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ABSTRACT

The problem of convection in a fluid with temperature dependent viscosity and imposed shear flow, 
driven by pressure gradients and by a top moving wall, is studied for the case of poorly thermal 
conducting horizontal walls. Analytical expressions accounting for temperature dependent viscosity 
effects were obtained for the critical Rayleigh number and frequency of oscillation under a shallow 
water approximation for Poiseuille, Couette and returning primary flows. The results of this investi-
gation contirbute and extend previous findings showing that the onset of convection can be achieved 
at smaller critical Rayleigh and wavenumbers. The results include approximations of weak and 
strong shear flows along with conditions for rigid-rigid and rigid-free boundaries. It was found that 
the imposed shear flow does not influence the critical wavenumber but it does increases the critical 
Rayleigh number. In this case convection sets in as oscillatory.

Keywords: Temperature dependent viscosity; Shallow water approximation; Returning flow.

NOMENCLATURE

B Biot number
c criticality
H fluid layer depth
K non-Boussinesq coefficient
k wavenumber
L lower boundary
Pr Prandtl number
p pressure
Ra Rayleigh number
Re Reynolds number
U upper boundary
Umax maximum velocity
u fluid velocity
W vertical velocity component
x,y horizontal coordinates

z vertical coordinate
Pr Prandtl number

γ angle of orientation
θ temperature
κ thermal diffusivity
µ0 dynamic viscosity
ν0 kinematic viscosity
σR perturbation growth rate
ω frequency of oscillation
Subscripts
0 basic state
1 perturbation variable
Superscripts
∗ dimensional form
Tr transpose operation

1. INTRODUCTION

Convective hydrodynamic stability in a hori-
zontal fluid layer is calling the attention of ex-
perimentalists since this is an alternative to the
fabrication of corrugated surfaces with convec-
tive patterns (Nie 2008; Bassou 2009; Saku-
rai et al. 2002; Xu 2002; Li et al. 2000;

Li et al. 2000). In these experimental inves-
tigations convective patterns such as hexago-
nal cells are induced and deposited by evapo-
ration of the solvent in a layer of polymeric so-
lution. The resulting patterned surfaces are of
technological interest for the fabrication of light
emitting displays and semiconductor electron-
ics among others (Nie 2008).
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The present investigation is intended to give
theoretical insight about possible experimental
conditions. These results are also of interest to
several fields such as in the context of atmo-
spheric studies, geophysics (Kameyama et al.
2013; Landuyt and Ierley 2012; Höink and
Lenardic 2010), oceanography, solidification
processes in metallurgy (Lappa 2010) and sev-
eral problems involving long-wavelength ther-
mal convection (Uguz and Narayanan 2012;
Landuyt and Ierley 2012). Some other appli-
cations are those of control of convection in
which not only the properties of the bounding
walls are important but also those of the work-
ing fluid (Khalid, Mokhar, and Arifin 2013;
Howle 2000; Tang and Bau 1998; Howle 1997a;
Howle 1997b; Tang and Bau 1994; Tang and
Bau 1993). In applications like drying of thin
films, patterns may arise (Schwartz et al. 2001)
and then the proper understanding and control
of convection becomes important.

Here, the onset of thermal convection in the
presence of a principal shear flow in a horizon-
tal fluid layer bounded by two poorly conduct-
ing boundaries is studied. Results of the linear
stability analysis are exposed, showing analyt-
ical expressions for the critical Rayleigh num-
ber Rac, and the critical frequency of oscillation
ωc accounting for three different parallel shear
flows as well.

This theoretical investigation was performed
analytically in order to clarify to some extent
the behaviour and role of the parameters appear-
ing in this problem. Although non-linear hydro-
dynamic studies are very common nowadays, it
should be noted the importance of the linear sta-
bility analysis problem. In one hand, several in-
vestigations are mostly concerned with the set-
ting in of convective patterns and then the re-
sults of the linear hydrodynamic stability anal-
ysis play a key role. On the other hand, in
weakly non-linear stability situations were the
behaviour of the system is studied a little far
from criticality, the linear stability analysis is
also relevant. Thus, the linear stability analysis
is an important first step before any more com-
plete non-linear hydrodynamic stability investi-
gation.

