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ABSTRACT

A multi-dimensional virtual characteristic-based scheme (MVCB) by the aid of artificial
compressibility is developed for convective fluxes in laminar and turbulent incompressible flows.
The proper combinations of compatibility equations are determined to obtain primitive variables
on cell interfaces. The Reynolds averaged Navier-Stokes equations joined with Spalart-Allmaras
turbulent model are solved by finite volumes. This scheme is applied to the flows between parallel
plates, over backward-facing step, and in square lid-driven cavity at a wide range of Reynolds
numbers. A FORTRAN 90 code has been written and all the results have come out from this code.
Several comparisons confirm the scheme ability in accurate simulation of flows without need to
any artificial viscosity in laminar and turbulent regimes.

Keywords: Navier-Stokes equations; Reynolds averaging; Spalart-Allmaras model;, multi-dimensional
characteristics; artificial compressibility; Finite volume method.

NOMENCLATURE
A area for 2D cell U primitive variables vector
Cp1 » Cbz » constants for  Spalart-Allmaras u,v x, and y components of mean velocity
Ce3 » Cra 5 equation vector
o1 s Cwi s Uy, Average axial velocity
’sz ) Cws, O vol. cell volume
EF flux vectors X,y Cartesian coordinates
f Fanning friction factor YV distance to the nearest wall in

fw » fz » functions for Spalart-Allmaras computational domain

for+fo2 9 equation

yT,8,5, artificial compressibility parameter

B
VR . r artificial compressibility matrix
source term matrix o

v

H .
density
L entrance length i Lo .
P divided by densit mematic viscosity
fnean pressure y Y vr turbulent eddy viscosity
Z ;liressuiz b v modified turbulent viscosity
¢ .eyno § numboer dvol. lateral face of cell volume

t time

1. INTRODUCTION classified into two broad categories, namely the

projection and artificial compressibility methods. In

Attempts for solving the incompressible Navier- the projection methods (either pressure or velocity-
Stokes equations have been made to overcome the correction), at .each time step, a sequence of
defect of velocity-pressure decoupling. Most decoupled elliptic equations for the velocity and
approaches using primitive variables can be pressure are solved. The CFRscheme proposed

byHarichandan and Roy (2012) is included in this
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category. The cell face center velocities are
reconstructedexplicitly by solving the momentum
equations on fluxreconstruction control volumes
defined around the respective cell face centers. This
is followedby solution of the cell center pressure
field using adiscrete Poisson equation developed
from thereconstructed velocities and updating the
cell centervelocities by using an explicit scheme.A
review of projection methods can be found in
Guermond et al. (2006).

In artificial compressibility —methods, the
hyperbolic structure of equations is achieved by
adding a pseudo-time derivative of the pressure to
the continuity equation (Chorin 1997).

Upwind schemes versus central differencing (or
averaging) add inherent artificial viscosity based on
the physics of the problem which eliminates the
need for any artificial dissipation terms and
coefficients. By the aid of artificial compressibility,
various kinds of upwind schemes originally
designed for compressible flows have been
developed to incompressible problems. Rogers and
Kwak (1991) developed the flux-difference splitting
of Roe in conjunction with the pseudo-
compressibility to incompressible Navier-Stokes
equations. Upwind scheme is derived from one-
dimensional considerations, and applied to each
coordinate direction normal and parallel to cell
faces separately. Flux-difference splitting was used
to bias the differencing based on the sign of
eigenvalues of the convective flux Jacobian. Pappou
and Tsangaris (1997) developed Steger and
Warming’s flux vector splitting upwind method by
the aim of artificial compressibility for steady
laminar incompressible flows. Convective fluxes
normal and parallel to control surfaces were
decomposed to positive and negative parts in
accordance with the sign of the eigenvalues of the
Jacobian  matrices. From  various upwind
discretizations, it was reported that MUSCL third-
order scheme with Van Albada limiter (to guarantee
monotonic behavior in regions with steep pressure
gradients) have a better behavior. The scheme being
presented by Calhoon and Roach (1997) was
utilized interpolating functions for evaluating the
control surface fluxes including viscous terms.
These functions were derived from direct
integration of one-dimensionally linearized forms of
momentum equations. Pressure was assumed to be
piecewise linear between nodes for integrating
procedure. The values achieved from interpolating
functions for adjacent cells were different; so the
averaged values were applied to gain a conservative
procedure. These expressions being dependent to
cell Reynolds number, hence, upwind nature of
fluxes were obtained. It was claimed without any
detail that an artificial compressibility term was
applied to time marching procedure. The scheme
was applied to lid-driven cavity in the laminar
regime.

