ሾߟሺ0ሻݑ଴ + గݑሻߨሺߟ + ܲగ− ܲ଴ሿ (22) 

∗ݒ = ߨሺߟ1 2⁄ ሻ + ߨሺ3ߟ 2⁄ ሻ ߨሺߟൣ 2⁄ ሻݒగ ଶ⁄+ ߨሺ3ߟ 2⁄ ሻݒଷగ ଶ⁄+ ܲଷగ ଶ⁄ − ܲగ ଶ⁄ ൧ (23) 

ܲ∗ = 12 ∗ݑሺ0ሻሺߟൣ − ଴ሻݑ − ∗ݑሻሺߨሺߟ − +గሻݑ ߨሺߟ 2⁄ ሻ൫ݒ∗ − గݒ ଶ⁄ ൯− ߨሺ3ߟ 2⁄ ሻ൫ݒ∗ − ଷగݒ ଶ⁄ ൯+ ܲ଴ + ܲగ ଶ⁄ + ܲగ+ ܲଷగ ଶ⁄ − 2ܲ௦൧ 
(24) 

The intersections of characteristic lines with 
previous time step are found by means of Eqs. (15) 
and (16), as ݔ௦ = ∗ݔ − ௦ݕ     , ݑݐ∆ = ∗ݕ − ఏݔ ݒݐ∆ = ∗ݔ − ݐ∆ ቆݑ − ሻߠሺߟଶߚ ݏ݋ܿ    ,ቇߠ

ఏݕ = ∗ݕ − ݐ∆ ቆݒ − ሻߠሺߟଶߚ ݊݅ݏ  ቇߠ

(25) 

Various interpolation methods may be adopted to 
assign proper data in these intersections. In present 
work, the first-order interpolation has been used. 

5. NUMERICAL RESULTS 

The proposed scheme was applied for flow 
simulations in a channel, over backward-facing 
step, and for lid-driven cavity in the laminar and 
turbulent regimes. Boundary conditions in the 
channel flow were set at the inlet, ݑ = 1, ݒ = 0, ߥ̂ =
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0.1 and P extrapolated from the internal cells. On 
the side walls, velocity components and ̂ߥ were set 
to zero, and again P was extrapolated from the 
inside domain. At the outlet, pressure was set to 
zero, and velocity components along with ̂ߥ were 
extrapolated from internal cells. In the backward-
facing step flow, ݑ, ,ݒ  were extracted from ߥ̂݀݊ܽ
channel flow outlet as inlet boundary condition and 
P was extrapolated from inside. On the walls and 
outlet, similar procedures to channel flow were 
applied. In the cavity, velocity components on 
sliding wall set as, ݑ = 1, ݒ = 0, and fix walls are 
treated like channel flow.The parameter β was set to 
5 for laminar, and 1 for turbulent flows.  

Fig.2 illustrates the geometry of channel and 
backward-facing step and grids. In the backward-
facing step, L1=6H for the laminar flows and for 
turbulent flows, 4H at Re = 3025 and 5H at Re = 
10000, 69610. Also L2=60H for the laminar flows, 
and for the turbulent equals to 36H at Re = 3025 
and 25H at Re = 10000, 69610. In the channel flow, 
L= L2. 
 

 
Fig. 2. Geometries of the channel and backward-

facing step and grids. 

 
The following convergence criteria was used, 

ܯܴܱܰܧ = ට∑ ൫|ࢂ|௜௡ାଵ − ∑௜௡൯ଶ௡௢.௢௙௖௘௟௟௦௜ୀଵට|ࢂ| ൫|ࢂ|௜௡ାଵ൯ଶ௡௢.௢௙௖௘௟௟௦௜ୀଵ  
 
(26) 

To insure grid independence, the simulations for 
various cell numbers were conducted for different 
cases.  Fig.3 shows the u-velocity profile in the 
fully developed region of turbulent channel flow at 
Re=3025 for cell numbers, 2500, 4096, and 6400. 

Fig.4 compares the convergence histories of the 
turbulent flow over backward-facing step for 
MVCB and averaging schemes at Re=3025, 10000, 
69610, and 500000. Superiority of the MVCB 
scheme without any artificial dissipation is obvious 
in these cases. The MVCB has converged with a 
rather steep gradient while the averaging scheme 
fails to converge anymore. 