In this work some modifications and extensions
are made to reported results in the literature
related to this problem. A returning flow is
included as another possible parallel flow in
shallow water conditions. The returning flow
arises in this case in the middle region of a
very long shallow cavity. A shallow cavity
is one with small depth. In the literature, to

the best knowledge of the author, this paral-
lel flow was firstly reported by Weber (1973)
arising from the combination of horizontal and
vertical temperature gradients. More recently,
Ortiz–Pérez and Dávalos–Orozco (2014), Al-
loui et al. (2013) and Ortiz–Pérez and Dávalos–
Orozco (2011) reported results of the thermo-
convective stability in a cavity where similar re-
turning flows arise too.

Several scenarios were considered for the study
of the thermal instability of a horizontal fluid
layer. First, a situation with both solid bound-
ing walls is studied with the upper wall mov-
ing in a horizontal direction. Another situation
considers fixed lower solid bounding wall and
upper free boundary. In combination with these
physical constraints yet the shear flow is tuned
as weak for flows with small Reynolds number
Re and as strong for flows with Re = O(1).

The problem of the linear thermoconvective sta-
bility of a Boussinesq fluid have been widely
studied since several years ago for a number
of cases. Important results were provided by
Chapman and Proctor (1980a) and by Busse
and Riahi (1980) for the case of natural con-
vection of a Boussinesq fluid layer confined be-
tween two poorly conducting boundaries, and
by Chapman and Proctor (1980b) for a fluid
layer confined between two non-conducting
boundaries. Alikina and Tarunin (2001) inves-
tigated subcritical convective motion in a fluid
with temperature dependent viscosity by means
of numerical experiments. Some other condi-
tions have also been included to this kind of
problem making it more real and reproducible
in the laboratory. A wide review on the forced
convection in Boussinesq fluids have been pub-
lished by Nicolas (2002) with applied Couette
and Poisueuille flow in ducts heated from be-
low. Very interesting results have been reported
by Bessonov et al. (1998) about fluid motions
driven by a lid in cavity. Also, results on the
coupled stability problem of a parallel flow and
thermal convection in an elongated cavity have
been reported by Nikitin et al. (1996). Cox
(1996) reported results for forced convection in
fluids with high Prandtl Pr numbers and poorly
conducting boundaries. Recently Sassos and
Pantokratoras (2011) reported numerical com-
putations for Rayleigh convection with all fluid
properties variable. The heat transfer in hydro-
magnetic fluids with temperature dependence of
viscosity has also been investigated by Ghosh
et al. (2014) and Molla et al. (2012). For flu-
ids with slightly temperature dependent viscos-
ity interesting findings have been reported too.
Cox (1997) obtained results on the linear and
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non-linear hydrodynamic convective stability in
a horizontal fluid layer in presence of Couette
and Poiseuille flow and with the kinematic vis-
cosity as a linear function of the temperature.
Surprisingly, in the linear stability results of
Cox (1997) the effects of small variations of vis-
cosity with temperature are not present and arise
only as non-linearities. In an earlier non-linear
stability investigation Palm et al. (1967) also
considered linear variations of viscosity with
temperature in the Rayleigh convection. How-
ever, Palm et al. (1967) took into account per-
fectly thermal conducting walls. From a com-
parison of working Eq. (4a) in the paper of
Cox (Cox 1997) and Eqs. (2.1) and (2.10) in
the paper of Palm et al. (1967) it can be noted
that linear and non-linear terms are missing in
the equations of Cox (1997). This investigation
takes into account these contributions to the lin-
ear stability case and shows that slight tempera-
ture dependent viscosity effects may contribute
to the linear thermoconvective instability of the
fluid layer. The linear stability problem is revis-
ited and expanded to include modifications in
the parallel flows as well.

The paper is organized as follows. In section
2., the mathematical formulation of the problem
is stated providing the boundary conditions, ve-
locity profiles and non-dimensionalization. The
linear stability analysis is presented in section
3. exposing the mathematical treatment. In sec-
tion 4., results and a brief insight on non-linear
consequences of the present theory is given. Fi-
nally, conclusions are outlined in section 5..