Above mentioned upwind methods determine only
the direction of propagation of information, i.e.
upstream or downstream. In characteristic methods
the paths of information propagation are
determined. The majority of characteristic-based
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schemes utilize flux in directions

perpendicular to cell faces.

splitting

Boukir et al. (1994) analyzed high order in time
splitting characteristics combined with finite
element spatial discretization for incompressible
Navier-Stokes equations. The characteristic curves
were obtained by means of solution to the Cauchy
problem with k-th order in time approximated
velocity field. Then, weighted values of velocities
along characteristics were used to approximate the
time derivative for solving the Stokes equation.

Drikakis et al. (1994) introduced the characteristic-
based (CB) scheme with artificial compressibility
for solving laminar flows by Navier-Stokes
equations. Locally one-dimensional flow is
assumed and compatibility equations were derived
from the split Euler equations. The variables on
characteristics were computed by an upwind finite
difference scheme with third-order interpolation
formula based on the sign of local eigenvalues of
Jacobian matrix. An upwind-type scheme for cross-
derivatives was applied. Flows in the cascade of
circular airfoils and over backward-facing step were
simulated. Zhao and Zhang (2000) developed
Drikakis CB scheme in finite-volume framework,
along with energy equation for simulation of
laminar incompressible flows on the unstructured
grids for a variety of benchmarks. Govatsos and
Papantonis (2000) developed the CB scheme for
steady turbulent flows. In which, standard k—e
model, together with standard wall functions were
applied. The turbulence equations are numerically
decoupled from the Navier—Stokes equations. The
turbulence equations were discretized by an
upwind-type scheme of second-order accuracy
according to the velocity direction (Hirsch 1988).
The laminar and turbulent flows in square channel
with 90-degree bend and in the impeller of a water
pump were simulated. Neofytou (2007) revised the
CB scheme. To clarify the difference of revised
form and original CB, it should be said that
Drikakis obtained an algebraic expression with
linear combination of split form of governing
equations along characteristic paths. Compatibility
equations were constructed following the
determination of combination coefficients by
assuming zero multipliers for spatial derivatives of
algebraic expression. Neofytou pointed out that
there was a relation between these coefficients that
was forgotten in CB scheme and inserting this
restriction formed the revised compatibility
equations. However, Su et al. (2007) analyzed the
formulations of the original CB scheme and proved
the consistency with the governing flow equations
after that convergence has been achieved.
Comparisons of original and revised CB schemes
were performed by simulation of flow over circular
cylinder at Re = 40. The results of both schemes
have identical accuracy and convergence rate,
despite the fact that original form is simpler.

The characteristic-based split (CBS) finite element
scheme was founded byZienkiewicz and Codina
(1995) for compressible and incompressible flows.
The characteristic Galerkin convection-diffusion
process was applied for a scalar quantity to



S. E. Razavi and M. Hanifi/ JAFM, Vol. 9, No. 4, pp. 1579-1590, 2016.

Table 1 Coefficientsfor the Spalart- Allmaras model

cp1 =0.1355 | ¢, =0.622 | 0 =2/3 K =041 w1 = 3.2391
b1 b2 wi
o = 0.3 Cyz =2 1 =71 | 3=13 | ¢4=05

discretize the total derivative along the P B2 0 0 0]
characteristics. This process involves splitting the U= Y], r=|0 100
equation into two parts which one of them contains :j g g 10
the convective term and the other one includes 0 1
diffusion and source terms. It was shown that ul v du
Navier-Stokes equations in the conservative form P+ u? —( = T)a—
could be discretized in time using the characteristic € x

. . L R F = 1+vp\ov
Galerkin method if the variation of pressure is uv—( e )a
known. Afterwards, semi-implicit and explicit 1+cy, v
forms of fractional step algorithm were introduced,; [ud — < oo )(1 +9) o
where intermediate momentum is computed and v
after determination of pressure and velocity fields 14 v\ du
the other transport equations, e.g. energy, turbulent uv — ( )—

" .- . Re /oy
quantities, could be computed. Explicit form with 14 vr v
artificial ~compressibility ~with and  without E=| pyy2— (TT)B_
intermediate  step was applied to steady v
. . P . . . 1+cy, A
incompressible flows over an airfoil and lid-driven vy — 1+9)=—

L Reo dy.

cavity (Zienkiewicz et al. 1995). Nithiarasu and
Liu (2006) applied the CBS scheme to solve
turbulent incompressible flows at moderate
Reynolds numbers. Boussinesq’s hypothesis was
applied to Reynolds stresses. Also, Wolfesstain,
Spallart-Allmaras, and standard k-¢ models were
used for turbulence modeling. The scheme was
tested for the channel, backward-facing step,
cylinder, and flow in upper human airway.

