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ABSTRACT 

This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible 
Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump 
effects. The transformed conservation equations are solved numerically subject to physically appropriate 
boundary conditions using a second-order accurate implicit finite-difference Keller Box technique.  The 
numerical code is validated with previous studies. The influence of a number of emerging non-dimensional 
parameters, namely the Weissenberg number (We), the power law index (n), Velocity slip (Sf), Thermal jump 
(ST), Prandtl number (Pr) and dimensionless tangential coordinate () on velocity and temperature evolution 
in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface 
heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is 
presented and excellent correlation achieved. It is found that velocity, skin friction and heat transfer rate 
(Nusselt number) is increased with increasing Weissenberg number (We), whereas the temperature is 
decreased.  Increasing power law index (n) enhances velocity and heat transfer rate but decreases temperature 
and skin friction.  An increase in Thermal jump (ST) is observed to decrease velocity, temperature, local skin 
friction and Nusselt number. Increasing Velocity slip (Sf) is observed to increase velocity and heat transfer 
rate but decreases temperature and local skin friction. An increasing Prandtl number, (Pr), is found to 
decrease both velocity and temperature. The study is relevant to chemical materials processing applications. 

Keywords: Non-newtonian tangent hyperbolic fluid; Boundary layer flow; Weissenberg number; Power law 
index; Velocity slip; Thermal jump; Skin friction; Nusselt number. 

NOMENCLATURE 

Cf skin Friction Coefficient 
F dimensionless stream function 
Grx Grashof number 
g acceleration due to gravity 
k thermal conductivity of the fluid 
K0 thermal Jump factor 
n power law index 
N0 velocity slip factor 
Nu local Nusselt number 
Pr Prandtl number 
Sf dimensionless Velocity Slip parameter 
ST dimensionless Thermal Jump parameter 
T fluid temperature 
u, v dimensionless velocity components along 

the x - and y – directions, respectively 
V velocity vector 
We Weissenberg number 
x stream wise coordinate      

y transverse coordinate 

 thermal diffusivity 
β coefficient of thermal expansion 
 kinematic viscosity
ρ fluid density 
 dynamic viscosity 
 dimensionless radial coordinate 
 dimensionless Temperature
 dimensionless tangential coordinate 
 dimensionless Stream function 
 time dependent material constant 
 second invariant strain tensor  

Subscripts  
w surface conditions on plate (wall) 
 free Stream conditions 
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1. INTRODUCTION 

Interest in boundary layer flows of non-Newtonian 
fluids has been increased due to their applications 
in science, engineering including thermal oil 
recovery, food and slurry transportation, polymer 
and food processing. A variety of non-Newtonian 
fluid models have been proposed in the literature 
keeping in view of their several rheological 
features. In these fluids, the constitutive 
relationship between stress and rate of strain is non-
linear in comparison to the Navier-Stokes equations 
which are generally good for Newtonian fluids. 
Non-Newtonian transport phenomena arise in many 
branches of process mechanical, chemical and 
materials engineering. Most non-Newtonian models 
involve some form of modification to the 
momentum conservation equations. These include 
power-law fluids (2012), viscoelastic fluids 
including Johnson-Segalman liquids (2013), 
Walters-B short memory models (2011), Oldroyd-B 
models (2012) and differential Reiner-Rivlin 
models (2012).  The flow of non-Newtonian fluids 
in the presence of heat transfer is an important 
research area due to its relevance to polymer 
processing and biotechnology (1993; 2001). 

The non-adherence of the fluid to a solid boundary 
is known as velocity slip. It is a phenomenon that 
has been observed under certain circumstances 
(1998). The slip flow problem of laminar boundary 
layer is of considerable practical interest. 
Microchannels which are at the forefront of today’s 
turbomachinery technologies are widely being 
considered for cooling of electronic devices, micro 
heat exchanger systems, etc. If the characteristic 
size of the flow system is small or the flow pressure 
is very low, slip flow happens. If the characteristic 
size of the flow system tends to the molecular mean 
free path, continuum physics is no longer suitable. 
In no-slip-flow, as a requirement of continuum 
physics, the flow velocity is zero at a solid–fluid 
interface and the fluid temperature instantly closest 
to the solid walls is equal to that of the solid walls. 
The fluids exhibiting boundary slip find 
applications in technology such as in the polishing 
of artificial heart valves and internal cavities. Slip 
effects are significant to certain industrial thermal 
problems and manufacturing fluid dynamics 
systems. Sparrow et al. (1962) presented the first 
significant investigation of laminar slip-flow heat 
transfer for tubes with uniform heat flux. Inman 
(1964) further described the thermal convective slip 
flow in a parallel plate channel or a circular tube 
with uniform wall temperature. These studies 
generally indicated that velocity slip acts to 
enhance heat transfer whereas temperature jump 
depresses heat transfer. Many studies have 
appeared in recent years considering both 
hydrodynamic and thermal jump effects. Interesting 
articles of relevance to process mechanical 
engineering include Larrode et al. (2000) who 
studied thermal/velocity slip effects in conduit 
thermal convection.  Spillane (2007) who examined 
sheet processing boundary layer flows with slip 
boundary conditions and Crane and McVeigh 
(2010) who studied slip hydrodynamics on a micro-

