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ABSTRACT 

In the present study, the onset of Darcy-Brinkman double diffusive convection in a Maxwell fluid-saturated 
anisotropic porous layer is studied analytically using stability analysis. The linear stability analysis is based 
on normal technique. The modified Darcy-Brinkmam Maxwell model is used for the momentum equation. 
The Rayleigh number for stationary, oscillatory and finite amplitude convection is obtained analytically. The 
effect of the stress relaxation parameter, solute Rayleigh number, Darcy number, Darcy-Prandtl number, 
Lewis number, mechanical and thermal anisotropy parameters, and normal porosity parameter on the 
stationary, oscillatory and finite amplitude convection is shown graphically. The nonlinear theory is based on 
the truncated representation of the Fourier series method and is used to find the heat and mass transfer. The 
transient behavior of the Nusselt and Sherwood numbers is obtained by solving the finite amplitude equations 
using the Runge-Kutta method. 

Keywords: Double diffusive convection; Darcy brinkman Maxwell model; Porous layer, Anisotropy; Heat 
and mass transfer.  

NOMENCLATURE 

a Overall horizontal wave number 

c specific heat 

Da Darcy number,  

d height of the porous layer 
g  gravitational acceleration 
H  rate of heat transport per unit area 
J  rate of mass transport per unit area 
K  permeability tensor,  
Le  Lewis number,  

,l m  Horizontal wave numbers 
Nu  Nusselt number 
p pressure 

PrD  Darcy–Prandtl number, 

 q   velocity vector,  

SRa solute Rayleigh number, 

TRa thermal Rayleigh number,  

S solute concentration 
Sh  Sherwood number 
S  salinity difference between the walls  

t  time 

T temperature 
T  temperature difference between the walls 
, ,x y z

 space coordinates

T thermal expansion coefficient 

S solute expansion coefficient  

 dimensionless amplitude of concentration 
perturbation  

  normalized porosity,  

  ratio of specific heats,  

 thermal anisotropy parameter,  

T thermal diffusivity 

S  solute diffusivity 

 diffusivity 

 stress relaxation parameter


 stress relaxation time

  porosity 
 dynamic viscosity 

e  effective viscosity 

 kinematics viscosity,
 dimensionless amplitude of temperature 

perturbation  
 fluid density 

 growth rate 
 angular velocity of rotation,  
  mechanical anisotropy parameter, 

 stream function 
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Other Symbols 

2 2
2

2 2h x y

 
 

 
 

2
2 2

2h z


  

  
Subscripts and Superscripts 
b   basic state 
c   critical 
f  fluid  

 

h  horizontal 
m  porous medium  
0   reference value 
s   solid 
 dimensionless quantity 
'  perturbed quantity 
F  finite amplitude 
Osc  oscillatory state 
St   stationary state 

 

1. INTRODUCTION 

Double diffusive convection in porous medium is 
prevalent in nature occurring such diverse areas as 
in polymer processing, chemical separation 
techniques and transport in biological system. 
Typical examples of natural porous media include 
sandstone, wood and human tissue including lungs 
and blood vessels. Understanding the nature, the 
behavior and stability characteristics of viscoelastic 
fluid in porous media is also important in many 
engineering fields, for example, in oil recovery 
processes, paper and textile manufacturing, wetting 
and drying processes and composite manufacturing 
processes, see for instance, Khuzhayorov et al. 
(2000) and Khan et al. (2007). 

Double-diffusive convection is referred to buoyancy 
driven flows induced by combined temperature and 
concentration gradients. The onset of double 
diffusive convection in a fluid saturated in porous 
medium is regarded as a classical problem due to its 
wide range of applications in many engineering 
fields such as evaporative cooling of high 
temperature systems, agricultural product storage, 
soil sciences, enhanced oil recovery, packed-bed 
catalytic reactors, and the pollutant transport in 
underground. A detailed review of the literature 
concerning double diffusive convection in binary 
fluid in a porous medium was given by Nield and 
Bejan (2006), Trevisan and Bejan (1990), and 
Malashetty and Kollur (2011). Thermal convection 
in binary fluid driven by the Soret and Dufour 
effects was investigated by Knobloch (1980) and 
showed that the equations were identical to the 
thermosolutal problem except relation between the 
thermal and solutal Rayleigh numbers. 