By definition of Reynolds number (based on 
channel hydraulic diameter), and Fanning friction 
factor, f = 2τ୵ ሺρu୫ଶሻ⁄ , the theoretical value 
results in, f = 24 Re⁄  for laminar regime(Shah and 
London 1978). Fig.5 shows the variation of f. Re 
product versus x/Re (ratio of non-dimensional 
distance from flow entrance to Reynolds number) 

for some Re of laminar regime obtained by MVCB 
scheme. Based on observations, all the curves 
reached to theoretical value. Also, it was reported 
that entrance length of channel is about ݈௘ ܴ݁⁄ =0.011(Shah and London 1978). As it is shown, 
numerical solution and reported values are in 
agreement. 
 

 
Fig. 3. Comparison of u-velocity profiles at the 
fully developed region, turbulent channel flow, 

grid sizes, 25100, 32128, and 40160, 
clustered grids, Re=3025. 

 

In the backward-facing step for laminar regime, the 
results are compared for Re = 73 and Re = 
229(based on step height), with experimental data 
of Denham and Patrick (1974), and numerical 
results of Zamzamian and Razavi (2008). Figs. 6 
and 7 compares the u-velocity profiles at various 
distances from the step, and Figs. 8 and 9 the 
streamlines for the same Reynolds numbers, 
respectively. Shear stresses on upper and lower 
walls are shown in Fig. 10. Negative shear stresses 
denote the backflow and it is clear that at fully 
developed region the same constant values are 
reached on the walls. The MVCB scheme behaves 
well in laminar flows.  

For turbulent flow, the results are compared with 
experimental data of Denham et al. (1975) and 
numerical results of Nithiarasu and Liu (2006). 
Fig.11 shows the u-velocity profiles at various 
stations from step for Re=3025. Fig.12 compares 
the streamlines of MVCB with the numerical results 
of Javadi et al. (2008) at Re=69610. The modified 
turbulent viscosity, ̂ߥ, contours at various Reynolds 
numbers for backward-facing step flow are shown 
in Fig.13. As expected, the turbulent effects are 
dominant at the core of flow and they grow with 
Reynolds number. The shear stress distributions on 
the upper and lower walls are presented by Fig.14. 
As it is seen, the impact of expansion becomes 
more considerable on the upper wall in turbulent 
regime. The results confirm adequate accuracy of 
MVCB scheme in turbulent flow simulations.  

Fig.15 shows the streamlines for square lid-driven 
cavity flow at Re = 100, and 1000 (based on 
moving wall velocity and cavity length), obtained 
with MVCB scheme and compares them with 
results of Razavi et al. (2008). The MVCB scheme 
was able to reveal flow details in this case. Also,  
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Fig. 4. Comparison of convergence histories for MVCB and averaging schemes, turbulent flow over 
backward-facing step, Re=3025, 60160, clustered grids and Re= 10000, 69610, 500000, 96150, 

clustered grids. 

 
Fig.16 shows the v-velocity profile on the centerline 
of the cavity parallel with x axis and the u-velocity 
profile on the centerline of the cavity parallel with y 
axis which obtained by MVCB scheme and are 
compared to the first-order scheme of Razavi et al. 
(2008) and Ghia et al. (1982) benchmark solution. 

 
Fig. 5. Variation of ܎.  in laminar ܍܀/ܠ versus ܍܀

regime by MVCB scheme for channel flow. 