scale cylindrical body. Further studies in the 
context of materials processing include Yu and 
Ameel (2002), Crane and McVeigh (2010).  Studies 
of slip flows from curved bodies include Bég et al. 
(2011) who examined using network numerical 
simulation the magneto-convective slip flow from a 
rotating disk. Wang and Ng (2011) studied using 
asymptotic analysis of the slip hydrodynamics from 
a stretching cylinder. Results assuming that the slip 
solution was a perturbation of the no-slip solution 
predicted that the slip conditions would not affect 
shear stress, boundary-layer thickness, or heat 
transfer (1951; 1952). The solutions to other 
viscous flows considered similar to boundary layer 
flows, such as Couette, Poiseuille, and Rayleigh 
flows, showed a change in heat transfer and shear 
stress (1967). This led to the suggestion that the 
mathematical and experimental techniques 
available at the time lacked the accuracy necessary 
to capture the result. The suggestion was also made 
that the boundary-layer equations were not valid for 
slip flows. Two separate arguments were made.  
The first was that the second-order slip boundary 
condition was of the same order as the terms that 
were discarded from the Navier–Stokes equations 
to create the boundary-layer equations (1963; 
1969). A second problem was the Reynolds number 
scaling of the boundary-layer equations. Using the 
definitions of viscosity and the speed of sound, the 
Knudsen number can be found as a function of the 
Mach number and Reynolds number (2002):  

Rex
x

M
Kn                   (1) 

This scaling indicates that an incompressible 
boundary layer, with a Reynolds number of 500 or 
greater and a Mach number of less than 0.3, is 
unlikely to have a Knudsen number large enough 
for slip to appear.  Several decades after these 
initial results, the development of 
microelectromechanical systems led to a renewed 
interest in slip flows (1998; 1999). The correct 
scaling of boundary-layer slip was shown to be 
based on the boundary-layer thickness and was 
computed as  

Rex

M
Kn                   (2) 

This scaling does allow an incompressible 
boundary layer with a Reynolds number of 500 or 
greater and a Mach number of less than 0.3 to have 
a large enough Knudsen number for slip to appear. 
Taking slip flow condition at the boundary, many 
researchers (2006; 2002; 2002; 2008; 2009) 
investigated the different flow problems over a 
stretching sheet. Off late, Chauhan and Olkha 
(2011) investigated the slip flow of second grade 
fluid past a stretching sheet in a porous medium by 
considering the power-law surface temperature/heat 
flux. Swati Mukhopadhyay and Gorla (2011) 
studied the effects of partial slip on boundary layer 
flow past a permeable exponential stretching sheet 
in presence of thermal radiation. Mukhopadhyay et 
al. (2012) analyzed the Lie group analysis of MHD 
boundary layer slip flow past a heated stretching 
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sheet in presence of heat source/sink. 
Mukhopadhyay and Andersson (2009) studied the 
Effects of slip and heat transfer analysis of flow 
over an unsteady stretching surface. Saghafian et al. 
(2015) presented a numerical study on slip flow 
heat transfer in micro-poiseuille flow using 
perturbation method. Malvandi et al. (2015) studied 
the boundary layer slip flow and heat transfer of 
nanofluid induced by a permeable stretching sheet 
with convective boundary condition. 