It is well known that many applications in 
engineering disciplines as well as in circumstances 
linked to modern porous media involve high 
permeability porous layer. For instance, in 
biomedical hydrodynamic studies, a thin fibrous 
surface layer coating blood vessels (endothelial 
surface layer) is found to be a highly permeable, 
high porosity porous medium is studied by Khaled 
and Vafai (2003). In such circumstances the use of 
a non-Darcy model, which takes care of boundary 
and/or inertia effects is of fundamental and practical 
interest to obtain accurate results. Further, it is 
believed that the results of this study are useful in 
bridging the gap between a non-porous case in 
which Da  and a dense porous medium in 
which 

0Da . A better understanding of the 
characteristics of the Darcy–Brinkman equation is 
therefore an important part of more practical 
problems and thus forms a motivation of the present 
report. 

For the low porosity media, the viscous effects near 
the boundary are negligible. In such situations 
Darcy’s laws is a good approximation for the 
momentum equation. The main advantage of 
Darcy’s flow model is that it linearizes the 
momentum equation and thus reduces a significant 
amount valid for flow through regular structures 
over the whole spectrum of the porosity. This model 
is silent about difficulty in solving the governing 
equations. Further, the classical Darcy model is the 
flow structure near the bounding surfaces where 
close packing of the porous material is not possible. 
Brinkmam model is valid for a sparsely packed 
porous medium wherein there is more window fluid 
to flow so that the distortions of velocity give rise to 
the usual shear force. An analytical and the 
numerical study of double diffusive convection with 
parallel flow in a horizontal sparsely packed porous 
layer under the influence of constant heat and mass 
flux was performed using a Brinkmam model by 
Amahmid et al. (1999). 

As some new technologically significant materials 
are discovered acting like non-Newtonian fluids 
therefore mathematicians, physicists and engineers 
are actively conducting research in 
rheology.Maxwell fluids can be considered as a 
special case of a Jeffreys-Oldroyd B fluid, which 
contain relaxation and retardation time coefficients. 
Maxwell’s constitutive relation can be recovered 
from that corresponding to Jeffreys-Oldroyd B 
fluids by setting the retardation time to be zero. 
Several fluids such as glycerin, crude oils or some 
polymeric solutions, behave as Maxwell fluids. 

Recently, interest in viscoelastic flows through 
porous media has grown considerably, due to the 
demands of such diverse fields as biorheology, 
geophysics, chemical, and petroleum industries. 
The works on convective instability thresholds for 
viscoelastic fluids in porous media (2003-2009) can 
be found in the literature and have not been given 
much attention. Recently, Wang and Tan (2008) 
have made the stability analysis of double diffusive 
convection of Maxwell fluid in a porous medium.  

It is worthwhile to point out that the first 
viscoelastic rate type model, which is still used 
widely, due to Maxwell (1866). Maxwell did not 
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develop this model for polymeric liquids, he 
recognized that such a fluid has a means for storing 
energy characterizing its viscous nature. Malashetty 
et al. (2009) have studied double diffusive 
convection in a viscoelastic fluid saturated porous 
layer using Oldroyd model. More recently, Awad et 
al. (2010) used the Darcy-Brinkman-Maxwell 
model to study linearstability analysis of a Maxwell 
fluid with cross-diffusion and double-diffusive 
convection. They found that the effect of relaxation 
time is to decrease the critical Darcy-Rayleigh 
number. Although many works are available on the 
use of non-Darcy models to study flow and heat 
transfer in porous media in the recent past, the 
works on double diffusive convection in an 
anisotropic sparsely packed porous layer are very 
sparse and it is in much-to-be desired state. 

In the present paper, we intend to analyze of a 
Darcy-Brinkmam binary Maxwell fluid saturated 
anisotropic porous layer. Our objective is to study 
how the onset criterion for oscillatory convection is 
affected by Maxwell fluid  and the other 
parameters, and also to know their heat and mass 
transfer in a more general porous medium, in 
limiting cases, some previously published results 
can be recovered as the particular cases of our  
results. 

2. MATHEMATICAL FORMATION 

We consider an infinite horizontal fluid-saturated 
anisotropic porous layer confined between the 

planes 0z  and z d , with vertically downward 
gravity force g acting on it. A uniform adverse 
temperature gradient l uT T T   and a stabilizing 

concentration gradient ( )l u l u l uS S S T T and S S      

are imposed at the bottom and top boundaries 
respectively. The boundaries are impermeable, and 
we assume that the fluid and solid phases are in 
local thermal equilibrium. A Cartesian frame of 
reference is chosen with origin in the lower 
boundary and z -axis vertically upward. The 
velocities are assumed to be small so that the 
advective and Forchheimer inertia effects are 
ignored. The Boussinesq approximation, which 
states that the variation in density is negligible 
everywhere in the conservations except in the 
buoyancy term, is assumed to hold. The Darcy-
Brinkman Maxwell model is employed to describe 
the flow in the porous media. 

