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ABSTRACT 

A numerical study of oscillatory magnetohydrodynamic (MHD) natural convection of liquid metal between 
vertical coaxial cylinders is carried out. The motivation of this study is to determine the value of the critical 
Rayleigh number, Racr for two orientations of the magnetic field and different values of the Hartmann number 
(Harand  Haz) and aspect ratios A. The inner and outer cylinders are maintained at uniform temperatures, 
while the horizontal top and bottom walls are thermally insulated. The governing equations are numerically 
solved using a finite volume method. Comparisons with previous results were performed and found to be in 
excellent agreement. The numerical results for various governing parameters of the problem are discussed in 
terms of streamlines, isotherms and Nusselt number in the annuli. The time evolution of velocity, 
temperature, streamlines and Nusselt number with Racr, Har, Haz, and A is quite interesting. We can control 
the flow stability and heat transfer rate in varying the aspect ratio, intensity and direction of the magnetic 
field. 

Keywords: MHD; Numerical modeling; Liquid metal; Natural convection; Hydrodynamic stability; 
Cylindrical annulus. 

NOMENCLATURE 

A aspect ratio = H/D  
B0 intensity of magnetic field, Tesla 
Br radial magnetic field, Tesla 
Bz axial magnetic field, Tesla 
D lengths 
F Lorentz force 
g gravitational acceleration 
H enclosure height 
Ha Hartmann number  
J electric current density

Nu average Nusselt number  

P dimensionless pressure  
Pr Prandtl number 
Ra Rayleigh number  
r*,z* radial and axial coordinates, respectively 
ri,r0 inner and outer radii 
t dimensionless time  
Δt dimensionless time increment  
T* temperature 

T dimensionless temperature
u* radial velocity 
w* axial velocity 
u,w dimensionless radial and axial velocities, 

respectively  

α thermal diffusivity of the fluid
β thermal expansion coefficient of  the fluid 
λ radii ratio
ρ density of the fluid 
τ time
σ electric conductivity
υ kinematic viscosity of the fluid 
 dimensionless stream function  

Indices  
cr critical 
C cold
EM electromagnetic 
H hot 
r,z radial and axial directions, respectively 
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1. INTRODUCTION 

The combination of classical electromagnetism with 
fluid mechanics is the MHD. Magneto-
hydrodynamics (MHD) domain is the interaction 
between the electric currents and magnetic field 
results in Lorentz body forces, in the presence of an 
external magnetic field, which, in turn, can be used 
to propel and manipulate fluids. A magnetic field 
imposed on electrically conducting fluid retards the 
motion perpendicular to this magnetic field 
(Mebarek-Oudina and Bessaih, 2014a). 

The natural convection problem of a liquid metal in 
the presence of magnetic field has been the subject 
of many investigations. This is due to the important 
role it plays in industrial applications such as 
materials processing, crystal growth, nuclear 
engineering in connection with the cooling of 
reactors, safety aspect of gas-cooled reactors, solar 
energy collectors, and welding. Such configuration 
of space between concentric cylinders is also found 
in annular heat exchangers and various annuli 
configurations of turbo machinery. 

The control of heat and mass transfers with the 
effect of a constant magnetic field on the liquid 
metal natural convection flows in various 
configurations was the subject of many studies 
(Mebarek-Oudina and Bessaih, 2014b; Kakarantzas 
et al., 2014; Kakarantzas et al., 2011; Sankar et al. 
2011; Mebarek-Oudina and Bessaih, 2007a-
b;Altintas and Ozkol, 2015).Sankar et al. (2006) 
numerically studied natural convection of an 
electrically conducting fluid in the presence of axial 
or radial magnetic field inside a vertical cylindrical 
annulus. They found that, the direction of magnetic 
field plays an important role in suppressing the 
convective flows. The heat transfer rate increases 
with radii ratio and decreases with the Hartmann 
numbers. Uda et al. (2000) experimentally 
investigated the MHD effect on heat transfer in 
liquid lithium annular flow with an emphasis on 
heat transfer enhancement and local turbulence. The 
heat transfer is observed to increase over a 
particular. This is explained as a result of local 
turbulence enhancement in the vicinity of the 
heating wall. Experimental studies on heat transfer 
in liquid Lithium flow is conducted to compare with 
earlier studies by Naoki et al. (2011). 