2. MATHEMATICAL FORMULATION

The present problem of forced convection is
now described. Lets consider an infinite hori-
zontal fluid layer in the plane x∗y∗ and of depth
H in the z∗ − axis as shown in Fig. 1. The
working fluid, heated from below with TL > TU ,
is Newtonian, incompressible and has slightly
temperature dependent viscosity. In the scheme
shown in Fig. 1. the top wall may be either rigid
or free as needed to represent both possibilities
rigid-rigid and rigid-free boundary conditions.
The scheme in Fig. 1. also shows the situation
of thermal convection in the presence of return-
ing flow, where only the middle region far from
the lateral walls is of interest in this study. The
lower and upper walls are nearly thermal insu-
lators and, as mentioned above, the viscosity of
the fluid is a function of temperature µ(T ∗). The
problem is made non-dimensional according to
the following scales: H for legth, κ/H for ve-
locity, κµ0/H2 for pressure, ∆T ∗ for tempera-
ture and H2/κ for time. The function µ(T ∗)

Fig. 1. Fluid layer arrangement for the
returning flow case in very long shallow

cavity. The flow is considered to be parallel
in the middle region indicated by vertical

doted lines.

must be taken into account in the stress ten-
sor. This, process have been implemented be-
fore by Wall and Wilson (1996) and Chung and
Wulandana (2006) in the stability analysis of
heated parallel flows through channels. In the
work of Wall and Wilson (1996) and Chung
and Wulandana (2006) is noticeable that com-
mon Poiseuille flow is modified and the result-
ing velocity profile is skewed towards one of the
walls. Thus,

τ∗ =−p∗I +2µ(T ∗)

(
1
2

[
∇u∗+(∇u∗)Tr

])
(1)

where the superscript ∗ indicates dimensionless
variables and the superscript Tr stands for trans-
pose operation. The governing equations for
this problem are the continuity equation, the
Navier-Stokes equations and the heat equation.
This system of equations is perturbed according
to,

u∗ = u∗
0 + εu∗

1 (2)
T ∗ = T ∗

0 + εT ∗
1 (3)

p∗ = p∗0 + εp∗1 (4)

where ε << 1 and is defined later in terms of
the Biot number. Here u∗

0, T ∗
0 and p∗0 are de

basic profiles for the velocity, temperature and
pressure, respectively. For temperature it is
T ∗

0 = −(TL − TU )z∗/H + T ∗
L . Using the same

idea of Wall and Wilson (1996) and Chung and
Wulandana (2006) a linear temperature depen-
dence of viscosity is considered. Thus,

ν(T ∗) = ν0

(
1+K

T ∗−T ∗
L

∆T

)
(5)

where ν0 is a viscosity of reference and K is
a coefficient that accounts for the temperature
dependence of viscosity. This is, when K = 0
the viscosity ν is temperature independent and
temperature dependent if K > 0. The velocity
profiles differ from those arising in the work of
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(a) Modified Poiseuille flow (b) Modified Couette flow (c) Modified return flow

Fig. 2. Curves of the modified Poiseuille flow (Eq. 48), modified Couette flow (Eq. 51) and
modified return flow (Eq. 53) for two different values KKK accounting for the effect of the

temperature on the fluid viscosity.

Cox (1997) since thermal variations in the vis-
cosity modify the equation for the primary flow
u0 = u0(z)∗i as follows,

(
1+K

z∗

H

)
d2u∗0
dz2 − K

H
du∗0
dz

=
1
µ0

d p0

dx
(6)

Eq. 6 is in agreement with that reported by
Chung and Wulandana (2006), Wall and Nagata
(2000) and Wall and Wilson (1996) which ap-
pears in the stability of flows with temperature
dependent viscosity. The solution to Eq. 6 is,

u∗0 =
αHz∗

Kµ0
− ln(H −Kz∗)