The basic state is assumed to be quiescent, and we 
superpose perturbations on the basic state. The 
equations for the perturbation are 

. 0 q ,                                                               (1)  

 

 

0
0 0 0

2

1 [1 ( ) ( )]

. ,

T S
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

 

              

  

q
g

q Kq

(2) 

2( . ) ,T
T T

T w T
t d

  
    


q                         (3) 

2( . ) ( ),S

S S
S S

t d
  

    


q                            (4) 

where ( , , )u v wq is the velocity, p is pressure, 

 is the relaxation time,  0,0, g g is the 

acceleration due to gravity,  is the fluid  

viscosity,  is the fluid density, 0  is the reference 

density, T and S are the temperature and 

concentration respectively and  is the porosity of 

the porous medium, 1 1 1
x y zK K K    K ii jj kk  

is the inverse of the permeability tensor and 

T x T y T z    Τκ ii jj kk  is the thermal 

diffusivity tensor. 

m( c)
= , ( ) (1 )( )

( ) m p f
p f

c c
c

   


  , pc is the 

specific heat of the fluid at constant pressure, c is 

the specific heat of the solid, the subscripts ,f s  and  

m denote fluid, solid and porous medium values 

respectively, and  ,T S  , f , e and S are the 

thermal and solute expansion coefficients, fluid 
viscosity, effective viscosity, and solute diffusivity, 
respectively. It is hereby stated that permeability is 
most strongly anisotropic than solute diffusivity. 
Therefore, we ignore the solute anisotropy. Notice 

that, in the case  = 0, the model reduces to the 
Newtonian binary fluid. By operating curl twice on 

Eq. (2) we eliminate p, and then render the resulting 
equation and Eqs. (3) and (4) dimensionless using 
the following transformations 

   

 

 

2
* * * *

*

, , , , , ,

( , , ) ( , , ) , ,

,

Tz
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d
x y z d x y z t t

u v w u v w T T T
d
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


   



 
   

 

  

 

        (5)  

to obtain non-dimensional linear equations as (on 
dropping the asterisks for simplicity), 

2 2 2

2
2 4

2

1
1

1
,

T h S h
D

h

w Ra T Ra S
t Pr t

Da w
z






              
 

     
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 (6) 

 
2

2
2

. 0,h T q T w
t z


                


           (7) 

 21
. 0,S q S w

t Le
         


                   

(8) 

where  2/Tz d    relaxation parameter. The 



S. N. Gaikwad and A. V. Javaji / JAFM, Vol. 9, No. 4, pp. 1709-1720, 2016.  
 

1712 

stress relaxation parameter is the ratio of a 
relaxation time, characterizing the intrinsic fluidity 
of a material, and the characteristic timescale. The 
smaller the stress relaxation parameter, the more 
fluid the material appears. 

/T T z TzRa g TdK    the thermal Rayleigh 

number,  /Ra g SdKS S z Tz    the solute 

Rayleigh number, 2/e z fD a k d   the Darcy 

number, 2Pr /D z T zd K   the Darcy-Prandtl 

number. The parameters (namely, PrD  and Le) 

depend on the properties of the fluid. It is worth 
mentioning here that the Darcy–Prandtl number 
PrD includes the Prandtl number, Darcy number, 

porosity, and the specific heat ratio. It depends on 
the properties of the fluid and on the nature of 
porous matrix. The Prandtl number affects the 
stability of the porous system through this 
combined dimensionless group. /Le Tz s  , the 

ratio between thermal and solutal diffusivities is 
characterized by the Lewis number.  /k kx z   

the mechanical anisotropy parameter, /Tx Tz    

is the thermal anisotropy parameter, /    

normalized porosity. The normalized porosity  is 
expressed in terms of the porosity of the porous 
medium, and the solid to fluid heat capacity ratio. 
Equation (6) - (8) are solved for stress free, 
isothermal and isosolutal boundary conditions. 
Hence the boundary conditions for the perturbation 
variables are given by 

2
0 0, 1

2
w

w T S at z
z


    


.                       (9)  

3. LINEAR STABILITY ANALYSIS 

In this section we predict the threshold of both 
stationary and oscillatory convection using linear 
theory. The Eigen value problem defined by Eqs. 
(6) - (8) subject to the boundary conditions (9) is 
solved using the time-dependent periodic 
disturbances in a horizontal plane, upon assuming 
that amplitudes are small enough and can be 
expressed as 

