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ABSTRACT 

This paper deals with peristaltic transport of Phan-Thien-Tanner fluid in an asymmetric channel induced by 
sinusoidal peristaltic waves traveling down the flexible walls of the channel. The flow is investigated in a 
wave frame of reference moving with the velocity of the waveby using the long wavelength and low 
Reynolds number approximations.The nonlinear governing equations are solved employing a perturbation 
method by choosing W e  as the perturbation parameter. The expressions for velocity, stream function and 

pressure gradient are obtained. The features of the flow characteristics are analyzed through graphs and the 
obtained results are discussed in detail. It is noticed that the peristaltic pumping gets reduced due to an 
increase in the phase difference of the traveling waves. It is also observed that the size of the trapping bolus is 
a decreasing function of the permeability parameter and the Weissenberg number. Furthermore, the results 
obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-
Newtonian fluid phenomena, especially the Peristaltic flow phenomena. 

Keywords: Trapping phenomena; Peristaltic transport; Phan-thien-tanner fluid; Porous medium; Asymmetric 
channel. 

NOMENCLATURE 

1,a 1b amplitudes of the waves 

c wave speed  

1 2d d  width of the channel 

/d dt  material derivative 
k  relaxation time 

0k  permeability

p pressure

Re  Reynolds numbers respectively 
s Oldroyd’s upper-convected derivative 

t time 
tr trace 

( , )u v
 velocities in wave frame 

We  
Weissenberg number 

 ,X Y
 

where X   and Y  axes are taken

respectively parallel and transverse to 
the direction of wave propagation  

  dynamic viscosity 
 phase difference varying in the range 

0 .  
 

 wave length
 

( , )U V velocities in laboratory frame

,P p pressures in the laboratory and wave
frames respectively.

 wavenumber
 permeability parameter.

1. INTRODUCTION

Peristalsis is a mechanism for pumping fluid in a 

tube by means of a moving contractile ring around 
the tube, which pushes the material onward. The 
peristaltic wave generated along the flexible wall 
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of the tube provides an efficient means for the 
transport of fluids in living organisms and in 
industrial pumping. It is an inherent property of 
many smooth muscle tubes, since stimulation at 
any point causes a contractile ring around the tube. 
In general, peristalsis induces two types of fluid 
movements, namely propulsive and mixing. The 
peristaltic propulsive movement is observed in the 
esophagus, bileduct, the ureter and other glandular 
ducts through the body. The mixing property of 
peristalsis is speculated to be in the digestion of 
food in stomach and such other biological 
systems. Also the principle of peristalsis is 
adapted by engineers to pump the industrial fluids 
which are to be kept away from the pumping 
machinery. Shapiro et al. (1969) reported initial 
studies on peristaltic flow of viscous fluid. Since 
then, the mathematical models obtained by a train 
of periodic sinusoidal waves in an infinitely long 
two-dimensional symmetric channel or 
axisymmetric tubes containing Newtonian or non-
Newtonian fluid were investigated by several 
researchers (Jaffrin and Shapiro, 1971; Shukla and 
Gupta, 1982; Srivastava and Srivastava, 1984; 
Mishra and Ramachandra Rao, 2003;Vajravelu et 
al., 2005a, 2005b).       
 
In recent years, physiologists observed that the 
intra-uterine fluid flow due to myometrial 
contractions is peristaltic type of motion and it may 
occur in both symmetric and asymmetric channels 
(Devries et al., 1990). Eytan et al. (1999) reported 
that the non-pregnant woman uterine contractions 
are very complicated since they are composed of 
variable amplitudes, a range of frequencies, and 
different wave lengths. Also, observed that the 
width of the sagittal cross-section of the uterine 
cavity increases toward the fundus and the cavity is 
not fully occluded during the contractions. Eytan 
and Elad (1999) developed a mathematical model of 
peristaltic flow induced by wave trains with phase 
differences moving independently on the upper and 
lower walls to simulate intra uterine fluid motion in 
the sagittal cross section of the uterus. They have 
obtained a time dependent flow solution in a fixed 
frame through the lubrication approach.  