Razavi et al. (2008) proposed an upwind scheme
based on multidimensional characteristics (MCB)
for laminar  incompressible = Navier-Stokes
equations. Compatibility equations were applied to
compute convective fluxes normal to the cells faces.
The results of flow in lid-driven cavity were
compared with that of CB and averaging schemes.
Later, the MCB scheme was developed for body-
fitted grids (Zamzamian and Razavi 2008) and
examined for flow over backward-facing step and
cylinder. The MCB scheme demonstrated very
good accuracy and convergence.

Here, virtual wave propagation paths are obtained
and used to determine the convective fluxes. The
major features include grid independence, keeping
the conservative nature of multidimensional
characteristics, and throwing away the elaboration
by means of omitting spatial derivatives. The
scheme is applied and tested on laminar and
turbulent flows, which shows very good
performance regarding the others.

2. GOVERNING EQUATIONS

Non-dimensional system of Reynolds averaged
Navier—Stokes (RANS) equations joined with
artificial compressibility, in vector form are
expressed as follows,

a
—ﬂ UdA+rf (de—de)=Ff HdA
ot vol. avol. vol.
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. (0% 0%
H = [0,0,0, Cbl(l - ftz)SV - R_ec a+ V) <ﬁ + a—yz

1]
(1)

where f denotes the artificial compressibility
parameter, u and v the mean velocity components,
and P the mean pressure divided by density. The
laminar shear stress and Reynolds stress tensors are
derived by Boussinesq’s assumption. v shows the
turbulent eddy viscosity which is calculated by
means of turbulence model. The last row denotes
the Spalart-Allmaras equation (SA) having the
following specifications; v, the modified turbulent
viscosity which can be expressed as Blazek (2001),

vr =1, for = X3/ O3+ c1?),

X =0/, fro = czexp(—cux?),

Cb1
[Cw1fw e fro

Re

S=s+ (%Wz) foz, § = /284,
6T
:ﬁ @)

where, v shows the kinematic viscosity, and y,,
denotes the distance to the nearest wall in
computational domain. The constants of Eqgs. (2) are
introduced in Table 1.

The scales used for non-dimensional form of RANS
and SA model are as follows:

= ai‘;*:xt‘ o 52’
Uref L‘ref prerref

p** = L ,P** — p**,t** — tUref ,
Pref P** Lref
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UrefLref

v
vt =— V" =—,Re =
v v

Urer 1/( b
§ = §**' §** = S** + - ,
Lref Re KZYW**Z fvz

. R A
S T =5 G )
1 AN
r= Re g**szW**Z
3)

Reference values are taken to be the mean inlet
values, otherwise described individually in some
cases. For facility the “**” has been omitted.

Pressure and velocity components of flux vectors of
Eq. (1), F and E, are computed by means of multi-
dimensional virtual characteristic-based (MVCB)
method that expressed in section 4. Turbulent
variables, ¥V and vy, at the cell interfaces are
computed by averaging. It is obvious that, for
laminar case studies, vy is set to zero and 4th row
of equations is omitted. Viscous terms are
calculated on the secondary volumes. This
procedure is clarified for a generic term by Eq. (4)
and Fig.1.

ou 1 ou 1
(E)bc ™ Aobne ffSOch ax dxdy = Aobne EﬁOcho udy
“)
N
ol
c, b
(]

=14 ij sl

ij-1
Fig. 1. A secondary volume for computing
viscousterms.