 
 
 

 exp

W zw

T z i lx my t

S z



  
            
       

,            (10) 

where l and m are the wave numbers in the 
horizontal plane and   is the growth rate. 
Infinitesimal perturbations of the rest state may 
either damp or grow depending on the value of the 
parameter .  Substituting Eq. (9) into Eqs. (6) - (8) 
we obtain  

   

 

2 2 2 2

22 2 2 2

1
Pr

1
,

T S
D

D a W a Ra a Ra

Da D a a D W





 
     

 
 

    
 

(11)

 

 2 2 0,D a W        
12) (                              

 1 2 2 0,D a W
Le

       
                      (13) 

where /D d dz  and 2 2 2a l m  . In case of stress-
free boundary conditions, it is possible to solve 
analytically the system of Eqs. (11) - (13). This is a 
standard Eigenvalue-Eigen function problem. Here 
the Rayleigh number is taken as the Eigenvalue and 
it is expressed as a function of the other parameters 
which govern the stability of the system. 

The corresponding boundary conditions are 

2 0 0,1W D W at Z                         (14)  

The solutions of Eqs. (11) - (13) satisfying the 
boundary conditions (14) are assumed in the from 

 
 
 

 
0

sin , 1,2,3........0

0

W z W

z n z n

z

  


      
    

       

.         (15) 

The most unstable mode corresponding to 1n  
(fundamental mode). Therefore, substituting  Eq 

(15) with  1n into Eqs. (11) - (13), and using the 
solvability condition we obtain a matrix equation of 
the form 

Pr 1

0

1 0 0

01
1 0

2 42
2 21

0
2

02
02

Da
a Ra a Ra

W

Le

T S
D

  

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

 

         
     

          
         

 
 
 

 

(16) 

where 2 2 2 2 2 1 2, 1a a        and

2 2 2
2 a    . 

The conditions of non-trivial solutions of system of 
homogenous linear equations (16) yields the 
expression for the thermal Rayleigh number in the 

form

2 2 4 2
1 2

2

2
2

1 2

Pr 1T
D

S

Da
Ra

a

Ra
Le

    


 
 

   
        

 
    

,       (17) 

3.1   Marginal State 

For validity of the principle of exchange of 
stabilities (i.e. steady case), we have 0  (i.e.

0r i   ) at the margin of stability. Then the 

Rayleigh number at which marginally stable steady 
mode exists becomes 
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 

 
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2 2 222 2 2
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a
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a
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
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
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



 

(18)  

The above result is independent of the relaxation 
time and identical to that of the Newtonian problem. 
In the absence of 0Da , i.e., for densely packed 
porous medium Eq. (18) reduces to  

 
 

2 22 2 2
2

2 2 2
,

Sst
T

a Le Raa
Ra a

a a

   
 
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                                                                             (19) 

which is identical with Malashetty and Swamy 
(2010). Further, for an isotropic porous medium, 

that is, when 1   , Eq. (19) gives 

 22 2

,
2

a
stRa LeRaT S

a

 
                            (20) 

which is the one obtained by Gaikwad and Bharati 
(2013). 

3.2   Oscillatory State 

We now set i   in Eq. (17) and clear the 
complex quantities from the denominator, to obtain  

1 2T iRa i                                                 (21) 

where 
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(23) 

Since RaT  is a physical quantity, it must be real. 

Hence, from Eq. (21) it follows that either 0i   

(steady onset) or  0 02 i    (oscillatory 

onset).For oscillatory onset  0 02 i    and this 

gives an expression for frequency of oscillations in 

the form (on dropping the subscript i  ) 

   22 2 00 1 2a a a                                 (24) 

where the coefficients are given by 
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2
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Pr Pr ,
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          

      

   

    

     

   




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 


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 
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2
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



Now Eq. (23) with 02  gives, 

  
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 
 
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2 1 2 2
2
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Pr 1

,
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T

D

S
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a a
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    

 

   

  





 
  








(25) 

The expression for the oscillatory Rayleigh number 
given by Eq. (25) in the limit 0Da  for densely 
packed porous medium, coincides exactly with the 
one given by Gaikwad and Bharati (2013) for 
isotropic case after making necessary rescaling. 