 
As we know, there are certain biofluids (for 
example, blood, saliva, gastric juice) whose 
characteristics cannot be described by the 
Newton’s law of velocity, especially those with 
high molecular weight leads to the development of 
non-Newtonian fluid mechanics. Hence some 
investigators have recently engaged in making 
progress in peristaltic flows of non-Newtonian 
fluids (Elshehawey and Mekhemier, 1994; Usha 
and Ramachandra Rao,1997; Kothandapani and 
Srinivas, 2008; Hakeem and Naby, 2009; Nadeem 
and Akram, 2010;Narahari and Sreenadh, 2010; 
Sreenadh et al., 2011; Hayat et al., 2011, 2012a, 
2012b;Noreen Sher Akbar and Nadeem, 2012; 
Vajravelu et al., 2009, 2012, 2014; Sucharitha et 
al., 2013; Rathod and Laxmi, 2014; Riaz et al., 
2014; Noreen and Nadeem 2014;Hina et al., 2015; 
Ravikiran, and Radhakrishnamacharya, 2015). 
For solving non-linear differential equations, we 
employ pure numerical approach and/or analytical 

approach. Both of these approaches have their own 
advantages and disadvantages. Scientists and 
engineers follow one or both the approaches to 
resolve and study their mathematical models for 
better understanding and application. Analytical 
methods contain: Perturbation method (PM), 
Adomian decomposition method (ADM), homotopy 
analysis method (HAM), optimal homotopy 
asymptotic Method (OHAM), differential transform 
method (DTM) etc. (for details see Beg et al. 2013, 
2014; Rashidi et al. 2009; and Edalatpanah and 
Rashidi 2014). These methods have certain 
advantages over the commonly used numerical 
methods. 

Viscous flow through a porous medium is of 
fundamental importance in ceramic engineering, 
ground water hydrology, petroleum technology, 
powder metallurgy, industrial filtration and such 
other fields. Also, in the springs of the geothermal 
region, water is known to be an electrically 
conducting fluid. Flow through porous media has 
been studied by a number of researchers (Srinivas 
and Kothandapani, 2009; Lakshminarayana et al., 
2013; Anjali Devi and Kayalvizhi, 2010, 2013; 
Tripathi, 2013; Agoor andEldabe, 2014; Ramesh 
and Devakar, 2015). Hayat et al. (2008) 
investigated the influence of partial slip on the 
peristaltic flow in a porous medium. The Effect of 
heat transfer on the peristaltic flow of an 
electrically conducting fluid in a porous space was 
studied by Hayat et al. (2009). Vajravelu et al. 
(2011) discussed the influence of heat transfer on 
the peristaltic transport of a Jeffrey fluid in a 
vertical porous stratum. Singh and Rathee (2011) 
presented the analysis of non-Newtonian blood 
flow through stenosed vessel in a porous medium 
under the effect of magnetic field. 

 
Motivated by the above studies, in the present 
paper, the peristaltic transport of Phan-Thien-
Tanner fluid in an asymmetric channel with 
porous medium is investigated. The governing 
equations of Phan-Thien-Tanner fluid model are 
solved by a perturbation technique. The 
expressions for stream function, pressure gradient 
and pressure rise have been obtained. The effects 
of various physical parameters on the velocity, the 
pressure rise and the trapping phenomenon are 
discussed through graphs.    