Numerous studies were reported in the literature on 
natural convection between annulus spaces formed 
between circular cylinders. Anil Lal et al. (2013) 
presented a numerical prediction of natural 
convection flow in a vertical annulus closed at the 
top and opened at the bottom. The outer cylindrical 
surface of the annulus is cooled to a low 
temperature, and a hot fluid is maintained below the 
open-end temperature. Heat transfer through the 
annulus is subjected to sharp spatial variations due 
to the typical flow pattern at high values of 
Rayleigh number and is influenced by upstream 
conduction at low values of Rayleigh number. 
Correlations for average Nusselt number and 
volume rate of flow were obtained as functions of 
Rayleigh number and percentage gap ratio. Kuo and 
Leong (2013) obtained an analytical solution for a 

steady cylindrical magnetic Couette flow between 
two electrically insulated cylinders under the 
influence of a radial magnetic field. Their results 
showed that the primary flow characteristics could 
be effectively controlled through a good choice of 
the electric conductivities of the disk and cylinder 
walls. Gavara and Kanna (2012) studied 
numerically laminar natural convection between 
two coaxial vertical rectangular cylinders. At a 
given elevation, local Nusselt number on the inner 
cylinder faces increases towards cylinder edges. 
The effect of thermal condition of the walls of outer 
cylinder, inlet and outlet on the natural convection 
was analyzed. 

The numerical investigation of the effect of radial 
or axial magnetic field on the double-diffusive 
convection in a cylindrical annular cavity by 
solving the complete Navier–Stokes equations for a 
wide range of physical parameters are carried out 
by Venkatachalappa et al. (2011). Heat and mass 
transfer, fluid flow results are presented in terms of 
streamlines, isotherms, average Nusselt and 
Sherwood numbers. For small buoyancy ratios, the 
magnetic field suppresses the double-diffusive 
convection, and it is effective when it is applied 
perpendicular to the main flow. Fattahi et al. (2010) 
simulated natural convection in eccentric annulus 
using the Lattice Boltzmann Model, in order to 
examine the effect of diagonal, vertical, and 
horizontal eccentricity at various locations on the 
convection. Their results showed that Nusselt 
number increases with lowering the inner cylinder 
independent of its radial position. Witkowski and 
Walker (2002) studied numerically the steady liquid 
metal flow between a pair of insulated cylinders 
subjected to a rotational motion and a uniform weak 
transverse magnetic field. The main flow pattern 
consisted of an axisymmetric part combined with a 
weak nonaxisymmetric part. Kumar and Kalam 
(1991) reported numerically generated heat transfer 
data for laminar natural convection in tall and short 
vertical annuli with isothermal vertical cylinders. 

In the present work, a similar configuration for that 
use by Sankar et al. (2006) is considered where a 
liquid metal is placed inside two concentric vertical 
cylinders. Thus, heat transfer, MHD stability effects 
may be significantly different when in change of the 
aspect ratio. The effect of the magnetic field 
orientations, aspect ratio and thermal condition of 
the inner and outer cylinders on the stability of the 
flow is investigated. To our knowledge the MHD 
stability controlled with an aspect ratio of enclosure 
and the magnetic field directions in cylindrical 
annulus has never been the object of a preceding 
study, except thus studied by Mebarek-Oudina and 
Bessaih (2014a) in a cylindrical configuration and 
for the laminar case by Sankar et al. (2006).Our 
objective is to determine the critical Rayleigh 
numbers, Racr associated with Hartmann numbers 
and different aspect ratios, showing the effect of 
radial (Br) or axial (Bz) magnetic fields on the 
hydrodynamic and thermal stability.  

The paper is organized as follows: The physical 
model and mathematical formulation are given in 
Section 2. Numerical solution, grid effect and 
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validation code are discussed in Section 3. The 
results and discussion are presented in Section 4. 
Finally, the conclusions are given. 