4. WEAK NONLINEAR ANALYSIS 

In this section, we consider the nonlinear analysis 
using a truncated representation of the Fourier 
series considering only two terms. We consider the 
early stages of nonlinear convection, when the basic 
structure of the convection is still determined bythe 
behavior of the linearized solution. In the 
immediate vicinity of the stability boundary, we 
could develop a weakly nonlinear analysis in which 
the amplitudes are no longer small but finite. A 
weak nonlinear stability analysis is performed using 
a truncated representation of the Fourier series 
method. 

For simplicity of analysis, we confine ourselves to 
the two-dimensional rolls, so that all the physical 
quantities are independent of y. We introduce a 

stream functionsuch that 

,u z w x        into the Eqs. (3) - (4) to 

obtain 

2

2 2
4

2 2

1
1

Pr

1
0,

T S
D

T S
Ra Ra

t t x x

Da
x z

 

 


                
  

       

   (26) 

 
 

2 2

2 2

,
0,

,

TT
T

t x z x z x

 
    

          
      (27) 
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 
 

2 ,1
0.

,

S
S

t Le x z x

 
          

               (28) 

As mentioned earlier, we set 1   , for 

simplicity. For flows with stRa RaT T linear stability 

analysis is not valid one has to take into account the 
non-linear effects. The first effect of non-linearity is 
to distort the temperature and concentration fields 

through the interaction of ,T and also , S . The 
distortion of these fields will corresponds to a 
change in the horizontal mean, i.e., a component of 
the form  sin 2 z  will be generated. Thus a 

minimal Fourier series which describes the finite 
amplitude free convection is given by   

( )sin( )sin( )A t ax z  ,                              (29) 

( )cos( )sin( ) ( )sin(2 )T B t ax z C t z                (30) 

( )cos( )sin( ) ( )sin(2 )S E t ax z F t z                (31) 

where the amplitudes 
( ), ( ), ( ), ( ) ( )A t B t C t E t and F t are to be determined 

from the dynamics of the system. 

Substituting equations (29)-(31) into the coupled 
nonlinear system of partial differential equations 
(26)-(28) and equating the coefficients of like terms, 
we obtain the following non-linear autonomous 
system of differential equations 

dX
D

dt
 (32) where  , , , ,

T
X A B C E F , and 

 1 2 3 4 5 6, , , , ,
T

D D D D D D D with 

 

 
   
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2
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4

2

5

2
2 4

1 1
6 2

2 4

, ,

4 ,
2

1
,

1 4
,

2

.D
D

T S

D A D a A B a AC

a
D C AB

D a A E a AF
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a
D AE F

Le

D Da APr
D Pr

a Ra B D a Ra E D

 



 


 


  

 
 

    

  

 
     

 
 

   
 

 
  

   
     

The non-linear system of autonomous differential 
equations is not suitable to analytical treatment for 
the general time-dependent variable and we have to 
solve it using a numerical method. However, one 
can make qualitative predictions as discussed 
below. The system of Eqs. (32) is uniformly 
bounded in time and possesses many properties of 
the full problem. Like the original Eqs. (2)-(4), Eqs. 
(32) must be dissipative. Thus, the volume in the 
phase space must contract. In order to prove volume 
contraction, we must show that the flow field has a 
constant negative divergence. Indeed  

 2 4 2
1 22

2 2
2

Pr

,
1 1

4 1

D

dA dB dC dE

A dt B dt C dt E dt

Da
dF

F dt

Le Le Le

  
 
 



                             
   

                      

33)( 

which is always negative and, therefore, the system 

is bounded and dissipative. As a result, the 

trajectories are attracted to a set of measure zero in 

the phase; in particular, they may be attracted to a 

fixed point, a limit cycle or perhaps, a strange 

attractor. From Eq. (33) we conclude that if a set of 

initial points in the phase occupies a region   

   
 

2
2 4 2
1 22

2
2

Pr

0 exp .
1 1

4 1

D Da
Le

V t V t

Le Le

  
 




  
     
     

           

 

(34) 

This expression indicates that the volume decreases 

exponentially with time. We can also infer that the 

relaxation parameter and Lewis number tend to 

enhance contraction. 