Convective boundary-layer flows are often 
controlled by injecting or withdrawing fluid 
through a porous bounding heat surface. This can 
lead to enhanced heating or cooling of the system 
and can help to delay the transition from laminar to 
turbulent flow.  The case of uniform suction and 
blowing through an isothermal vertical wall was 
treated first by Sparrow and Cess (1961) they 
obtained a series solution which is valid near the 
leading edge. This problem was considered in more 
detail by Merkin (1972), who obtained asymptotic 
solutions, valid at large distances from the leading 
edge, for both the suction and blowing. Using the 
method of matched asymptotic expansion, the next 
order corrections to the boundary-layer solutions 
for this problem were obtained by Clarke (1973), 
who extended the range of applicability of the 
analyses by not invoking the usual Boussinesq 
approximation. The effect of strong suction and 
blowing from general body shapes which admit a 
similarity solution has been given by Merkin 
(1975). A transformation of the equations for 
general blowing and wall temperature variations 
has been given by Vedhanayagam et al. (1980). The 
case of a heated isothermal horizontal surface with 
transpiration has been discussed in some detail first 
by Clarke and riley (1975; 1976) and then more 
recently by Lin and Yu (1988).  Hossain et al. 
(2001) studied the effect of radiation on free 
convection flow with variable viscosity from a 
vertical porous plate. 

An interesting non-Newtonian model developed for 
chemical engineering systems is the Tangent 
Hyperbolic fluid model. This rheological model has 
certain advantages over the other non-Newtonian 
formulations, including simplicity, ease of 
computation and physical robustness. Furthermore 
it is deduced from kinetic theory of liquids rather 
than the empirical relation.  Several 
communications utilizing the Tangent Hyperbolic 
fluid model have been presented in the scientific 
literature. There is no single non-Newtonian model 
that exhibits all the properties of non-Newtonian 
fluids. Among several non-Newtonian fluids, 
hyperbolic tangent model is one of the non-
Newtonian models presented by Pop and Ingham 
(2001). Nadeem et al. (2009) made a detailed study 
on the peristaltic transport of a hyperbolic tangent 
fluid in an asymmetric channel. Nadeem and 
Akram (2011) investigated the peristaltic flow of a 
MHD hyperbolic tangent fluid in a vertical 
asymmetric channel with heat transfer. Akram and 
Nadeem (2012) analyzed the influence of heat and 
mass transfer on the peristaltic flow of a hyperbolic 
tangent fluid in an asymmetric channel.  Akbar et 

al. (2013) analyzed the numerical solutions of 
MHD boundary layer flow of tangent hyperbolic 
fluid on a stretching sheet. Very recent studies 
include V.R. Prasad et al., (2014; 2015; 2015).   

The objective of the present study is to investigate 
the laminar boundary layer flow and heat transfer of 
a Tangent Hyperbolic non-Newtonian fluid past a 
vertical porous plate.  The non-dimensional 
equations with associated dimensionless boundary 
conditions constitute a highly nonlinear, coupled 
two-point boundary value problem.  Keller’s 
implicit finite difference “box” scheme is 
implemented to solve the problems (2014; 2015; 
2015; 2012). The effects of the emerging 
thermophysical parameters, namely the 
Weissenberg number (We), power law index (n), 
Velocity slip (Sf), Thermal jump (ST) and Prandtl 
number (Pr) on velocity, temperature, skin friction 
number and heat transfer rate (local Nusselt 
number) characteristics are studied. The present 
problem has to the authors’ knowledge not 
appeared thus far in the scientific literature and is 
relevant to polymeric manufacturing processes in 
chemical engineering. 

2. NON-NEWTONIAN 
CONSTITUTIVE  TANGENT 
HYPERBOLIC FLUID MODEL 

In the present study a subclass of non-Newtonian 
fluids known as the Tangent Hyperbolic fluid is 
employed owing to its simplicity.  The constitutive 
equation for Tangent Hyperbolic non-Newtonian 
fluid (2001) takes the form: 

 
. .

0 tanh

n

      

         
        

              (1) 

where    is extra stress tensor,   is the infinite 

shear rate viscosity, 0  is the zero shear rate 

viscosity,   is the time dependent material 
constant, n is the power law index i.e. flow 
behavior index and  is defined as 

. . .1 1

2 2ij ji
i j

                         (2) 

where   21
.

2
Ttrac gradV gradV  

 
 We 

consider Eqn. (1), for the case when  = 0 

because it is not possible to discuss the problem for 
the infinite shear rate viscosity and since we 
considering tangent hyperbolic fluid that describing 
shear thinning effects so   < 1.  Then Eq. (1) 

takes the form 

. . . .

0 0 1 1

n n

      
                       
         
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. .