2. PROBLEM  FORMULATION 

2.1 Geometry and Governing Equations 

The schematic diagram of the flow configuration is 
shown in Fig. 1. System is a vertical cylindrical 
annulus formed by two concentric vertical cylinders 
of inner and outer radii ri and ro, respectively. The 
inner and outer walls of the annulus are maintained 

at isothermal, but different temperatures *
HT and *

CT , 

respectively, while the top and bottom of the 
annulus are assumed adiabatic. The annular cavity 
is filled with a low Prandtl number fluid (liquid 
metal, Pr=0.054), which is electrically conducting, 
and it is used as a coolant for thermodynamic 
systems in the nuclear reactors. The cylindrical 
coordinates (r,z) with corresponding velocity 
components (u*,w*) are as indicated in Fig. 1. The 
fluid is permeated by a uniform magnetic field B0 
along the r*and z* directions, parallel or 
perpendicular to gravity. The electrically 
conducting fluid interacts with an external uniform 
magnetic field of constant magnitude B0. Thus, the 
Lorentz force depends only on the velocity 
component perpendicular to the magnetic field. 
 

 
Fig. 1. Physical configuration and co-ordinate 

system, where S1, S2, S3 and S4 are the 
monitoring points of hydrodynamic 
and thermal instabilities detection.  

 
Employing the Boussinesq approximation, the 
equations governing laminar, two-dimensional, 
axisymmetric flow of a Newtonian, electrically 
conducting fluid, after neglecting viscous and 
Ohmic dissipations, in cylindrical coordinates 
(r*,z*) are: 
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where **, wu are the components of the radial and 

axial velocities respectively, g is the gravity 
acceleration, β is the coefficient of volumetric 
expansion and   is the fluid density. LzLr ff , are 

the  electromagnetic force components in (r*,z*) 
directions respectively. This EM force is given by 
the formula: 

Bjf L
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where, pC /  is  thermal diffusivity of the 

liquid,  is the thermal conductivity  and pC  its 

specific heat to constant pressure. 

D =r0-ri, 2D , D ,  2D , **
CH TT   as 

typical scales for lengths [m],  velocities [m.s-1], 
time [s], pressure [N. m-2], and temperature [K], 
respectively. 

The non-dimensional variables used in the present 
study are defined as follows: 
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The dimensionless governing equations for the 
conservation of mass, momentum, and energy are 
written in dimensionless form, as follows: 
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where FEMr and FEMz represent the components of 
Lorentz force in r and z directions respectively, 
which are obtained using the equation: F = J × B, 
where J and B are the electric current and magnetic 
field vectors, respectively [1]. The expressions of 
these components are: 

 Axial magnetic field : 

uHaF rEMr  2
                                            (10a) 

0EMzF
                                                           (10b) 

 Radial magnetic field: 

0EMrF                              (11a) 

wHaF zEMz  2
                                                (11b) 

The magneto convection problem in an annular 
cavity is, therefore, governed by the following non-

dimensional parameters:



Pr is the Prandtl 

number, and  /0 DBHa  the Hartmann 

number, where υ is the kinematic viscosity  and σ 
the electrical conductivity of the fluid. rHa and

zHa  are the Hartmann numbers due to radial and 

axial magnetic field, respectively.


 3)( DTTg

Ra CH 
  is the Rayleigh number, 

D

H
A    the aspect ratio, and 

ir

r0   the radii 

ratio. 

The initial and boundary conditions in 
dimensionless form are: 

at 0,0  Twut                                          (12) 

for 0t , 

at r = 1: 0 wu , 1T Hot inner wall          (13a) 

atr=2 : 0 wu , 0T Cold outer wall          (13b) 

atz=0: 0 wu , 0



z

T
 Bottom adiabatic wall  

                                                                           (13c) 

D

H
z at : 0 wu , 0




z

T
Top adiabatic wall  

 (13d) 

The overall rate of heat transfer across the enclosure 

is expressed by the average Nusselt number at the 
hot cylindrical wall as 

 