4.1   Steady Finite Amplitude Motions 

From qualitative predictions we look into possibility 
of an analytical solution. In case of steady motions, 
Eqs. (26) - (28) can be solved in closed form. The 
steady-state solutions are useful because they 
predict that a finite-amplitude solution to the system 
is possible for subcritical values of the Rayleigh 
number, and that the minimum values of RaT for 

which a steady solutions is possible lie below the 
critical values for instability perturbation, setting 
the left-hand side of Eqs. (32) equal to zero, and 
writing  the amplitudes B,C,E, and F in terms of A, 
we get  

2
1 2 3 0,A x A x A                                             (35) 

where 
2

8

A
x  and 

 
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4 2 2 4
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2 4 2 2 2 2 4
2 1 2
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.
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A a Le Da
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     

 

    

   

The required root of Eq. (35) is given by 

 
1

2 2
2 2 1 3

1

1
4 .

2
x A A A A

A

 
    

 
                          (36)

 

When we set the radical in the above equation 
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vanish, we obtain the expression for the finite 
amplitude Rayleigh number F

TRa , which 

characterizes the onset of finite amplitude steady 
motions. The finite- amplitude Rayleigh number 
can be obtained in the form 

 
1

2 2
2 2 1 3

1

1
4 ,

2
F

TRa B B B B
B

 
    

 
                (37)  

where  
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 

 

The expression for the steady finite-amplitude 
Rayleigh number given by Eq. (37) is evaluated for 
critical values and the results are discussed. 

4.2   Heat and Mass Transport 

In the study of convection in fluids, the 
quantification of the heat and the mass transport is 
important. This is because the onset of convection, 
as the Rayleigh number is increased, is more readily 
detected by its effect on the heat and mass transport. 
In the basic state, heat and mass transport is by 
conduction alone.  

If H and Jare the rate of heat and mass transport per 
unit area, respectively, then 

0

T
H

z
total

Tz
z




 



and

0

,total
Sz

z

S
J

z





 

                                    
(38)

 
where the angular brackets correspond to a 
horizontal average and 

 0 , ,total

z
T T T T x z t

d
   and

 0 , , ,total
z

S S S S x z t
d

   
                      

(39) 

substituting Eq. (30) - (31) into Eqs. (39) and using 
the resultant equation in Eq. (38), we get 

 1 2Tz T
H C

d

 
   and  1 2 .Sz S

J F
d

 
       

(40)   

The Nusselt (Nu)  and Sherwood (Sh)  numbers are 
respectively defined by 

1 2 ,
T

H
Nu C

T d



  


and

1 2 ,
S

J
Sh F

S d



  


                                (41) 

writing C and  F in terms of A, and substituting into 
Eqs. (41), we obtain 

2

2 2
2

2
1 ,

a x
N u

a x
 


                                          (42) 

2

2 2

2
1 .

x
Sh

x
Le a


 

 
  

 

                                       (43)   

The second term on the right-hand sides of Eqs. 
(42) and (43) represent the convective 
contributions to heat and mass transport, 
respectively. Further we solved the system of 
autonomous Eqs. (32) numerically using the 
Runge–Kutta method, and trace the transient 
curves for heat and mass transfer for various 
values of the parameters. 

5. RESULT AND DISCUSSION 

The onset of double diffusive convection of a 
Maxwell fluid in a saturated anisotropic Darcy-
Brinkman porous layer, which is heated and salted 
from below, is investigated analytically using both 
linear and nonlinear theories. The linear theory is 
used to obtain the criterion for the onset of 
stationary and oscillatory convection. The weakly 
nonlinear theory provides the quantification of heat 
and mass transport.  

The neutral stability curves in the Osc
TRa a  plane 

for various parameter values are as shown in 
figures1-5. We fixed the values for the parameters 
except the varying parameter. From these figures 
it is clear that the neutral curves are connected in a 
topological sense. This connection allows the 
linear stability criteria to be expressed in terms of 
the critical Rayleigh number TcRa , below which 

the system is stable and unstable above. The 
stationary critical Rayleigh number is found to be 
independent of the viscoelastic parameter and 
therefore concurs with the classical results of 
double diffusive convection in porous medium for 
Newtonian fluid (see, e.g Nield and Bejan) (2006). 
In figure 1 the effect of Darcy number Da , on the 
onset of the oscillatory convection when all other 
parameters are fixed is shown. We observe that 
the minimum of Rayleigh number for oscillatory 
mode increases with increasing Darcy number Da. 
The size of Darcy number Da , is related to the 
importance of viscous effects at the boundaries 
and reduction in Da decreases this effect, which 
allows the fluid to move more freely thereby 
decreasing the oscillatory Rayleigh number.  