0 1 1n  
  
     

    

               

                (3) 

The introduction of the appropriate terms into the 
flow model is considered next. The resulting 
boundary value problem is found to be well-posed 
and permits an excellent mechanism for the 
assessment of rheological characteristics on the 
flow behaviour. 

3. MATHEMATICAL 
ANALYSIS 

A steady, laminar, two dimensional boundary layer 
flow and heat transfer of a viscous incompressible 
tangent hyperbolic fluid over a vertical porous plate 
is considered, as illustrated in Fig. 1. Both the plate 
and Tangent Hyperbolic fluid are maintained 
initially at the same temperature. Instantaneously 
they are raised to a temperature 

wT ,T  
the 

ambient temperature of the fluid which remains 
unchanged. 
 

 
Fig. 1. Physical model and coordinate system. 

  

In line with the approach of Pop and Ingham 
(2001), Nadeem (2009; 2011; 2012), Akbar (2013), 
V.R. Prasad et al., (2014; 2015) and introducing the 
boundary layer approximations, the equations for 
mass, momentum, and energy, can be written as 
follows:  

0
u v

x y

 
 

 
                                (4) 

 

 

2

2

2

2

1

2

u u u
u v n

x y y

u u
n g T T

y y



  
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  

  

  
      

         (5)

 

2

2

T T T
u v

x y y
  

 
  

                

(6) 

where u and v are the velocity components in the x and 
y directions, respectively, and all the other parameters 
are mentioned in the nomenclature. The Tangent 
Hyperbolic fluid model therefore introduces a mixed 
derivate (second order, first degree) into the 
momentum boundary layer Eq. (5). The non-

Newtonian effects feature in the shear terms only of 
Eq. (5) and not the convective (acceleration) terms. 
The thirds term on the right hand side of Eq. (5) 
represents the thermal buoyancy force and couples the 
velocity field with the temperature field Eq. (6).  

The boundary conditions for the velocity and 
temperature fields are  

0 00, , 0,

, 0,

w

u T
At y u N v T T K

y y

As y u T T

 
    

 
   

        (7) 

For N0 = 0 = K0, one can recover the no-slip case. 
Tw is the convective fluid temperature. The stream 

function  is defined by u
y





 and v
x


 


, 

and therefore, the continuity equation is 
automatically satisfied. In order to render the 
governing equations and the boundary conditions in 
dimensionless form, the following non-dimensional 
quantities are introduced 

 

   

1/4 1/40 4

3

2

1
, , 4 ,

4

, , Pr ,
4

x x x

w
x

w

V x y
Gr Gr Gr f

x

g T T xT T
Gr

T T

      


  
 







     
 


  


 (8) 

In view of Eq. (8), the boundary layer Eqs. (5) – (7) 
reduce to the following coupled, nonlinear, 
dimensionless partial differential equations for 
momentum and energy for the regime: 

     21 ''' 3 '' 2 ' '' '''

'
' ''

en f f f f nW f f

f f
f f

 


 

     

  
    

           

(9) 

 ''
3 ' ' '

Pr

f
f f

    
 

  
      

   

                 (10) 

The corresponding transformed boundary 
conditions are  

   0, 0, ' '' 0 , 1 ' 0

, ' 0, 0
f TA t f f S f S

As f

  
 
    

   
)11( 

 here primes denotes the ordinary differentiation with 

respect to , 
1

4
0

f
N Gr

S
a

  and 
1

4
0

T
K Gr

S
a

 are the 

dimensionless velocity slip and thermal jump 
parameters respectively.  The wall thermal boundary 
condition in Eq. (11) corresponds to convective 
cooling. The skin-friction coefficient (shear stress at 
the plate surface) and local Nusselt number (heat 
transfer rate) can be defined with the following 
expressions. 

   23/41
1 ''( ,0) ''( ,0)

4 2f e
n

Gr C n f W f    
 
(12) 

1/4 '( ,0)Gr Nu                   (13) 
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Table 1 Values of Cf and Nu for different We and  (Pr = 0.71, n = 0.3,  = 0.2) 

We 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.0 1.1596 0.2846 0.8958 0.4861 0.6109 0.7205 

0.5 1.0685 0.2842 0.8380 0.4860 0.5833 0.7204 

1.0 0.9897 0.2839 0.7873 0.4657 0.5583 0.6995 

5.0 0.5871 0.2815 0.5150 0.4412 0.4107 0.6733 

10.0 0.3167 0.2804 0.3108 0.4211 0.2959 0.6523 

15.0 0.1436 0.2790 0.1333 0.3994 0.1267 0.6262 

20.0 0.0026 0.2780 -0.0084 0.3777 -0.0021 0.6051 

25.0 -0.0813 0.2771 -0.0800 0.3550 -0.1077 0.5790 

 