K
C1

+
ln(H −Kz∗)H2α

K2µ0
+C2 (7)

where the constants of integration, C1 and C2,
are calculated with the help of mechanical
boundary conditions which depend on the phys-
ical situation considered. The three different
mechanisms driving the flow: horizontal pres-
sure gradient, upper moving wall and upper
moving wall in a very long shallow cavity, were
considered to find C1 and C2 for rigid-rigid and
rigid-free boundary conditions. Although, the
full set of boundary conditions applied to find
C1 and C2 are not explicitly given, note for fu-
ture reference that these are the same used for
Poiseuille, Couette and returning flow. It is no-
ticeable from Fig. 2. that the temperature de-
pendence of viscosity may skew the velocity
profiles for different values of K. It was also
found that the higher the value of K the stronger
the skew towards one of the walls in the profile.
This behavior was expected since between the
bottom and top walls there is a temperature gra-
dient which modifies the fluid viscosity. As a
consequence near the bottom wall the fluid vis-
cosity is decreased and buoyancy effects are in-
creased. This is because the viscous forces are

smaller near the bottom than for the case of con-
stant viscosity. The resulting velocity profiles
are not presented in this section but given in
the Appendix A. Since K is interpreted as a co-
efficient accounting for the temperature depen-
dence of viscosity and only small temperature
effects are investigated, K = O(ε) was taken.
Thus, the influence of K in u∗0 is slight and all
velocity profiles, shown in the Appendix A, can
be approximated to the following general form,

u0 = u0(z)i = PrRe
[(

β1z2 +δ1z+η1
)

+εK̄
(
β2z3 +δ2z2 +η2z+ϕ2

)]
(8)

where all variables are now in non-dimensional
form. All velocity profiles were scaled with the
maximum velocity Umax so that the Reynolds
number is defined as Re = HUmax/ν0. Also,
the averages of the basic velocities Eq. 8 over
the fluid layer depth vanish. Table 1 shows the
values β1, δ1 and η1 while the values for β2,
δ2 η2 and ϕ2 are presented in separated table in
the Appendix A. As mentioned early the paral-
lel flows are similar to that of Poiseuille, Cou-
ette and returning flow but not equal. Therefore,
the one driven by a pressure gradient, an upper
moving wall and an upper moving wall in a very
long shallow cavity shall be named Modified
Poiseuille Flow (MPF), Modified Couette Flow
(MCF) and Modified Returning Flow (MRF),
respectively.

Figure 2 shows the graphical representation of
Eq. 8 for the case of both rigid bounding sur-
faces. In order to obtain the curves in Figs. 2a-
2c the data of Tables 1 and 2 should be used.
These curves clearly show the effect of linear
temperature dependence of viscosity. Notice,
that this represents an extension to the previous
work of Cox (1997). When K = 0.01 the ve-
locity profiles do not show graphical difference
with the traditional Poiseuille, Couette and re-
turn parallel flows but when the temperature ef-
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fect is increased as K = 0.5 the curves change
notoriously. An important fact is that the flow
symmetry is broken. For example, the Couette
flow profile is not linear anymore as shown in
Fig. 2b.

The non-dimensional temperature profile is
T0(z) = −z+ TL/(TL − TU ). Next, the govern-
ing equations may be stated in terms of the per-
turbed variables Eq. 2. Thus, for the linear
stability at O(ε) the following perturbed equa-
tions for momentum, continuity and heat are ob-
tained,

Pr−1
[

∂u1

∂t
+PrRe

(
u0

∂u1

∂x
+w1

∂u0

∂z

)]
=

−∇p1 +KPrReT1
d2u0

dz2 +(1−Kz)∇2u1

+KPrRe
du0

dz

(
∂T1

∂z
− ∂T1

∂x

)
−K

(
∂u1

∂z

+∇w1

)
+RaT1k (9)

∇ ·u = 0 (10)

∂T1

∂t
−w1 +PrReu0(z)

∂T1

∂x
= ∇2T1 (11)

Table 1 Values of βββ111, δδδ111 and ηηη111 used in Eq. 8

Rigid - rigid
Modified Couette flow

β1 = 0 δ1 = 2 η1 =−1
Modified Poiseuille flow

β1 =−12 δ1 = 12 η1 =−2
Modified returning flow

β1 =−9 δ1 = 6 η1 = 0
Rigid-free

Modified Couette flow
β1 = 0 δ1 = 1 η1 =−1/2

Modified Poiseuille flow
β1 =−3 δ1 = 6 η1 =−2

Modified returning flow
β1 =−9 δ1 = 6 η1 = 0

At this point some differences between the gov-
erning Eqs. 10-11 and the Eqs. 4 presented by
Cox (1997) can be noticed for the linear case.
The system of Eqs. 10-11 show 5 modified
terms which contribute importantly to the con-
vective linear instability of the system. These
terms and some others arising in the non-linear
case are missing in the theory developed by Cox
(1997). The mathematical operations were per-
formed in the software MAPLE 16. Some cal-
culations are not presented here because of the

space but these can be obtained from the author
upon request.