3. SPATIAL AND
DISCRETIZATIONS

TIME

On a structured grid, Eq. (1) can be written in
discrete form for cell (i,j) as,

anjk
Aij ot = _Qijkk = 1,2,3,4’
4
Qe =T [Z(Fi,»kAy - Ejed), ®)
=1
— AjFiji

where, A indicates the cell area and subscript k
shows the rows of equations. For expansions of
Qijk, see Appendix A. For computing Ujj, the

following fifth-order Runge-Kutta method is

utilized (Blazek 2001),
At _
Uijk(l) = Uijk(n) - “z;Qijk(l v
ij

~ 1131 6)

l—1,2,...,5 al—4;6,8:2:1

Uijk(n+1) = Uijk(S)

4, MVCB SCHEME FOR
CONVECTIVE FLUX

COMPUTATION

Taking the linear combination of governing
equations results in (Zucrow and Hoffman 1977),

(E)P_I_ 26u+ 2617)
vl TR TR G,

+ (au 4 ou ou
“2\5¢ T ox T Vay
a
_ 7
+5) %)
+ (61} 4 v 4 v
@3\g THax Y dy
apP
+ —) =0

By defining the vectors, W1 = w,i + w3j + w k,
W, = (B%w; + uw,)i + vw,j + wyk , and Wy =
uwsi + (B%2w; + vws)j + wzk, the  following
relation can be obtained

dw,P + dw,u + dy,v =0, dWi =W,V (8)
Hence, one can determine the characteristic surface
including Wy, W, and W3 with a normal vector
(P =cos@i+sinfj+nk). Performing dot
product ¥.W; = 0, yields

Mw, + (cos Nw, + (sinB)ws; =0
(B?cosO)wy + (ucos@+vsind+n)w, =0 (9)
B%sin@)w; + (ucosO +vsinf +n)w; =0

There are two possibilities to have nontrivial
solutions for Eq. (9), as

ucosf +vsinf+n=20 (10)

2
uc059+vsin9+r]=% (11)

Combining Egs. (9) and (10) and plugging into Eq.
(7) results in the first compatibility equation

,9(6P+6u+ 6u+ (’)u)
S U\Gx Tar T Yax T Vay
9(6P+6v 12
cos oy ac (12)
4 6v+ Bv)_o
“ox ”ay -

The second compatibility equation, corresponding
to Eq. (11) is obtained similarly as
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e((?P_|_6u+ 6u+ au)
MeosU\ax T T ax T Vay
n 8 (ap + v
n sin 3y Tt 5
4 ov N (’)v) opP (13)
“ox " Vay) T ot
g2 (au + 017) —0
ox dy
To derive the expressions for %: % + %;—x %%

along characteristic lines one can assume a
characteristic path f(x,y,t) = 0 on a characteristic
surface. The gradient of f is parallel to the normal
vector of this surface and also, perpendicular to the
tangent line in each point on it. Therefore, the
following relation holds

dx dy
n+dtcose+dt5m9 0 (14)
Combining Egs. (10) and (14) results in,
DS = 9 + 0 + 15)
Tt Yax T Voy

where, D¥ denotes the substantial derivative along
characteristic lines on surfaces corresponds to Eq.
(10) and pseudo-pathline (Zucrow and Hoffman
1977). Similarly, substantial derivative
corresponding to Eq. (11) can be obtained,

oo

a+ FSinB
where, D? denotes the other kind of substantial
derivative varying with 6. Applying Eq. (16), the
compatibility Eq. (13) can be written as,

2

a
B—cosB
n

)

—1(8) cos 8 DPu — n(8) sin6 DPv + DOP
e ((’)u + av
g 0x

0 si eau
cos fsin 8-

. 0dv
—cosBsinf—

0x

i Zea—v) a7

sin 3y

op B o

7x \ Y n(B)COS
+n(6)cos€)

0P< p? ind
——|(v——=<sin

dy n(6)

+7n(0) sin 9) =0

where, m could be derived from Eq. (11) as a
positive function of 0,

n(6)

2
+\/(ucose+ vsin0)% + 4[?2)

(—u cos® —vsin

(18

Eq. (17) contains local and substantial derivatives
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which make it complicated for using in numerical
application. In the next step, it is shown that how

the simpler relations can be achieved. By selecting

3n
—, and

compatibility equations for 8 =0, g, T,
pseudo-pathline, the following equations are
obtained after algebraic manipulations. For details

see Appendix B.

—1(0)D% — n(m)D™u + D™P —D°P =0 (19)

—n(m/2)D™ 2y — n(3n/2)D3"/ 2y 20
1 pm/zp—panizp =g 20

—n(0)D%u + n(7)D™u — n(w/2)D™/ v
+1(3m/2)D3™/2y @1

+D°P + D™/2p + D"P
+D3"/2p —2D5P =0

The most interesting feature of Egs. (19) to (21) lies
in the appearance of non-local derivatives which
cause the data propagation on characteristic lines in
a straightforward manner.