6. CONCLUDING REMARKS 

A new scheme (MVCB) for solving laminar and 
turbulent regimes has been proposed. It is mainly 
based on the virtual compatibility equations, having 
conserved multidimensionality. To compute the 
primitive variables, special combinations of waves 
are selected such that the spatial derivatives are 
omitted and straightforward relations are obtained. 
The distinctive feature of the present method is 
assuming no directional limitation caused by grid 
geometry. The majority of past characteristic 

models are inevitable in using fluxes normal to cell 
faces. The proposed formulation could be able to 
produce all the components of velocity field. 
Several numerical simulations have been conducted 
for both the laminar and turbulent regimes in a 
channel, over backward-facing step, and in square 
lid-driven cavity at a wide range of Reynolds 
numbers.  For turbulence modeling, the Spalart-
Allmaras equation is applied which acted suitably 
for the selected case studies. The comparison of the 
results with well-known experimental and 
numerical data confirms good accuracy and 
convergence rate for the laminar and turbulence 
regimes. Another advantage of the MVCB scheme 
is its capability of capturing flow details at higher 
Reynolds number without need to any artificial 
viscosity. 

 
Fig. 6. Comparison of u-velocity of MVCB 

scheme with numerical results of Zamzamian 
and Razavi (2008)and experimental data of 

Denham and Patrick (1974), laminar flow over 
backward-facing step, Re=73. 
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Fig. 7. Comparisons of u-velocity of MVCB 

scheme with numerical results of Zamzamian 
and Razavi (2008) and experimental data of 

Denham and Patrick (1974), laminar flow over 
backward-facing step, Re=229. 

 

 
Fig. 8. Comparison of streamlines for MVCB 
scheme (down) with the results of Zamzamian 

and Razavi (2008) (up), laminar flow over 
backward-facing step, Re=73. 

 

 
Fig. 9. Comparison of streamlines for MVCB 
scheme (down) with that of Zamzamian and 

Razavi (2008)(up) for laminar flow over 
backward-facing step, Re=229. 

 

 

 
Fig. 10. Shear stresses on the upper and lower 

walls versus horizontal distance from step, 
laminar flow over backward-facing step, Re=73 

and 229, MVCB scheme. 

 

 
Fig.11 Comparison of u-velocity of MVCB 

scheme with numerical results of Nithiarasu and 
Liu (2006) and experimental data of Denham et 
al. (1975), turbulent flow over backward-facing 

step, Re=3025. 
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Fig. 12. Comparison of streamlines for MVCB 

scheme (down) with numerical results of Javadi 
et al. (2008) (up) for turbulent flow over 

backward-facing step, Re=69610. 
 

 
Fig. 13. Modified turbulent viscosity ሺොૅሻ, flow 
over backward-facing step, Re=3025, 10000, 
69610, and 500000, MVCB scheme. 

 

APPENDIX A 

Fig.17 shows a quadrilateral cell (i , j) and its faces. 
As mentioned, Eq. (5) is discretized form of Eq. (1). 
The right hand side of Eq. (5) is shown upon to 
subscript k as follow, 
 ܳ௜௝ଵ = ଶߚ ൥෍ሺݕ߂ݑ − ሻ௟ସݔ߂ݒ

௟ୀଵ ൩௜௝ (A-1) ܳ௜௝ଶ= ߙ− ൥ݑ ෍ሺݕ߂ݑ − ሻ௟ସݔ߂ݒ
௟ୀଵ ൩௜௝+ ෍ ቊ൤ܲ + ଶݑ − ൬1 + ்ܴ݁ߥ ൰ ൨௟ݔ߲ݑ߲ ௟ସݕ߂

௟ୀଵ− ൤ݒݑ − ൬1 + ்ܴ݁ߥ ൰ ൨௟ݕ߲ݑ߲  ௟ቋ௜௝ݔ߂

(A-2) 

ܳ௜௝ଷ= ߙ− ൥ݒ ෍ሺݕ߂ݑ − ሻ௟ସݔ߂ݒ
௟ୀଵ ൩௜,௝+ ෍ ቊ൤ݒݑ − ൬1 + ்ܴ݁ߥ ൰ ൨௟ݔ߲ݒ߲ ௟ସݕ߂

௟ୀଵ− ൤ܲ + ଶݒ − ൬1 + ்ܴ݁ߥ ൰ ൨௟ݕ߲ݒ߲  ௟ቋ௜௝ݔ߂

(A-3) 