2

1
1 dzNuNu r

                                                  
(14) 

where,
1




rr

T
Nu  is the local Nusselt number 

3. NUMERICAL SOLUTION  

Numerical solutions of the governing equations (6)-
(9), with the associated boundary conditions, are 
obtained using a finite-volume method. The 
components of the velocity (u and w) are stored at 
the staggered locations, and the scalar quantities (P 
and T) are stored in the center of these volumes 
(Mebarek-Oudina, 2014a).The numerical procedure 
called SIMPLER Patankar (1980)is used to handle 
the pressure-velocity coupling. The second-order 
accurate central difference scheme is used to 
discretize the convection and diffusion terms. The 
discretized difference equations are arranged in 
tridiagonal matrix that can be solved readily using 
the Thomas algorithm (TDMA). Convergence at a 
given time step is declared when the maximum 
relative change between two consecutive iteration 
levels fell below than 10−4, for u, w and T. At 
steady, the calculations are effected with 
continuation until satisfaction of the convergence 
criteria, of determining the difference between the 

average Nusselt numbers on both walls (cold CNu  

and hot HNu ), and signal the stopping of 

calculations if the difference does not exceed a 
tolerance value  : 

 HC NuNu
                                                

(15) 
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At the oscillatory regime (transient), the calculation 
is stopped after a number of long increment times 
enough to ensure that the oscillations obtained are 
physical in nature. Mass conservation is checked for 
each time increment Δt. 

3.1 Grid Independence Study 

Several non-uniform grids close to the cylinder 
walls, where large velocity and temperature 
gradients exist, thus require a larger number of 
nodes in order to resolve the specific characteristics 
of the MHD flow. They have been chosen 
according to geometric progressions, which permits 
a grid refinement near the walls. In order to 
examine the effect of the grid on the numerical 
solution and reduce numerical errors a number of 
grid sizes have been investigated for a grid 
independence study: 42×42 nodes, 72×72 nodes, 
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82×82 nodes and 82×164 nodes. By increasing the 
grid size from 72×72 nodes to 82×82 nodes or from 
82×82 nodes to 164×164 nodes, a change of less 
than 2% in computed values was observed in Fig. 2. 
Therefore, in order to capture the Hartmann and 
side layers, the grid used has 82×82 nodes and was 
chosen after performing grid independence tests, 
since it is considered to have the best compromise 
between the computing time and the sufficient 
resolution in calculations. Calculations were carried 
out on a PC with CPU 3 GHz. 

 

 
Fig. 2. Profiles of the dimensionless vertical 
velocity w with r for different grids, at z=0.5 

for Pr =0.054, Ra=106, λ=2, A=1and 
Har=100. 

 
 

 
 

Fig. 3. Comparison of present results for heat 
transfer with data in the literature  

(A=1, λ=2 and r = 0.7). 
 
3.2 Code Validation 

The numerical technique of convection in a vertical 
annulus formed by two concentric cylinders is 
successfully investigated. The inner and outer 
cylinders are maintained at uniform temperatures, 
while the horizontal top and bottom walls are 
thermally insulated. However, in order to verify the 
accuracy of the current numerical results, 
simulations of the present model are tested and 
compared with different reference solutions 

available in the literature. First, the numerical 
results for different Rayleigh numbers are obtained. 
Figure 3 illustrates the variation of average Nusselt 
numbers with Rayleigh number. From this figure, 
the overall heat transfer rate increases with Ra. 

To perform this validation, the comparison, shown 
in figure 3, reveals a good agreement between our 
results and that of Sankar et al. (2006), Kumar and 
Kalam (1991), and De Dahl Davis and Thomas 
(1969). In addition, we compare profiles of the 
temperature evolution with the results of Kumar 
and Kalam (1991) for A=1, λ=2 and Ra = 2 ×105 at 
z=0.5 (see Fig. 4). A very good agreement is 
obtained between the present numerical study and 
the numerical solution of Kumar and Kalam (1991). 

 

 
 

Fig. 4. Validation of computer code with the 
results of Kumar and Kalam (1991); 
Temperature profile for Ha = 0, A=1, 

λ=2 and Ra = 2 ×105 at z=0.5. 

 

 
 

Fig. 5. Average heat transfer rate for different 
values of Haz, aspect ratio 

A=1, Ra = 104 and Pr = 0.054. 

 
Without magnetic field, a good correspondence 
between our numerical results and literature data is 
found, what gives credibility to the present code. 