The neutral stability curves for different values of 

scaled stress relaxation parameter  for the 
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oscillatory mode is presented in Fig. 2. We 
observe that increasing the stress relaxation 
parameter results in a decrease of the minimum 
of the oscillatory Rayleigh number up to a 

particular value of  . And further increase of  
this trend reverses. Thus, the effect of an increase 
in the value of the stress relaxation parameter  
is to destabilize the system in oscillatory mode. 
Furthermore, we find from this figure that the 
minimum of the Rayleigh number shift toward 
the smaller values of the wave number with an 
increase of the stress relaxation parameter. 
 

 

Fig. 1. Oscillatory neutr al stability curves for 
different values of Darcy number Da. 

 

Fig. 2. Oscillatory neutr al stability curves for 

different values of Stress relaxation parameter λ. 
 

In Fig. 3, the effect of the mechanical anisotropy 
parameter on the oscillatory Rayleigh number is 
depicted. We observe that the minimum of the 
Rayleigh number decreases with increasing 
mechanical anisotropy parameter, indicating that 
the mechanical anisotropy parameter advances the 
onset of oscillatory convection. The effect of 
mechanical anisotropy can be understood as 
follows; let us keep the vertical permeability zK  

fixed and then an increased horizontal 
permeability xK , reduces the critical Rayleigh 

number. This is due to the fact that increased 
permeability enhances the fluid mobility in the 
vertical direction and hence convection sets in 
early. On the other hand keep horizontal 

permeability xK  fixed and then increased vertical 

permeability 
zK  increases the critical Rayleigh 

number. Further, we find that the minimum of the 
Rayleigh number shift towards the smaller values 
of the wave number with increasing mechanical 
anisotropy parameter. This indicates that the cell 
width increases with an increase of mechanical 
anisotropy parameter. 
 

 

Fig. 3. Oscillatory neutr al stability curves for 
different values of Mechanical anisotropy 

parameter ξ. 

 

Fig. 4. Oscillatory neutr al stability curves for 
different values of Thermal anisotropy 

parameter η. 

The effect of thermal anisotropy parameter  with 
Osc

TRa  for the fixed values of other parameters is 

displayed in figure 4. It is found that Osc
TRa for 

the oscillatory mode decrease. Therefore, the 

effect of  is to advance the onset of oscillatory 
convection.  

Figure 5 depicts the effect of solute Rayleigh 
number SRa  on the neutral stability curves for 

oscillatory mode. We find that the effect of 
increasing SRa  is to increase the value of the 

Rayleigh number for oscillatory mode. Thus, the 
solute Rayleigh number SRa  has a stabilizing 

effect on the double-diffusive convection in 
porous medium. 
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Fig. 5. Oscillatory neutr al stability curves for 
different values of Solute Rayleigh number Ras. 

 

 

Fig. 6. Variation of the critical Rayleigh number 
with solute Rayleigh number for different values 

of the Darcy number Da. 

 

 

Fig. 7. Variation of the critical Rayleigh number 
with solute Rayleigh number for different values 

of stress relxation parameter λ. 

 

The detailed behavior of the critical Rayleigh 
number for stationary and oscillatory modes with 
respect to the solute Rayleigh number is analyzed 
in the Tc SRa Ra  plane through figures 6-9. We 

find that the quantities namely, the critical 
Rayleigh number for stationary and oscillatory 
modes is increasing function of the solute 
Rayleigh number. It is clear that for the 
parameters chosen for these figures, the oscillatory 
convection sets in prior to the stationary 
convection. 

Figure 6 displays the variation of TcRa with SRa for 

different values of Darcy number Da . It is observed 
that with an increase of Da the oscillatory and the 
stationary critical Rayleigh number increase, 
implying that Da has a stabilizing effect on the 
system. 

Fig. 7 reveals the effect of stress relaxation 

parameter  on the critical Rayleigh number for the 
stationary and oscillatory modes with the solute 
Rayleigh number. The critical Rayleigh number for 

the oscillatory mode decreases with an increase of
, indicating that the effect of the stress relaxation 
parameter is to destabilize the system in the 
oscillatory mode. 

In Fig. 8, we show the effect of the mechanical 

anisotropy parameteron the critical Rayleigh 

number TcRa  is shown. We find that increasing 

anisotropy parameter decreases the critical Rayleigh 
number indicating that the mechanical anisotropy 

parameter destabilizes the system. 
 

 

Fig. 8. Variation of the critical Rayleigh number 
with solute Rayleigh number for different values 

of mechanical anisotropy parameter ξ 
 
In figure 9 the variation TcRa with SRa  for different 

values of thermal anisotropy parameter  is 

presented. It is noticed that an increase of  the 
critical Rayleigh number decreases for oscillatory 
mode, whereas it increases for the stationary mode 
implying that the effect of increasing thermal 
anisotropy parameter is to advance the onset of 
oscillatory convection and is to inhibit the onset of 
stationary convection as compared to the isotropic 
case. 