2. MATHEMATICALFORMULATI
ON 

We consider an incompressible Phan-Thien-Tanner 
fluid flow in an asymmetric channel with porous 
medium, of width 1 2d d . Let c  be the speed by 

which sinusoidal wave trains propagate along the 
channel walls. Consider the rectangular coordinate 

system  ,X Y where X  and Y  axes are taken 

respectively parallel and transverse to the direction 
of wave propagation. The wall surfaces are modeled 
by 
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 1 1 1

2
Y H d a Cos X ct




      
, 

 2 2 1
2

Y H d b Cos X ct
 


        
,           (2.1) 

where  is the phase difference varying in the 

range 0 .   Here, 0  correspond to 

symmetric channel with waves out of phase and

   with waves in phase, and further 

andddba 2111 ,,,  satisfy the condition 
2 2 2

1 1 1 1 1 22 cos ( )a b a b d d     so that walls 

will not intersect with each other. The basic 
equations of motion are the following: 

Continuity equation ߘ. ࢂ = 0.                             (2.2) 

Momentum equation ߩ ௗࢂௗ௧ =  (2.3)               .ࢀݒ݅݀

The constitutive equations for PTT model are ࢀ = ࡵ− + ࢙ሻ൯࢙ሺݎݐ൫݂ (2.4)               ,࢙ + ∇࢙ =   ,ࡰߤ2
∇ݏ (2.5)  = ௗ௦ௗ௧ − .ݏ ∗ܮ − .ܮ ࡸ (2.6)              ,ݏ =  (2.7)              ,ࢂ݀ܽݎ݃

where p  is the pressure, I is the identity tensor, Vis 
the velocity, T is the Cauchy stress tensor,   is the 
dynamic viscosity, sis an extra-stress tensor, D is 

the deformation-rate tensor, k  is the relaxation 

time, s  denotes Oldroyd’s upper-convected 
derivative, /d dt  the material derivative, tr is the 
trace and asterisk denotes the transpose. 

Function f  in the linearized PTT model which 
satisfies  

   1 ( ).
k

f tr tr



 s s               (2.8) 

Note that the PTT model reduces to an upper 
convected Maxwell model (UCM) when the 

extensional parameter is zero. 

We introduce the transformations between fixed 
and wave frames as 

 
, , ,

, ( , ),

x X c t y Y u U c

v V p x P X t

    

 
        (2.9) 

Using the equation (2.9) the governing equations in 
the wave frame can be written as 

0,
u v

x y

 
 

 
             (2.10) 

0
( ),xyxx

u v u
x y

Sp S
u c

kx x y





  
  

  

 
    
  

        (2.11) 

0
,

yx

yy

Sp
u v v

x y y x

S
v

ky





    
    

    


 



         (2.12) 

2 2

2 ,

xx xx
xx xx xy

S S u u
f S k u v S S v

x y x y

u

x


    
    

     






             

(2.13) 

2 2

2 ,

yy yy
xx yx yy

S S v v
f S k u v S S v

x y x y

v

y


    
    

     






              

(2.14) 

0,zz zz
zz

S S
f S k u v

x y

  
   

   
           

(2.15) 

[ xy xy
xy xx

xy xy

S S v
f S k u v S

x y x

v u
S S

y x

  
  

  

 
 
 

       

          ] ,yy
u u v

S
y y x


   

                  

(2.16) 

1 ( ).xx yy zz
k

f S S S



   

          

(2.17) 

The boundary conditions are 

1

2

,
2

, .
2

q
u c at y = H

y

q
u c at y = H

y






   




    

         

(2.17a) 

The non-dimensional quantities and the expressions 
for velocity in terms of stream function are given by 

2
1 1

1

1 2 1 2 1 1
1 2

1 1 1 1 1

1 1

1 1 10

, , , , , , ,

, ,Re , , , ,

, , , , ,

and , .

ij
ij

x y u v d d p ct
x y u v p t

d c c c

H H cd d a b
h h d a b

d d d d d

S d kc d q
S We F

c d cd cdk

u v
y x


     




 


 


       



     


     

 

  
  

(2.18)  
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The conditions in (2.1) can be written as  

 
 

1 21 cos 2 ,

cos 2 .

h a x h

d b x



 

  

                              
(2.19) 