The main effect of the magnetic field is to decrease 
the overall heat transfer rate between the hot and 
cold walls. The average local Nusselt number on 
the hot wall is calculated from the equation (14) and 
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presented in Fig. 5 for various magnetic field 
strengths. As Ha increases, the value of Nusselt 
numbers decreases. In the general cases, the effect 
of magnetic fields is to suppress the heat transfer 
and its effect is apparent in the Fig. 5 for axial 
magnetic field, unit aspect ratio and Ra = 104. This 
result is the same to the result found by Sankar et 
al. (2006).  

4. RESULTS AND DISCUSSION 

In the present work, we determine the physical 
instabilities within the flow from natural convection 
of a low Prandtl number fluid (Pr = 0.054), 
contained in a vertical cylindrical annulus with 
different aspect ratio A = 0.5, 1, 2. A constant 
magnetic field is projected on axial or radial 
direction of the flow. Then, the determination of 
physical instabilities is reduced to the determination 
of a Rayleigh number characterizing the subjacent 
flow, starting from which the flow becomes 
oscillatory. Numerical calculations are carried out 
by increasing the Rayleigh numbers to detect the 
physical instabilities.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A) 

 
B) 

Fig. 6. Comparison of the results between two 
time steps without magnetic field for the probe 
S1, A=0.5 a) In steady state flow, Ra<Racr. b) In 

oscillatory state flow, Racr= 6.65×106. 
 

In order to eliminate a numerical solution, we use 
two dimensionless time step ∆t and ∆t/2. The 
physical solutions are defined for the same 
oscillations, or for the very low variations between 
the oscillations with ∆t and ∆t/2. Figure 6b presents 

examples of test ∆t used in this study for Ha= 0. 
The results of both dimensional time steps ∆t, ∆t/2 
are in quite good agreement. The results are 
considered as follows: First, we visualize of flow 
and thermal structures without a magnetic field.  
Next with a magnetic field, we determine the effect 
of axial and radial magnetic field.  Finally, we study 
the effect of aspect ratio on stability flow in the 
presence of the magnetic field.  

4.1   Results without Magnetic Field 

In this section, Ha = 0 and the terms of the 
electromagnetic forces (the Lorentz forces FEMr and 
FEMz) are eliminated in Eqs. (8) and (9). At the 
onset of oscillatory flow, the calculation solution is 
found by determination of the critical Rayleigh 
number Racr. For this, a small dimensionless time 
step (∆t = 10-6) is necessary to make the transition 
as close as possible to the true case. In addition, to 
determine the amplitude and frequency when 
oscillations begin. The beginning of the oscillatory 
mode is possible with the increasing of the Rayleigh 
number starting from the steady solution, Racr = 
6.65×106 (Figure 6b). 

The steady state is limited by the value of the 
critical Rayleigh number (Ra<Racr), the flow 
becomes oscillatory beyond this value (Figure 6a).  
At different dimensionless times, iso-contours of 
the dimensionless stream function and the isotherms 
are presented in figures 7, 8 and 12. The curves 
presented in Figure 7 (without magnetic field), 
Figure 8 (with axial magnetic field), and Figure 12 
(with radial magnetic field) of the dimensionless 
radial velocity u, oscillate around the average 
values during a chosen interval of time. Its intensity 
is higher when the magnetic field is strongly 
present. When the flow becomes oscillatory and 
periodic in time, we determine the critical Rayleigh 
number Racr. 

Figure 7 presents the time evolution during one 
period of the dimensionless streamlines (defined as: 
u = /z) for Racr =6.65 × 106 and Ha = 0, and we 
indicate the various dimensionless times denoted by 
ta, tb, tc . From this figure, the flow structure is 
represented by a cell located in the liquid part (0< t 
< 0.6). These cells generate a mass throughput of 
recirculation and an important convective transport 
located at the center of each of them. The variation 
of the dimensionless streamlines contours, 
translates the periodic aspect of the flow. Here, the 
periodic regime is obtained and the physical 
quantities of oscillations are clearly deduced and 
presented. 
Figures 8 and 12 show the time evolutions of the 
iso-contours of the dimensionless stream function   
and isotherms. We can locate the maximum and 
minimum lines of stream function at the center of 
cells. The isotherms show clearly how the motion is 
driven. These figures show the streamlines 
hydrodynamic; iso-contours and isotherms. Over 
the dimensionless time (ta, tb, tc), for a chosen 
period of oscillation. The lines of stream function 
are projected into the meridian plane (r*,z*). Then, 
noticing the oscillatory behavior of the various 
historical, we can see the establishment of an  
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Fig. 7. Time evolution of the dimensionless radial velocity u for Ha = 0 (without magnetic field), A = 0.5 
and Racr = 6.65×106 at the probe S3. For various dimensionless times (ta, tb, tc): (a), (b),(c) dimensionless 