For evaluating convective fluxes in Eq. (1), the
values of variables on cell edge (shown by
superscript “*”), are computed from characteristic
lines by means of Egs. (19) to (21). Hence, one gets
the following

*

1
u =—n(0)+n(n)[n(0)u°+n(n)u +P

— pO]

(22)

1
* /2
V= D n G D
+1(3m/2)v37/2
+ P3n/2 _ Pn/Z]

(23)

pr= % [n(0) (" — u®) — n(m)(u* —u™)
+n(r/2) (v —v™?)
—n(3n/2)(v* — v37™/2)
+ P + P™/2 4 P
+ P3m/2 — 2ps]

24

The intersections of characteristic lines with
previous time step are found by means of Egs. (15)
and (16), as

xS=x"—Atu, y*S=y"—Atv

2 >

n(G)Sin6>

Various interpolation methods may be adopted to
assign proper data in these intersections. In present
work, the first-order interpolation has been used.

2
———cos 6

x9=x*—At<u—
n(6)

(25

y9=y*—At<v—

5. NUMERICAL RESULTS

The proposed scheme was applied for flow
simulations in a channel, over backward-facing
step, and for lid-driven cavity in the laminar and
turbulent regimes. Boundary conditions in the
channel flow were set at the inlet, u = 1,v =0,V =
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0.1 and P extrapolated from the internal cells. On
the side walls, velocity components and ¥ were set
to zero, and again P was extrapolated from the
inside domain. At the outlet, pressure was set to
zero, and velocity components along with ¥ were
extrapolated from internal cells. In the backward-
facing step flow, u,v, and? were extracted from
channel flow outlet as inlet boundary condition and
P was extrapolated from inside. On the walls and
outlet, similar procedures to channel flow were
applied. In the cavity, velocity components on
sliding wall set as, u = 1,v = 0, and fix walls are
treated like channel flow.The parameter 3 was set to
5 for laminar, and 1 for turbulent flows.

Fig.2 illustrates the geometry of channel and
backward-facing step and grids. In the backward-
facing step, L1=6H for the laminar flows and for
turbulent flows, 4H at Re = 3025 and 5H at Re =
10000, 69610. Also L2=60H for the laminar flows,
and for the turbulent equals to 36H at Re = 3025
and 25H at Re = 10000, 69610. In the channel flow,
L=L2

Fig. 2. Geometries of the channel and backward-
facing step and grids.

The following convergence criteria was used,

z

no.ofcells

noofeells (| M+t _ y|,m)’°

Jzeoreens ey’

To insure grid independence, the simulations for
various cell numbers were conducted for different
cases. Fig.3 shows the u-velocity profile in the
fully developed region of turbulent channel flow at
Re=3025 for cell numbers, 2500, 4096, and 6400.

ENORM =

(26)

no.ofcells
i=1

Fig.4 compares the convergence histories of the
turbulent flow over backward-facing step for
MVCB and averaging schemes at Re=3025, 10000,
69610, and 500000. Superiority of the MVCB
scheme without any artificial dissipation is obvious
in these cases. The MVCB has converged with a
rather steep gradient while the averaging scheme
fails to converge anymore.

By definition of Reynolds number (based on
channel hydraulic diameter), and Fanning friction
factor, f=2t,/(puy?), the theoretical value
results in, f = 24/Re for laminar regime(Shah and
London 1978). Fig.5 shows the variation of f.Re
product versus x/Re (ratio of non-dimensional
distance from flow entrance to Reynolds number)
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for some Re of laminar regime obtained by MVCB
scheme. Based on observations, all the curves
reached to theoretical value. Also, it was reported
that entrance length of channel is about [,/Re =
0.011(Shah and London 1978). As it is shown,
numerical solution and reported values are in
agreement.

40x 160
i a1x 128
L 25 x jow
- 1}
Re = 3025
(-1 o
0 1 L 1
02 04 06 08 1

Fig. 3. Comparison of u-velocity profiles at the
fully developed region, turbulent channel flow,
grid sizes, 25X 100, 32X 128, and 40X 160,
clustered grids, Re=3025.