Using the above non-dimensional quantities and the 
long wavelength approximation the basic equations 
reduce to 

2 1 ,xySdp

dx y y


  

     
           

(2.20) 

0,
p

y




                              (2.21)  

2

2
2 ,xx xyf S We S

y





            

(2.22) 

0, 0,yy zzf S fS              (2.23) 

2 2

2 2
,xx yyf S W e S

y y

  
  

 
          

(2.24) 

and the non-dimensional boundary conditions are 

 

 

1

2

, 1 1 cos 2 ,
2

, 1 cos 2 ,
2

F
at y = h a x

y

F
at y = h d b x

y

 

  


   




    


 

              

(2.25)  

where F is the mean flow rate in the wave frame. 

 

The flux at any axial station in the fixed frame is  

1

2

1 2( 1) .
h

h

Q u dy h h F    
                             

(2.26) 

The average volume flow rate over one period of 
the peristaltic wave is defined as 

 1 2
0 0

1 1
1 .

T T

Qdt h h F dt F d
T T

        

                                                           

(2.27) 

From the equation (2.23) we have 0, 0yy zzS S   

and from equation (2.20) we get

 2 .x y
dp

S y y
dx

   
          

(2.28) 

With the help of (2.23) and (2.24) we can write   

22 .xx xyS We S
             

(2.29) 

From the equations (2.17), (2.23) and (2.29) we 
obtain  

2
2 3

2
2 .xy xyS We S

y

 
 


           

(2.30) 

Substituting (2.28) into (2.30) we get 

 

 

2
2

2

3
2 22 .

dp
y y

dxy

dp
W e y y

dx

  

  


  



    
 

        
(2.31) 

3. PERTURBATION SOLUTION 

Equation (2.31) is non-linear, its exact solution is 
not possible, and hence we employ the perturbation 
technique to find the solution. For perturbation 
solution, we expand the flow quantities in a power 

series of the small parameter 2We  as follows: 

 
 
 

 

2 4
0 1

2 4
0 1

2 4
0 1

2 40 1

.

W e O W e

F F W e F O W e

W e O W e

dpdp dp
W e O W e

dx dx dx

  

  

  



   


   

   

             

(3.1) 

Using the above expressions in equations (2.25) and 
(2.31), we obtain a system of equations of different 
orders. 

3.1   System of Order 0W e  

The governing equations and boundary conditions 
of the zeroth-order problem are 

 
2

20 0
02

,
dp

y y
dxy

  
  


              

(3.2) 

 

 

0 0
0 1

0 0
0 2

, 1 1 cos 2 ,
2

, 1 cos 2 .
2

F
at y = h a x

y

F
at y = h d b x

y


 

  


    




       


                

(3.3)    

The solution of the zeroth - order problem is given 
by 

0
0 1 2 2

1
cosh sinh 1 ,

dp
c y c y y

dx
  


     
 

  (3.4) 

and the axial velocity is        

0
0 1 2 2

1
sinh cosh 1 .

dp
u c y c y

dx
   


     
 

  (3.5) 

3.2   System of Order 2W e  

The governing equations and boundary conditions 
of the first-order problem are 

32
2 201 1

1 02
2 ( ) ,

dpdp
y y y

dx dxy

            
 

                                                             

(3.6) 
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1 1
1 1

1 1
1 2

, 0 ,
2

, 0 .
2

F
at y = h

y

F
at y = h

y






 




  


  

            (3.7)    

The solution of the first-order problem is given by 

   

 

0
1 3 4 2

3 2
31 15 32

5 6 34 33

36 35

2
27 37 38

3 4 5 6
39 40 41 42

2
28 43 44

3 4
45 46 47

1
cosh sinh 1

1
cosh3 sinh3 cosh2

4
sinh2

sinh

cosh

dp
c y c y y

dx

L y L y L y

L y L y y L L y

y L L y

L L y L y
y

L y L y L y L y

L L y L y
y

L y L y L y

  