It is suitable to separate the pressure field from
that of velocity so that (∇×) is operated twice
on the Navier-Stokes Eq. 9. In the resulting
equation the vertical component of the veloc-
ity is independent of the other two components.
Next, the perturbed variables in the governing
equations are expanded in normal modes as fol-
lows,

[w1,T1] = [W (z),θ(z)]exp [i(kxx+ kyy)+σt] (12)

where k =
√

k2
x + k2

y is the wavenumber of
the perturbation and σ is a complex parameter
whose real part is the growth rate of the pertur-
bations and its imaginary part is the frequency
of oscillation. Thus, the governing Eqs. 10-11
become,

(
D2 − k2)(D2 − k2 − σ

Pr

)
W = k2Raθ

+
[
k4K − ik cos(γ)Re

(
k2 +D2)u0

]
W

+k2
xKPrReD(θDu0)+ ikxReu0D2W

+ikxKPrRe
(
2D2u0Dθ+Du0D2θ

)
+K

[
2D

(
D2 − k2)W + zD2 (D2 −2k2)W

]
(13)(

D2 − k2 −σ− ikxPrReu0
)

θ =−W (14)

where D = d/dz. Notice that kx = k cos(γ).
The system of Eqs. 13-14 is subjected to ther-
mal and mechanical boundary conditions. The
thermal boundary conditions are those of poorly
thermal conducting walls,

Dθ±Bθ = 0 at z = 0,1 (15)

where B is the Biot number. The boundary con-
ditions for W in the case of both rigid walls are
given in Eqs. 16 while for the case of free upper
wall are given in Eq. 17,

W = DW = 0 at z = 0,1 (16)
W = D2W = 0 at z = 0,1. (17)

3. LINEAR STABILITY ANALYSIS

In this section the stability of the basic state
to small perturbations is considered. Thus, the
eigenvalue problem for Ra stated in Eqs. 13-
14 subject to the boundary conditions Eqs. 15-
17 shall be studied with the shallow layer the-
ory (Cox 1997; Cox 1996; Dávalos-Orozco
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and Manero 1986; Pismen 1986; Nayfeh 1981;
Gertsberg and Sivashinsky 1981). As the
bounding walls are poorly thermal conducting,
the Biot number is taken B = ε2B̄ with ε << 1.
In this way, the following set of expansions is
used for the variables and parameters appearing
in Eqs. 13-14,

W = εW1 + ε2W2 + . . . (18)
θ = θ0 + εθ1 + ε2θ2 + . . . (19)
σ = ε2σ2 + ε3σ3 . . . (20)

Ra = Ra0 + εRa1 + . . . (21)

As mentioned above, in this problem only
small temperature dependent viscosity effects
are considered then K = εK̄. The two flow
regimes corresponding to weak and strong shear
are scaled in different ways each. In order
to introduce the next scalings, similar argu-
ments to those exposed by Cox (1997) are em-
braced. When the imposed shear flow is weak
Re =

√
εR and (kx,ky) = O(

√
ε) are taken. This

means that near the onset of convection for
weak shear flows, stream-wise and cross-stream
length scales are equal. Because the shear flow
is weak, the system is allowed to provide the
transition to the anisotropy in the length scales.

In the case of strong shear flow Re = O(1), kx =
O(ε) and ky =O(

√
ε) are taken. When the shear

flow is strong at the onset of convection the
stream-wise spatial scale becomes greater than
the cross-stream one. It should be remarked that
the weak and strong nature of the flow is only
assign to Re keeping Pr = O(1) which differs
from the analysis of Cox (1997). Besides, Pr
and Re not always appear with equal powers in
Eqs 13-14.