In the backward-facing step for laminar regime, the
results are compared for Re 73 and Re
229(based on step height), with experimental data
of Denham and Patrick (1974), and numerical
results of Zamzamian and Razavi (2008). Figs. 6
and 7 compares the u-velocity profiles at various
distances from the step, and Figs. 8 and 9 the
streamlines for the same Reynolds numbers,
respectively. Shear stresses on upper and lower
walls are shown in Fig. 10. Negative shear stresses
denote the backflow and it is clear that at fully
developed region the same constant values are
reached on the walls. The MVCB scheme behaves
well in laminar flows.

For turbulent flow, the results are compared with
experimental data of Denham et al. (1975) and
numerical results of Nithiarasu and Liu (2006).
Fig.11 shows the u-velocity profiles at various
stations from step for Re=3025. Fig.12 compares
the streamlines of MVCB with the numerical results
of Javadi et al. (2008) at Re=69610. The modified
turbulent viscosity, ¥, contours at various Reynolds
numbers for backward-facing step flow are shown
in Fig.13. As expected, the turbulent effects are
dominant at the core of flow and they grow with
Reynolds number. The shear stress distributions on
the upper and lower walls are presented by Fig.14.
As it is seen, the impact of expansion becomes
more considerable on the upper wall in turbulent
regime. The results confirm adequate accuracy of
MVCB scheme in turbulent flow simulations.

Fig.15 shows the streamlines for square lid-driven
cavity flow at Re = 100,and 1000 (based on
moving wall velocity and cavity length), obtained
with MVCB scheme and compares them with
results of Razavi et al. (2008). The MVCB scheme
was able to reveal flow details in this case. Also,
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Re = 3025 -

w0 ]
s w
<

W'

W Farat

50000 0000
deration mumdber
Re=696180

0* VI "
o0 o A0 [ 100000
deranion mumber

e
E —_— e
o

Fig. 4. Comparison of convergence historiesfor MVCB and averaging schemes, turbulent flow over
backwar d-facing step, Re=3025, 60X 160, clustered grids and Re= 10000, 69610, 500000, 96 X 150,
clustered grids.

Fig.16 shows the v-velocity profile on the centerline
of the cavity parallel with x axis and the u-velocity
profile on the centerline of the cavity parallel with y
axis which obtained by MVCB scheme and are
compared to the first-order scheme of Razavi et al.
(2008) and Ghia et al. (1982) benchmark solution.

80
i Re =200
f . Re =292
E e Re =916
& Re =2000
o
s
L '0-‘,9
12
sk B T O o e o e
| I 1 T T T L
0.005 0.01 0.015 0.02 0.025 0.03
vRe

Fig. 5. Variation of f.Re versusx/Re in laminar
regime by MVCB scheme for channel flow.

6. CONCLUDING REMARKS

A new scheme (MVCB) for solving laminar and
turbulent regimes has been proposed. It is mainly
based on the virtual compatibility equations, having
conserved multidimensionality. To compute the
primitive variables, special combinations of waves
are selected such that the spatial derivatives are
omitted and straightforward relations are obtained.
The distinctive feature of the present method is
assuming no directional limitation caused by grid
geometry. The majority of past characteristic

models are inevitable in using fluxes normal to cell
faces. The proposed formulation could be able to
produce all the components of velocity field.
Several numerical simulations have been conducted
for both the laminar and turbulent regimes in a
channel, over backward-facing step, and in square
lid-driven cavity at a wide range of Reynolds
numbers. For turbulence modeling, the Spalart-
Allmaras equation is applied which acted suitably
for the selected case studies. The comparison of the
results with  well-known experimental and
numerical data confirms good accuracy and
convergence rate for the laminar and turbulence
regimes. Another advantage of the MVCB scheme
is its capability of capturing flow details at higher
Reynolds number without need to any artificial
viscosity.

25k
Re=73

Vertical Distance
; L8]

T T

a

05

Fig. 6. Comparison of u-velocity of MVCB
scheme with numerical results of Zamzamian
and Razavi (2008)and experimental data of
Denham and Patrick (1974), laminar flow over
backwar d-facing step, Re=73.

1585



. E. Razavi and M. Hanifi / JAFM. Vol. 9, No. 4, pp. 1579-1590, 2016.

3
25 O Demham 3
MITB \
Lam: amian
y 2
H
=
=
315
¥,
Re =229
0s
L 1 1
9 8 10 12

=o

Fig. 7. Comparisons of u-velocity of MVCB
scheme with numerical results of Zamzamian
and Razavi (2008) and experimental data of
Denham and Patrick (1974), laminar flow over
backward-facing step, Re=229.