  







     
 

  

   

 

  
 
     

 


   5 6
48

,
L y

 
 
  

               

(3.8) 

and the corresponding first-order axial velocity is        

 

   

 
 

21
1 3 4 31 152

32 5 6

71 33 72 35

2 3 4 5
73 74 75 76 77 78

2 3 4 5
79 80 81 82 83 84

1
sinh cosh 3 2

3
sinh3 cosh3

4
sinh2 2 cosh2 2

sinh

cosh .

dp
u c y c y L y L y

dx

L L y L y

y L L y y L L y

y L L y L y L y L y L y

y L L y L y L y L y L y

   


  

   





    

  

   

     

     

                

(3.9) 

The final expression for the axial velocity is given 
by 

2
0 1.u u We u 

             
(3.10) 

The pressure gradient is obtained as 

20 1dp dp dp
We

dx dx dx
              (3.11) 

where 

20 0
1
4

1
dp F

dx L


 
   

 
and 1 1 3 21

1 3 1
.

F Ld p

dx L




  
).123(

         

 

The non-dimensional pressure rise and the non-
dimensional friction forces per unit wave length in 
the wave frame are given by 

1

0

,
dp

p dx
dx

  
             

(3.13)  

 

 
1

1 1
0

,
dp

F h dx
dx

 
             

(3.14)   

 
1

2 2
0

.
dp

F h dx
dx

 
            

(3.15)

 
Fig. 1. Velocity profiles for different σ with 

fixed a=0.4, b=0.4, d=1, ø=π/8, F=1.5, We=0.01. 

 

 
Fig. 2. Velocity profiles for different We with 
fixed a=0.4, b=0.4, d=1, ø=π/8, F=1.5, σ=1.5. 

 

 

Fig. 3. Velocity profiles for different  with fixed 
a=0.4, b=0.4, d=1, F=1.5, σ=1.5, We=0.05. 

 

4. RESULTS AND DISCUSSION 

The expression for velocity in terms of y is given by 
the equation (3.10). Velocity profiles are plotted in 
Figures 1-6 to study the effects of the different 
parameters such as the permeability parameter , 
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Weissenberg number ,We   phase difference  and 

amplitudes a, b on the velocity distribution. Fig.1 and 
Fig.2 are drawn to study the effect of  andW e . We 

notice that the velocity profiles are parabolic. Also 
observe that the velocity increases with decreasing and
W e  increasing . This may be due to the increment 

of elastic forces over the viscous forces in the non-
Newtonian fluid flow. Further the increase in the 
permeability reduces resistive forces and hence 
increases the fluid velocity in the channel. From Fig.3, 
we notice that the velocity decreases with an increase 

in . Fig.4 and Fig.5 are plotted to study the effects of 

a and b  on the velocity. We observe that the velocity 
increases with increasing , .a b  Fig.6 depicts that the 

velocity decreases with an increase in d.  
 

 

Fig. 4. Velocity profiles for different a with fixed 
b=0.4, d=1, x=0, ø=π/8, F=1.5, σ=1.5, We=0.15. 

 

 
Fig. 5. Velocity profiles for different b with fixed 
a=0.4, x=0, d=1, ø=π/8, F=1.5, σ=1.5, We=0.15. 

 

 
Fig. 6. Velocity profiles for different d with fixed 
a=0.4, b=0.4, x=0, ø=π/8, F=1.5, σ=1.5, We=0.15. 

 
Fig. 7. Velocity profiles for different σ with fixed 

a=0.4, b=0.4, d=1, ø=π/8, We=0.15. 

 

 
Fig. 8. Velocity of pressure rise for different We 

with fixed a=0.4, b=0.4, d=1, ø=π/8, σ=1.5. 

 

 
Fig. 9. Velocity of pressure rise for different  
with fixed a=0.4, b=0.4, d=1, We=0.02, σ=1.5. 