Table 2 Values of Cf and Nu for different n and  
(We = 0.3,  = 0.2, Pr = 0.71)

 
 

N 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.0 1.2047 0.2803 0.8979 0.4856 0.6105 0.7204 

0.1 1.1783 0.2816 0.8898 0.4857 0.6071 0.7204 

0.2 1.1454 0.2829 0.8780 0.4859 0.6006 0.7205 

0.3 1.1032 0.2844 0.8602 0.4860 0.5940 0.7205 

0.4 1.0460 0.2859 0.8328 0.4863 0.5812 0.7205 

0.5 0.9650 0.2876 0.7881 0.4865 0.5596 0.7206 

0.6 0.8433 0.2893 0.7122 0.4868 0.5209 0.7206 

0.7 0.6506 0.2912 0.5776 0.4870 0.4477 0.7207 

0.8 0.3322 0.2931 0.3311 0.4870 0.2999 0.7208 
 

 

In vicinity of the lower stagnation point,  0 and 
the boundary layer Eqs. (9) – (10) contract to a 
system of ordinary differential equations: 

   21 ''' 3 '' 2 ' '' ''' 0en f ff f nW f f      
          

(14) 

''
3 ' 0

P r
f

                  (15) 

The general model is solved using a powerful and 
unconditionally stable finite difference technique 
introduced by Keller (1978). The Keller-box 
method has a second order accuracy with arbitrary 
spacing and attractive extrapolation features. 

4. NUMERICAL SOLUTION 
WITH KELLER BOX 
IMPLICIT METHOD 

The governing boundary layer Eqs. (9) – (10) subject 
to the boundary conditions (11) is solved numerically 
by using Keller Box implicit differences method. This 
technique, despite recent developments in other 
numerical methods, remains a powerful and very 
accurate approach for parabolic boundary layer flows. 

It is unconditionally stable and achieves exceptional 
accuracy (1978). Recently this method has been 
deployed in resolving many challenging, multi-
physical fluid dynamics problems. These include 
hydromagnetic Sakiadis flow of non-Newtonian fluids 
(2009), nanofluid transport from a stretching sheet 
(2011), radiative rheological magnetic heat transfer 
(2009), water hammer modelling (2005), porous 
media convection (2008) and magnetized viscoelastic 
stagnation flows (2009). The Keller-Box discretization 
is fully coupled at each step which reflects the physics 
of parabolic systems – which are also fully coupled.  
Discrete  calculus  associated  with  the  Keller-Box  
scheme  has also been shown  to  be  fundamentally 
different  from  all  other  mimetic  (physics  
capturing)  numerical  methods, as elaborated by 
Keller (1978). The Keller Box Scheme comprises four 
stages. 

1. Decomposition of the Nth order partial    
differential equation system to N first order 
equations. 

2.     Finite Difference Discretization 

3. Quasilinearization of Non-Linear Keller 
Algebraic Equations and finally. 
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Table 3 Values of Cf and Nu for different  and  (We = 0.3, n = 0.2, Pr = 0.71) 

 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.2 1.1032 0.2844 0.8602 0.4860 0.5940 0.7205 

0.3 1.5940 0.4979 1.3561 0.8176 0.9738 1.2012 

0.4 1.8114 0.6090 1.5815 0.9862 1.1585 1.4412 

0.5 1.9350 0.6769 1.7106 1.0882 1.2676 1.5863 

0.6 2.0150 0.7226 1.7945 1.1565 1.3396 1.6820 

0.7 2.0710 0.7555 1.8533 1.2054 1.3905 1.7503 

0.8 2.1124 0.7802 1.8968 1.2422 1.4295 1.8020 

0.9 2.1443 0.7996 1.9315 1.2710 1.4592 1.8421 

1.0 2.1693 0.8150 1.9580 1.2939 1.4827 1.8741 
 

 

4.  Block-tridiagonal Elimination solution of the  
Linearized Keller Algebraic Equations. 

3. NUMERICAL RESULTS AND 
DISCUSSION 

In order to get a physical insight into the problem, a 
representative comprehensive set of numerical results 
are presented in Tables 1 – 4 and Figs. 2 – 9.  The 
numerical problem comprises of two independent 
variables (,), two dependent fluid dynamic variables 
(f, ) and six thermo-physical and body force control 
parameters, viz., We, n, Sf, ST, Pr, . The following 
default parameter values i.e., We = n = 0.3, Sf = 0.5, ST 
= 1.0, Pr = 0.71,  = 1.0 are prescribed (unless 
otherwise stated). Furthermore, the influence of 
stream-wise (transverse) coordinate on heat transfer 
rate is also investigated. 
 