streamlines ψ, (d),(e),(f) isotherms T. 
 

 

 
 

 

 
 

 
 
 
 

 
 

Fig. 8. Time evolution of the dimensionless radial velocity u for Haz = 40, A = 0.5 and Racr = 1.9×107 at 
the probe S3. For various dimensionless times (ta, tb, tc): (a), (b),(c) dimensionless streamlines ψ, 

(d),(e),(f) isotherms T. 
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unstable regime in the flow. This instability can be 
interpreted physically by the interaction of volume 
forces (Lorentz force) and buoyancy forces which 
gives rise to a multicellular flow. The stability is 
provided by the equilibrium between viscous and 
electromagnetic forces. 
 

 
 

Fig. 9. Stability diagram Racr–Hazfor A=0.5. 

 

 
Fig. 10. Phase plot showing the variation 

between u and w for Haz= 40, A = 0.5 
and Racr =1.9×107. 

 

 

 
Fig. 11. Power spectrum of the dimensionless 

radial velocity u for Haz = 40 and A = 0.5. 
Fcr = 170.67 represents the dimensionless 

critical frequency. 

The deformation of the isotherms (Figs. 7, 8 and 
12) proves the existence and dominance of the 
convective to the diffusive regimes. We could 
consider from these figures that the application of a 
magnetic field makes the system more significant. 
This is due to increasing values of Rayleigh, which 
promotes the convective relative to diffusive fluxes. 

4.2   Results with Magnetic Field 

4.2.1   Effect of Axial Magnetic Field 

The stratification of the temperature field in the 
interior begins to diminish. Figure 8 shows the 
isotherms and streamlines for Haz = 40. From this 
figure, we see that, the isotherms shown are parallel 
to the horizontal walls, begin from the top wall and 
will finish at the bottom wall, indicating that most 
of the heat transfer is by heat conduction.  The 
fluctuation of unsteady dimensionless radial and 
axial components of velocity at a probe S1 is 
presented in the form of a phase plot in Figure 10. 
A repeating loop obtained in the phase plot 
indicates that the unsteady flow is periodic. 

4.2.2   Effect of Radial Magnetic Field 

The hydrodynamic flow and thermal fields inside 
the annular enclosure are exemplified by the 
streamlines and isotherms in Fig. 7 without 
magnetic field, Fig. 8 with Haz= 40, and with  Har= 
40 in Fig. 12. These figures show clearly the effect 
of magnetic field directions on the flow pattern and 
temperature distribution. 

Plotted of the dimensionless velocity components in 
the phase planes (using the dynamical systems 
terminology), are presented in Figures 10 and 14. 
These diagrams called phase portraits are closed 
loops with dominant harmonics, which means that 
the quasi-periodic flow regime is reached. The 
phase portraits are used to inspect an intuitive and 
reliable of the movement regime, the addition of 
this utility, we used the phase portraits during 
calculations to ensure that the amplitudes are 
uniform or, the temporal evolutions have sinusoidal 
character. Exactly, you can see this periodic 
character behind the cycles limit. 

In order to verify the effect of the magnetic field 
direction, we presented the tori in the plan (u,w) of 
the probe S1 for Haz = 40 and Har = 40. The 
different parameters vary in a cyclical manner, 
thereby justifying the oscillatory character seen on 
the curves of time evolution.  