One important fact should be noted here. The
Reynolds number Re was defined in terms of the
maximum velocity UMax of the fluid in the basic
state and it is obvious the dependence of UMax
on K. As a consequence Re also depends on
K. Fortunately, only small temperature depen-
dent viscosity effects K = O(ε) are considered
in this investigation allowing and approxima-
tion of UMax. For short, the influence of small
K on Re is of O(ε) making the assumptions of
weak and strong shear flow valid.

The process of solution for this eigenvalue prob-
lem is now described. After substitution of the
expansions Eqs. 18-21 and the proper scalings
for weak or strong shear, systems of equations
with their corresponding boundary conditions at

different orders in ε are obtained. These sys-
tems of equations should be solved in a consec-
utive fashion.

3.1 Case of Weak Shear Flow. Rigid-rigid
Boundaries

Firstly, the case of convection in the presence of
weak shear flow in a fluid layer bounded by two
rigid walls shall be considered. Thus, at O(1)
the following system of equations is obtained,

D2θ0 = 0 (22)
D4W1 = Ra0k̄2θ0 (23)

subject to the following boundary conditions,

W1 = DW1 = 0 at z = 0,1 (24)
Dθ0 = 0 at z = 0,1 (25)

At O(ε) the problem is,

D2θ1 − (k̄2 + iPrRu0k̄ cos(γ))θ0 =−W1 (26)

D4W2 −2k̄2D2W1 + iRk̄ cos(γ)
(
W1D2u0

−u0D2W1
)
= Ra0k̄2θ1 + Ra1k̄2θ0

+K̄
(
zD4 −2D3)W1 (27)

subject to the following boundary conditions,

W2 = DW2 = 0 at z = 0,1 (28)
Dθ1 = 0 at z = 0,1 (29)

At O(ε2) only the equation for θ2 is necesary,

D2θ2 − (k̄2 + iPrRu0k̄ cos(γ))θ1 +σ2θ0 =−W2
(30)

subject to the following boundary conditions,

Dθ2 ± B̄θ0 = 0 at z = 0,1 (31)

It should be remarked that at O(ε2) a solbavil-
ity condition must be satisfied in order to avoid
a breakdown in the expansion (Nayfeh 1981).
It has been considered that contributions at this
order of approximation are enough for the lin-
ear stability analisys (Pismen 1986; Gertsberg
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and Sivashinsky 1981). The solution to the sys-
tems of equations stated above can be easily ob-
tained. Therefore, at O(1),

θ0 = 1 (32)

W1 =
Ra0k̄2z2

24
(
z2 −2z+1

)
(33)

where the θ0 have been normalized. At O(ε) θ1
and W2 can be calculated after substituion of θ0
and W1. Thus, for θ1,

θ1 =−z2 (z−1)2
(

z2 − z− 1
2

)
k̄2 − z2ik̄PrRcos(γ)[(

β+
3
2

δ
)(

z4

3
− z3

)
+

(
3
4

β+
5
4

δ
)
− δ

6
z

− η
2

]
(34)

Ra0 was determined from the solvablity condi-
tion at O(ε). In order to obtain solution Eq. 34
it was required that the integral, ranging from
z = 0 to z = 1, of the inhomegeneus part van-
ished. Hence, Ra0 = 720. The solution W2 is not
shown because it is a large expression but it can
be obtain from the author upon request. Next, a
second solvability condition must be satisfied at
O(ε2). Integrating Eq. 30 across the fluid layer
depth yields,

σ2 =−2B̄+

(
Ra1

720
+

K̄
2

)
k̄2 − 17

462
k̄4

− 29
4620

ik̄Rcos(γ)
[((

β+
60
29

δ
)
+

275
174

β

+
55
29

δ
)

k̄2 − 770
29

PrK̄
(

β+
3
2

δ
)]

− 29
2772

k̄2PrR2 cos2(γ)
[(

β2 +
119
58

βδ

+
153
145

δ2
)

Pr− 155
174

(
β+

6
5

δ
)

(
β+

3
2

δ
)]

(35)