To know the transient behavior of Nusselt and 
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Sherwood numbers, the autonomous system of 
ordinary differential equations is solved numerically 
using the Runge-Kutta method with suitable initial 
conditions. Then Nu and Sh are evaluated as a 
function of time t  . The transient behavior of Nu 
and Sh is shown graphically through the figures 10-
13. It is observed that both Nu and Sh start with a 
conduction state value i.e., 1 at 0t   and then 
oscillate periodically about their steady state value 
i.e., close to 3 for 0.t  This periodic variation of Nu 
and Sh is very short lived and decays as time 
progresses. The values of Nusselt and Sherwood 
then tend toward their steady- state value of 3. 

 

 

Fig. 9. Variation of the critical Rayleigh number 
with solute Rayleigh number for different values 

of thermal anisotropy parameter η. 

 

 
Fig. 10 (a). Variation of the Nusselt number with 

time for different values of the Darcy number 
Da. 

 
The effect of the Darcy number is to increase the 
amplitude of the oscillations of heat and mass flux 
marginally is shown in figs 10(a) & (b). Figs 11(a) 

& (b) show the effect of the relaxation parameter 
on heat and mass transfer. We find that an increase 

in increases both Nu and Sh marginally. Figures 
12(a) & (b) show the effect of mechanical 

anisotropy parameter . We observe that an 

increase in the value of the mechanical anisotropy 
parameter suppresses both heat and mass transfer. 
In the Figs. 13(a) & (b) the effect of thermal 

anisotropy parameter is to suppress both Nu and 
Sh. From Fig. 14 (a) and (b) we observe that an 
increase in the value of Le Lewis number enhances 
both heat and mass transfer. 

 

 
Fig. 10 (b). Variation of the Sherwood number 

with time for different values of the Darcy 
number Da. 

 

 

 
Fig. 11 (a). Variation of the Nusselt number with 

time for different values of stress relaxation 
parameter λ. 

 

 
Fig. 11 (b). Variation of the Sherwood number 

with time for different values of stress relaxation 
parameter λ. 
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6. CONCLUSIONS 

The onset of double diffusive convection of a 
Maxwell fluid in a saturated anisotropic Darcy-
Brinkman porous layer is studied analytically using 
both linear and non-linear stability analyses. The 
linear analysis is based on the usual normal mode 
technique, while the non-linear analysis is based on 
truncated representation of the Fourier series. The 
modified Darcy-Brinkman Maxwell model is used 
for the momentum equation. The following 
conclusions are drawn: 

1. The oscillatory mode is most favorable for a 
system with moderate and high values of the Darcy 
number Da  and Solute Rayleigh number SRa . 

However for the large values of stress relaxation 

parameter, mechanical anisotropy parameter 
and thermal anisotropy parameter is advance the 
onset of oscillatory convection. 

2. The effect of increasing the value of thermal 

anisotropy parameter  in the presence of critical 

Rayleigh number SRa  is to allow the onset of 

convection to be stationary rather than oscillatory. 

The value of stress relaxation parameter  and 

mechanical anisotropy parameter  advance the 
onset of oscillatory convection. The effect of 

increasing the value of Darcy number Da  in the 
presence of critical Rayleigh number SRa delay the 

onset of convection, whereas the stress relaxation 

parameter  and mechanical anisotropy parameter

  advances.  

3. The effect of Darcy number Da and  increases 

both heat and mass transfer. While the   
mechanical anisotropy parameter suppresses and 
thermal anisotropy parameter  advances. The 
transient Nusselt and Sherwood numbers approach 
the steady state values for large time. 

 

 
Fig. 12 (a). Variation of the Nusselt number with 

time for different values of mechanical 
anisotropy parameter ξ. 

 

 
Fig. 12 (b). Variation of the Sherwood number 

with time for different values of mechanical 
anisotropy parameter ξ. 
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Fig. 13 (a). Variation of the Nusselt number with 

time for different values of mechanical 
anisotropy parameter η. 

 

 
Fig. 13 (b). Variation of the Sherwood number 

with time for different values of thermal 
anisotropy parameter η. 
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Fig. 14 (a). Variation of Nu with time for 

different values of Le. 
 

 
Fig. 14 (b). Variation of Sh with time for 

different values of Le. 
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