In order to obtain the frequency of oscillation for 
the critical value, the discrete Fourier transform was 
used of a certain number N, which has to be a 
power of 2. This transform is multiplied by its 
combined complex and is divided by 2 to obtain the 
energy E, according to the frequencies of 
oscillations F, defined by F = M/ (NΔt), where Δt is 
the dimensionless time step and M = 0, 1, N=2. The 
values of E (F) represent several scales of sizes; in 
this case we use the decimal logarithm. Note that in 
this work, the peak of the energy spectrum, which 
corresponds to the major frequency Fcr for N = 216 

and Δt = 2.5×10-6 (Figs. 11 and 15) shows the  
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Fig. 12. Time evolution of the dimensionless radial velocity u for Har = 40, A = 0.5 and Racr = 1.5 ×107 at 
the probe S3. For various dimensionless times (ta, tb, tc): (a), (b),(c) dimensionless streamlines ψ, (d),(e),(f) 

isotherms T. 

 
prevalent frequencies of oscillations for some cases 
of the oscillatory flow (Mebarek-Oudina and 
Bessaih, 2014a). 

 

 
 

Fig. 13. Stability diagram Racr–Harfor A=0.5. 

 
4.2.3   Effect of Aspect Ratio  

A numerical results are presented in Figs. 16-17, as 
the aspect ratio is increased from A = 0.5 to 2. 
Figures 16-17 show the effect of various aspect 
ratios (A=0.5, 1, and 2) on the values of the critical 
Rayleigh numbers, Racr. We observe that the 

increase of A causes the decrease of the critical 
Rayleigh number. Since the direction of primary 
flow is along the two horizontal walls, the axial 
magnetic field is more effective for the shallow 
cavities. The strong magnetic field is required to 
suppress the flow for a higher Rayleigh number 
(Figs. 16-17). 

 

 
Fig. 14. Phase plot showing the variation 

between u and w for Har= 40, A = 0.5 
and Racr =1.5×107. 
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Fig. 15. Power spectrum of the dimensionless 
radial velocity u for Har= 40 and A = 0.5.  
Fcr = 170.72 represents the dimensionless 

critical frequency. 
 

At the onset of instability, for a given value of 
Hartmann number it can be seen that Racr is a 
decreasing function of Har and Haz. As expected, 
for a given value of aspect ratio, Racr is an 
increasing function of Haz (Fig. 9) and Har (Fig. 13) 
due to the fact of reducing the convection by the 
magnetic field. The effect of both radial and axial 
magnetic fields is approximately the same for 
aspect ratio equal to 1 (Fig. 16). However, 
generally, irrespective of direction, his role is to 
suppress the heat transfer. 

 

 
Fig. 16. Stability diagram Racr–A for Har=40 and 

Haz= 40. 

5. CONCLUSION 

A numerical study of natural convection in a 
vertical annulus formed by two concentric vertical 
cylinders is carried out. The inner and outer walls of 
the annulus are maintained at isothermal different 
temperatures, while the top and bottom of the 
annulus are adiabatic. The constant magnetic field 
has a harmful effect on the natural convection 
stability flows of the liquid metals, with a low 
Prandtl number (semiconductor, coolant). Whereas, 
the axial magnetic field is effective in suppressing 
heat transfer in shallow cavities and radial magnetic 
field for tall cavities. 

 
 

Fig. 17. Stability diagram Racr–A for Har=100 

and Haz=100. 

 

From the investigation, some conclusions can be 
summarized as follows:     

 The increasing of the criticize Ra numbers with 
the values of the Hartmann number. For 
different aspect ratios and the magnetic field 
directions used in this study, the magnetic field 
has a stabilizing effect for this kind of flow. 

 The decrease of critical Rayleigh numbers, with 
the increase of aspect ratio values. The 
increasing of the aspect ratio has a destabilizing 
effect for MHD flows in an annular space 
between two coaxial vertical cylinders, the 
inside is hot and the outside is cold. 

 The importance of the magnetic field direction 
to eliminate the convective flows. 

 When the magnetic field is perpendicular to the 
direction of the primary flow (radial field A=1, 
2) and (axial field for A=0.5), it has a more 
stabilizing effect of the flow.  

 The numerical results found in this numerical 
study have a good agreement with those found 
in the literature, with and without magnetic 
field.  

 The effect of the magnetic field is to decrease 
the rate of convective heat transfer. The average 
Nusselt number decreases with an increase in 
Hartmann number. 
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