Since σ2 is complex, the real part of Eq. 35 is
the growth rate of the perturbation and the imag-
inary part corresponds to the frequency of oscil-
lation. Reintroducing the unscaled parameters,
the following expressions for the real and imag-

inary parts of σ2 are obtained

σR =−2B+

(
Ra−720

720
+

K
2

)
k2 − 17

462
k4

− 29
2772

PrRe2k2 cos2(γ)
[(

β2
1 +

153
145

δ2
1 +

30
29

η2
1

+
119
58

β1δ1 +
133
145

β1η1 +
30
29

η1δ1

)
Pr− 11

348
(5β1

+6δ1 +12η1)(2β1 +3δ1 +6η1)

]
(36)

ω =− 2
77

kRecos(γ)
[((

29
120

β1 +
1
2

δ1 +η1

)
Pr

+
55

144
β1 +

11
24

δ1 +
11
12

η1

)
k2 − 77

4
PrK

(
1
3

β1

+
1
2

δ1 +η1

)]
(37)

where σR is the growth rate and ω is the fre-
quency of oscillation. In Eqs. 36-37, the terms
including K are modifications to the theory pre-
sented by Cox (1997) and these arise naturally
when small changes of viscosity with tempera-
ture are taken into account. Ra is obtained from
Eq. 36 by setting σR = 0,

Ra = 1440
B
k2 +720−360K +

2040
77

k2

− 600
77

PrRe2 cos2(γ)
[(

29
30

β2
1 +

51
50

δ2
1 +η2

1

+
119
60

β1δ1 +δ1η1 +
133
150

β1η1

)
Pr− 11

15

(
5
12

β1

+
1
2

δ1 +η1

)(
1
3

β1 +
1
2

δ1 +η1

)]
(38)

In this case kc = 4
√

924B/17 and Rac is ob-
tained directly after substitution of kc in Eq.
38. The critical frequency of oscillation ωc is
also calculated from substitution of kc into Eq.
37. Rac and ωc are not shown. It is noticeable
that as the fluid viscosity changes with temper-
ature the new contributions destabilize the sys-
tem and this information is important in further
non-linear analysis.

Figure 3 shows curves of criticality of the
Rayleigh number Rac against Re. Embedded
in Fig. 3. cells for convection in the absence
of parallel shear flow and with Poiseuille shear
flow are presented. These convective cells are
presented to shown that the convection cells are
neither broken nor larger since the shear flow
does not affect the critical wavenumber. On
the other hand, the magnitude of the critical
Rayleigh number does change depending on the
shear flow applied as shown by the curves of
criticality.
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The applied process of calculation for this case
can be easily followed to obtained σR and ω in
the limit of strong shear flow. Besides, the case
of rigid-free boundary conditions should also be
made. Then, in order to save space only results
are presented.

3.2 Case of strong shear flow. Rigid-rigid
boundaries

In this case Re = O(1), kx = O(ε) and ky =
O(

√
ε). Thus, the growth rate is given by,

σR =−2B+

(
Ra−720

720
+

K
2

)
k2 sin2(γ)

− 17
462

k4 sin4(γ)− 17
1540

PrRe2k2 cos2(γ)[(
145
153

β2
1 +δ2

1 +
50
51

η2
1 +

35
18

β1δ1 +
133
153

β1η1

+
50
51

η1δ1

)
Pr− 55

102

(
2
3

β1 +δ1 +2η1

)
(

5
6

β1 +δ1 +2η1

)]
(39)

while the frequency of oscillation is,

ω =− 2
77

kRecos(γ)
[((

29
120

β1 +
1
2

δ1 +η1

)
Pr

+
55
144

β1 +
11
24

δ1 +
11
12

η1

)
k2 sin2(γ)

− 77
4

PrK
(

1
3

β1 +
1
2

δ1 +η1

)]
(40)
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In this case kc = (1/sin(γ)) 4
√

924B/17 and,

Rac = 720−360K +
4080
77

sin2(γ)k2
c

− 600
77

PrRe2 cos2(γ)
[(

29
30

β2
1 +

51
50

δ2
1 +η2

1

+
119
60

β1δ1 +δ1η1 +
133
150

β1η1

)
Pr− 11

15

(
5

12
β1

+
1
2

δ1 +η1

)(
1
3

β1 +
1
2

δ1 +η1

)]
(41)

The critical frequency of oscillation ωc is not
shown but can be calculated from substitution
of kc into Eq. 40. It can be easily seen that for
K = 0 and Re = 0, the well known value 720 is
recovered (Riahi 1985; Gertsberg and Sivashin-
sky 1981; Chapman and Proctor 1980a).