 
Fig. 2(a). Influence of We on Velocity Profiles. 

 

 
Fig. 2(b). Influence of We on Temperature 

Profiles. 

In Table 1, we present the influence of Weissenberg 
number (We) on skin friction and heat transfer rate 
(Nusselt number), along with a variation in the 
traverse coordinate (). Increasing We is found to 
reduce skin friction. For large values of We, skin 
friction is negative. And increasing We, also reduces 
heat transfer rate. Increasing  decreases skin friction, 

whereas increasing  , increases heat transfer rate. 

Table 2 document results for the influence of the 
power law index (n) on skin friction and heat transfer 
rate along with a variation in the traverse coordinate 
(  ). It is observed that increasing n, decreases skin 
friction but increases heat transfer rate. Whereas 
increasing  , decreases skin friction but increases 
heat transfer rate. 

Table 3 presents the influence of the Biot number () 
on skin friction and heat transfer rate along with a 
variation in the traverse coordinate (  ). It is observed 

that the increasing , increases both the Skin friction 
and heat transfer rate (Nusselt number). And 
increasing  , decreases the Skin friction but increases 
the Nusselt number. 
 
Table 4 documents results for the influence of the 
Prandtl number (Pr) on skin friction and heat transfer 
rate along with a variation in the traverse coordinate 
(  ). It is observed that increasing Pr, decelerates skin 
friction but accelerates heat transfer rate. And 
increasing  , decreases skin friction but increases 
heat transfer rate. 
 
Figures 2(a) – 2(b) depict the velocity  'f  and 

temperature   distributions with increasing 

Weissenberg number, We. Very little tangible effect is 
observed in fig. 2a, although there is a very slight 
decrease in velocity with increase in We. Conversely, 
there is only a very slight increase in temperature 
magnitudes in Fig. 2(b) with a rise in We. The 
mathematical model reduces to the Newtonian viscous 
flow model as We  0 and n  0.  The momentum 
boundary layer equation in this case contracts to the
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Table 4: Values of Cf and Nu for different Pr and  (We = 0.3, n = 0.3,  = 0.2) 

Pr 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.5 1.2598 0.2184 1.1381 0.3483 0.8359 0.5076 

0.7 1.1098 0.281 0.8711 0.4794 0.6024 0.7103 

1.0 1.1718 0.5101 0.8242 0.9097 0.5620 1.3522 

2.0 0.7641 0.9396 0.4174 1.8147 0.2817 2.7003 

3.0 0.5353 1.33922 0.2775 2.7195 0.1865 4.0472 

5.0 0.3212 2.3163 0.1637 4.5291 0.1090 6.7423 

7.0 0.2268 3.2426 0.1139 6.3409 0.0748 9.4408 

8.0 0.1969 3.7064 0.0981 7.2470 0.0638 10.7911 

10.0 0.1543 4.6360 0.0752 9.0596 0.0478 13.4891 

 
 

familiar equation for Newtonian mixed convection 
from a plate, viz. 

  /2 '
''' 3 '' 2 ' ''

f f
f f f f f f  

 
  

        
The thermal boundary layer equation (10) remains 
unchanged.

 Figures 3(a) - 3(b) illustrates the effect of the power 
law index, n, on the velocity  'f  and 

temperature    distributions through the boundary 

layer regime.  Velocity is increased with increasing 
n.  Conversely temperature is consistently reduced 
with increasing values of n. 
 

 
Fig. 3(a). Influence of n on Velocity Profiles. 

 

 
Fig. 3(b). Influence of n on Temperature 

Profiles. 
 