ܳ௜௝ସ = ߙ− ൥̂ߥ ෍ሺݕ߂ݑ − ሻ௟ସݔ߂ݒ
௟ୀଵ ൩௜௝+ ෍ ቊ൤ߥ̂ݑସ

௟ୀଵ− ൬1+ܿ௕ଶܴ݁ߪ ൰ ሺ1+ ሻߥ̂ ൨௟ݔ߲ߥ߲̂ −௟ݕ߂ ൤ߥ̂ݒ− ൬1+ܿ௕ଶܴ݁ߪ ൰ ሺ1+ ሻߥ̂ ൨௟ݕ߲ߥ߲̂ −௟ቋ௜௝ݔ߂ ௜௝ܣ ቊܿ௕ଵሺ1 − ௧݂ଶሻ̂ߥ̂ݏ− ܿ௕ଶܴ݁ߪ ሺ1 + ሻߥ̂ ቆ߲ଶ̂ݔ߲ߥଶ+ ߲ଶ̂ݕ߲ߥଶቇ− 1ܴ݁ ቂܿ௪ଵ ௪݂− ܿ௕ଵߢଶ ௧݂ଶቃ ൬̂ݕߥ൰ଶቋ௜௝ 

(A-4) 

 
where, 1,2,3, and 4 indices which are replaced for k 
subscript, indicate the rows of matrices in Eq. (1), 
i.e., continuity, x-momentum, y-momentum, and 
turbulent model equations, respectively. 
Summations are computed for quantities on faces, 
in counter-clockwise direction.  

APPENDIX B 

Eq. (11), for θ = 0, πଶ , π, and ଷπଶ  results in, ߟሺ0ሻ + ݑ =  ሺ0ሻߟଶߚ

ሻߨሺߟ − ݑ =  ሻߨሺߟଶߚ

ߨሺߟ 2⁄ ሻ + ݒ = ߨሺߟଶߚ 2⁄ ሻ 

ߨሺ3ߟ 2⁄ ሻ − ݒ = ߨሺ3ߟଶߚ 2⁄ ሻ 

 

(B-1) 
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Fig. 14. Shear stresses on the upper and lower walls versus horizontal distance from step, turbulent 

flow over backward-facing step, Re=3025, 10000, 69610 and 500000, MVCB scheme. 

 

 
Fig. 15. Streamlines for lid driven cavity at Re = 100 (up) and Re = 1000, results of Razavi et al. (2008) 

(left), MVCB (right). 
 

 
Fig. 16. The v-velocity profile on centerline of cavity parallel with x axis (left), and u-velocity profile on 

centerline of cavity parallel with y axis (right),  for Re = 1000 by MVCB scheme compared with  the 

first order scheme of Razavi et al. (2008) and benchmark solution of Ghia et al. (1982). 
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Fig. 17. Stencil of a quadrilateral cell. 

 
The following expressions can be obtained by 
applying Eqs. (B-1) for Eq. (17),  
ݑ଴ܦሺ0ሻߟ−  + ଴ܲܦ + ଶߚ ݕ߲ݒ߲ − ݒ ݕ߲߲ܲ = 0 (B-2) 

ݑగܦሻߨሺߟ + గܲܦ + ଶߚ ݕ߲ݒ߲ − ݒ ݕ߲߲ܲ = 0 (B-3) −ߟሺߨ 2⁄ ሻܦగ ଶ⁄ ݒ + గܦ ଶ⁄ ܲ + ଶߚ ݔ߲ݑ߲ − ݑ ݔ߲߲ܲ = 0 (B-4) ߟሺ3ߨ 2⁄ ሻܦଷగ ଶ⁄ ݒ + ଷగܦ ଶ⁄ ܲ + ଶߚ ݔ߲ݑ߲ − ݑ ݔ߲߲ܲ = 0 (B-5) 

 
Eq. (19) results from subtraction of Eq. (B-3) from 
Eq. (B-2). Similarly, Eq. (20) is obtained from Eqs. 
(B-5) and (B-4). 
The non-dimensional continuity equation results in, 
ଶߚ  ൬߲ݔ߲ݑ + ൰ݕ߲ݒ߲ = − ݐ߲߲ܲ  (B-6) 

 
According to Eq. (B-6) and definition of ܦ௦, i.e. Eq. 
(15), summation of Eqs. (B-2) to (B-5) results in 
Eq. (21). 
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