Fig. 8. Comparison of streamlines for MVCB
scheme (down) with the results of Zamzamian
and Razavi (2008) (up), laminar flow over
backward-facing step, Re=73.

e ———
1 ! 1
5 10 15

Fig. 9. Comparison of streamlinesfor MVCB
scheme (down) with that of Zamzamian and
Razavi (2008)(up) for laminar flow over
backward-facing step, Re=229.

25
[fe =73
2k
§ 154
=
5 1}
4
EOS -
UPPER WALL
0 LOWER WALL
05
L s . s
10 15 20 0
Horizontal distance from step
25
Re= 229
2 -
15k
g T
Sos}
=
UPPER WALL
o LOWER WALL
05
1 e L ! A1
10 60

20 30 40 50
Horizontal distance from step

Fig. 10. Shear stresses on the upper and lower
walls versus horizontal distance from step,
laminar flow over backward-facing step, Re=73
and 229, MVCB scheme.
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Fig.11 Comparison of u-velocity of MVCB
scheme with numerical results of Nithiarasu and
Liu (2006) and experimental data of Denham ef
al. (1975), turbulent flow over backwar d-facing
step, Re=3025.
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Fig. 12. Comparison of streamlinesfor MVCB * Z {[uv
scheme (down) with numerical results of Javadi l=11+cb
et al. (2008) (up) for turbulent flow over - (R_Z) (
backwar d-facing step, Re=69610. 35
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Fig. 13. Modified turbulent viscosity (9), flow +5_2>
over backward-facing step, Re=3025, 10000, dy
69610, and 500000, MV/CB scheme. 1 B
Re wlfw
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APPENDIX A k2 12 \y i

Fig.17 shows a quadrilateral cell (i, j) and its faces.
As mentioned, Eq. (5) is discretized form of Eq. (1).
The right hand side of Eq. (5) is shown upon to
subscript k as follow,

where, 1,2,3, and 4 indices which are replaced for k
subscript, indicate the rows of matrices in Eq. (1),
i.e., continuity, x-momentum, y-momentum, and
turbulent model equations, respectively.
Summations are computed for quantities on faces,

4
Qijr = B? [z (udy —v. Ax)l] (A1) in counter-clockwise direction.
v APPENDIX B
Qij2

4
Eq. (11), for 6 = = |
- g [uZ(uAy _ vAx)l] q. (11), for 6 20 , T, and " results in,

_
n(0) +u= 700

Slpeets o
~n(m

1+ v\ ou
) . -
Y n(m/2)+v= )

BZ
“Gr/2)

n(3n/2) —v
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Fig. 14. Shear stresseson the upper and lower walls versus horizontal distance from step, turbulent
flow over backward-facing step, Re=3025, 10000, 69610 and 500000, MV CB scheme.

Re=100

Fig. 15. Streamlinesfor lid driven cavity at Re =100 (up) and Re = 1000, results of Razavi et al. (2008)
(left), MVCB (right).
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Fig. 16. The v-velocity profile on centerline of cavity parallel with x axis (left), and u-velocity profile on
centerline of cavity parallel with y axis(right), for Re= 1000 by MVCB scheme compared with the

first order scheme of Razavi et al. (2008) and benchmark solution of Ghia et al. (1982).
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Fig. 17. Stencil of aquadrilateral cell.

The following expressions can be obtained by
applying Egs. (B-1) for Eq. (17),

ov apP

_ 0 0 227 —
n(0)D°u +D°P + B 3y vay—O (B-2)
(m)D™u + D™P + 22V _ B—P—O B-3
n@mD™ p5 5= (B-3)

ou apP
_ /2 /2 227 _ 2 B-4
n(m/2)D™2v + D™/2p + B 05 ua’ép 0 (B4
31/2 31/2 LU oF B-5
n(3m/2)D3*" /2y 4+ D3"/2p + B % Yox 0o (B-5)

Eq. (19) results from subtraction of Eq. (B-3) from
Eq. (B-2). Similarly, Eq. (20) is obtained from Egs.
(B-5) and (B-4).

The non-dimensional continuity equation results in,

du Jv aP
(22 2 T8 -
B (ax + ay) at (B-6)

According to Eq. (B-6) and definition of D%, i.e. Eq.
(15), summation of Egs. (B-2) to (B-5) results in
Eq. 21).
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