Figures 4(a) - 4(b) depict the evolution of 
velocity  'f and temperature    functions with a 

variation in velocity slip parameter, Sf. Dimensionless 
velocity component (Fig. 4a) is considerably enhanced 
with increasing Sf. In Fig. 4b, an increase in Sf is seen 
to considerably reduce temperatures throughout the 

boundary layer regime. The influence of Sf is evidently 
more pronounced closer to the sphere surface ( = 0). 
Further from the surface, there is a transition in 
velocity slip effect, and the flow is found to be 
accelerated markedly. Smooth increase in the velocity 
profiles are observed into the free stream 
demonstrating excellent convergence of the numerical 
solution.  Furthermore, the acceleration near the wall 
with increasing velocity slip effect has been computed 
by Crane and McVeigh (2002) using asymptotic 
methods, as has the retardation in flow further from 
the wall. The switch in velocity slip effect on velocity 
evolution has also been observed for the case of a 
power-law rheological fluid by O. Ajadi et al. (2009). 
Fig. 4(b) shows that an increase in Sf, significantly 
reduces temperature. Temperature profiles consistently 
decay monotonically from a maximum at the sphere 
surface to the free stream. All profiles converge at 
large value of radial coordinate, again showing that 
convergence has been achieved in the numerical 
computations. 
 

 
Fig. 4(a). Influence of Sf on Velocity Profiles. 

 

 
Fig. 4(b). Influence of Sf on Temperature 

Profiles. 
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Figures 5(a) - 5(b) depict the evolution of velocity 

 'f and temperature    functions with a variation 

in thermal jump parameter, ST. The response of 
velocity is much more consistent than for the case 
of changing velocity slip parameter (Fig. 5(a)).  It is 
strongly decreased for all locations in the radial 
direction. The peak velocity accompanies the case 
of no thermal jump (ST = 0). The maximum 
deceleration corresponds to the case of strongest 
thermal jump (ST = 3). Temperatures (Fig. 5(b)) are 
also strongly depressed with increasing thermal 
jump. The maximum effect is observed at the wall. 
Further into the free stream, all temperature profiles 
converge smoothly to the vanishing value. The 
numerical computations correlate well with the 
results of Larrode et al. (2000) who also found that 
temperature is strongly lowered with increasing 
thermal jump and that this is attributable to the 
decrease in heat transfer from the wall to the fluid 
regime, although they considered only a Newtonian 
fluid. 
 

 
Fig. 5(a). Influence of ST on Velocity Profiles. 

 

 
Fig. 5(b). Influence of St on Temperature 

Profiles. 
 

Figures 6(a) – 6(b) depicts the velocity  'f  and 

temperature   distributions with radial 

coordinate, for various transverse (stream wise) 
coordinate values,  along with the variation in the 
Weissenberg number (We).  Clearly, from these 
figures it can be seen that as suction parameter  
increases, the maximum fluid velocity decreases.  
This is due to the fact that the effect of the suction 
is to take away the warm fluid on the vertical plate 
and thereby decrease the maximum velocity with a 
decrease in the intensity of the natural convection 
rate.  Fig. 6(b) shows the effect of the local suction 
parameter on the temperature profiles.  It is noticed 
that the temperature profiles decrease with an 
increase in the suction parameter and as the suction 

is increased, more warm fluid is taken away and 
this the thermal boundary layer thickness decreases.  
It is also seen that an increase in We, the impedance 
offered by the fibers of the porous medium will 
increase and this will effectively decelerate the flow 
in the regime, as testified to by the evident decrease 
in velocities shown in Fig. 6(a). 
 

 
Fig. 6(a). Influence of  and We on Velocity 

Profiles. 
 

 
Fig. 6(b). Influence of  and We on Temperature 

Profiles.  
 

Figures 7(a) – 7(b) depict the velocity  'f  and 

temperature    distributions with radial 

coordinate, for various transverse (stream wise) 
coordinate values,  along with the variation in the 
power law index (n).  Clearly, from these figures it 
can be seen that as suction parameter  increases, 
the maximum fluid velocity decreases.  This is due 
to the fact that the effect of the suction is to take 
away the warm fluid on the vertical plate and 
thereby decrease the maximum velocity with a 
decrease in the intensity of the natural convection 
rate.  Fig. 7(b) shows the effect of the local suction 
parameter on the temperature profiles.  It is noticed 
that the temperature profiles decrease with an 
increase in the suction parameter and as the suction 
is increased, more warm fluid is taken away and 
this the thermal boundary layer thickness decreases.  
It is also seen that an increase in n, the impedance 
offered by the fibers of the porous medium will 
increase and this will effectively decelerate the flow 
in the regime, as testified to by the evident decrease 
in velocities shown in Fig. 7(a). 
 