 
We have calculated the pressure rise p  in terms of 

the mean flow rate   from equation (3.11). Fig.7 
shows the effect of  on p . We observe that for a 

given , the pressure rise decreases with 
increasing   initially and coincide at a point 

 0.5, 0  and after this point the situation is 

reversed. The effect of W e is shown in Fig.8. It can 

be seen that the pressure rise increases with an 
increase in W e which is due to the enhancement of 

frictional forces in the channel. From Fig.9 we 
observe that the pressure rise decreases with 
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increasing . From Fig.10, we notice that the 
frictional forces have the opposite behavior when 
compared with the pressure rise. 

 

 
Fig. 10. Variation of frictional force (at y=h1) for 

different σ with fixed a=0.4, b=0.4, d=1, ø=π/8 
We=0.02. 

 

(a) 
 

(b) 
 

(c) 
Fig. 11. Streamlines for a=0.3, b=1.3, ø=π/6, 

We=0.001, F=10 and for different values of σ(a) 
σ=1, (b)σ1.05, (c)σ=1.15. 

 

(a) 

(b) 

(c) 
Fig. 12. Streamlines for a=0.3, b=0.3, d=1.2, σ=1, 
We=0.001, F=10 and for different values of ø(a) 

ø=0, (b)ø=π/8, (c) ø =π/3. 

 
The results obtained for pumping characteristics are 
validated with the work of Hayat et al. (2011). They 

reported that p has direct relation to Hartmann 
number and the applied magnetic field provides 
hindrance to flow. In the present analysis porous 
medium resists the flow similar to applied magnetic 
field. Our results agree well with the behavior of the 
pressure rise due to the influence of permeability 

1k (or )  which is similar to the results of Hayat 

et al. (2011) for Hartmann number. Further it is 
noticed that the present work (for porous medium) 
and the results of Hayath et al. (2011) (for magnetic 
case) yield similar conclusions on the effect of 

phase difference  of the peristaltic waves 
describing the asymmetry of the channel. 

5. TRAPPINGPHENOMENA 

The formation of an internally circulating bolus of 



K. Vajravelu et al. / JAFM, Vol. 9, No. 4, pp. 1615-1625, 2016.  
 

1622 

fluid by closed streamlines is called trapping and 
this trapped bolus is pushed ahead with the 
peristaltic wave. The effects of ,  and We on the 

streamlines are shown in Figures 11 to 13. It is 
observed that the size of the trapping bolus 
decreases with increasing ,  and We  Also it is 

noticed that the bolus disappears at 1.15   and 

0.02.We   

 

(a) 

(b) 

(c) 
Fig. 13. Streamlines for a=0.3, b=0.3, d=1.3, σ=1, 

ø=π/6, F=10 and for different values of We (a) 
We =0.001, (b) We =0.01, (c) We =0.02. 

6. CONCLUSIONS 

The peristaltic transport of Phan-Thien-Tanner fluid 
in an asymmetric channel with porous medium 
under the assumptions of long wavelength and low 
Reynolds number is studied in this paper. The 
analytical expressions are obtained for the velocity, 
stream function and pressure gradient. The features 
of the flow characteristics are analyzed by plotting 
graphs and discussed in detail.  

 We observe that the velocity increases with 
increasing permeability parameter  and 

amplitudes , .a b  The velocity decreases with an 

increase in Weissenberg number ,W e phase 

difference   and amplitude d.  

 The pressure rise decreases with increasing  in 
the pumping region and opposite behavior is 
observed in the co-pumping region. Also the 
pressure rise increases with an increase in W e
whereas it decreases with increasing  .  

 We notice that both the frictional forces have 
the opposite behavior when compared with the 
pressure rise. 

 It is observed that the size of the trapping bolus 
decreases with increasing ,  and W e . 

 The results obtained for pumping and co-
pumping regions are validated with the work of 
Hayat et al. (2011). 
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