Figures 8(a) – 8(b) depict the velocity (f ’) and 
temperature () distributions with radial 
coordinate, for various transverse (stream wise) 
coordinate values,  along with the variation in the 
velocity slip (Sf).  Clearly, from these figures it can 
be seen that as suction parameter  increases, the 
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maximum fluid velocity decreases.  This is due to 
the fact that the effect of the suction is to take away 
the warm fluid on the vertical plate and thereby 
decrease the maximum velocity with a decrease in 
the intensity of the natural convection rate.  Fig. 
8(b) shows the effect of the local suction parameter 
on the temperature profiles.  It is noticed that the 
temperature profiles decrease with an increase in 
the suction parameter and as the suction is 
increased, more warm fluid is taken away and this 
the thermal boundary layer thickness decreases.  It 
is also seen that an increase in Sf, the impedance 
offered by the fibers of the porous medium will 
increase and this will effectively decelerate the flow 
in the regime, as testified to by the evident decrease 
in velocities shown in Fig. 8(a). 
 

 
Fig. 7(a). Influence of  and n on Velocity Profiles. 

 

 
Fig. 7(b). Influence of  and n on Temperature 

Profiles.  
 

 
Fig. 8(a). Influence of  and Sf on Velocity Profiles. 

 

 
Fig. 8(b). Influence of  and Sf on Temperature 

Profiles.  

Figures 9(a) – 9(b) depict the velocity  'f  and 

temperature    distributions with radial 

coordinate, for various transverse (stream wise) 
coordinate values,  along with the variation in the 
Thermal jump (ST).  Clearly, from these figures it 
can be seen that as suction parameter  increases, 
the maximum fluid velocity decreases.  This is due 
to the fact that the effect of the suction is to take 
away the warm fluid on the vertical plate and 
thereby decrease the maximum velocity with a 
decrease in the intensity of the natural convection 
rate.  Fig. 9(b) shows the effect of the local suction 
parameter on the temperature profiles.  It is noticed 
that the temperature profiles decrease with an 
increase in the suction parameter and as the suction 
is increased, more warm fluid is taken away and 
this the thermal boundary layer thickness decreases.  
It is also seen that an increase in ST, the impedance 
offered by the fibers of the porous medium will 
increase and this will effectively decelerate the flow 
in the regime, as testified to by the evident decrease 
in velocities shown in Fig. 9(a). 
 

 
Fig. 9(a). Influence of  and ST on Velocity Profiles. 

 

 
Fig. 9(b). Influence of  and ST on Temperature 

Profiles. 

4. CONCLUSIONS 

Numerical solutions have been presented for the 
buoyancy-driven flow and heat transfer of Tangent 
Hyperbolic flow external to a vertical porous plate.  
The Keller-box implicit second order accurate finite 
difference numerical scheme has been utilized to 
efficiently solve the transformed, dimensionless 
velocity and thermal boundary layer equations, 
subject to realistic boundary conditions. Excellent 
correlation with previous studies has been 
demonstrated testifying to the validity of the 
present code. The computations have shown that: 

1. Increasing Weissenberg number, We, 
reduces velocity, skin friction (surface shear stress) 



V. Ramachandra Prasad et al. / JAFM, Vol. 9, No. 4, pp. 1667-1678, 2016.  
 

1676 

and heat transfer rate, whereas it elevates 
temperature in the boundary layer. 

2. Increasing power law index, n,  increases 
velocity and Nusselt number for all values of radial 
coordinate i.e., throughout the boundary layer 
regime whereas it depresses temperature and skin 
friction. 

3. Increasing velocity slip, Sf, increases 
velocity and heat transfer rate but decreases 
temperature and skin friction (surface shear stress). 

4. Increasing thermal jump, ST, decreases 
velocity, temperature, skin friction and hear transfer 
rate. 

5. Increasing transverse coordinate (ξ) along 
with increase in the Weissenberg number (We), 
generally decelerates the flow near the plate surface 
and reduces momentum boundary layer thickness 
and also reduces temperature and therefore 
decreases thermal boundary layer thickness in 
Tangent Hyperbolic non-Newtonian fluids. 

6. Increasing transverse coordinate (ξ) along 
with increase in the power law index (n), generally 
decelerates the flow near the plate surface and 
reduces momentum boundary layer thickness and 
also reduces temperature and therefore decreases 
thermal boundary layer thickness in Tangent 
Hyperbolic non-Newtonian fluids. 
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