Figure 4 shows curves of critical Rayleigh num-
bers Rac against the Reynolds number Re for
MPF, MCF and MRF. Besides, two embedded
convection cells are also shown.

3.3 Case of weak shear flow. Rigid-free
boundaries

In this case Re = O(
√

ε), (kx,ky) = O(
√

ε).
Thus, the growth rate is given by,

σR =−2B+

(
Ra−320

320
+

5
12

K
)

k2 − 58
693

k4

− 8
693

PrRe2k2 cos2(γ)
[(

481
864

β2
1 +

73
160

δ2
1 +η2

1

+
577
576

β1δ1 −
283

1440
β1η1 −

η1δ1

32

)
Pr− 33

8

(
125
216

β1

+
5
8

δ1 +η1

)(
1
3

β1 +
1
2

δ1 +η1

)]
(42)
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while the frequency of oscillation is,

ω =− 50
693

kRecos(γ)
[((

4243
9000

β1 +
133
200

δ1 +η1

)
Pr

+
55

144
β1 +

33
80

δ1 +
33
50

η1

)
k2 − 237

40
PrK

(
1
3

β1

+
1
2

δ1 +η1

)]
(43)

In this case kc =
4
√

693B/29 and,

Rac = 320− 400
3

K +
37120

693
k2

c −
1168
693

PrRe2 cos2(γ)[(
2405
1971

β2
1 +δ2

1 +
160
73

η2
1 +

2885
1314

β1δ1 −
5
73

δ1η1

− 283
657

β1η1

)
Pr− 825

292

(
25
27

β1 +δ1 +
8
5

η1

)
(

2
3

β1 +δ1 +2η1

)]
(44)

The critical frequency of oscillation ωc is not
shown but can be calculated from substitution
of kc into Eq. 43. Curves of criticality for the
different parallel flows in the weak shear ap-
proximation are presented in Fig. 5. Notice that
the two embedded convective cells, Re = 0 and
Re = 0.1, are very similar since the shear flow
is weak.
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3.4 Case of Strong Shear Flow. Rigid-free
Boundaries

In this case Re = O(1), kx = O(ε) and ky =
O(

√
ε). Thus, the growth rate is given by,

σR =−2B+

(
Ra−320

320
+

5
12

K
)

k2 sin2(γ)

− 58
693

k4 sin4(γ)− 8
693

PrRe2k2 cos2(γ)
[(

481
694

β2
1

+
73

160
δ2

1 +η2
1 +

577
576

β1δ1 −
283
1440

β1η1 −
η1δ1

32

)
Pr

− 33
8

(
125
216

β1 +
5
8

δ1 +η1

)(
1
3

β1 +
1
2

δ1 +η1

)]
(45)

while the frequency of oscillation is,

ω =− 50
693

kRecos(γ)
[((

4243
9000

β1 +
133
200

δ1 +η1

)
Pr

+
55
144

β1 +
33
80

δ1 +
33
50

η1

)
k2 sin2(γ)

− 237
40

PrK
(

1
3

β1 +
1
2

δ1 +η1

)]
(46)

In this case kc = (1/sin(γ)) 4
√

693B/29 and,

Rac = 320− 400
3

K +
37120
693

k2
c sin2(γ)

− 1168
693

PrRe2 cos2(γ)
[(

2405
1971

β2
1 +δ2

1 +
160
73

η2
1

+
2885
1314

β1δ1 −
5
73

δ1η1 −
283
657

β1η1

)
Pr− 825

292(
25
27

β1 +δ1 +
8
5

η1

)(
2
3

β1 +δ1 +2η1

)]
(47)

The critical frequency of oscillation ωc is not
shown but can be calculated from substitution
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of kc into Eq. 46. Curves of criticality for the
different parallel flows in the strong shear ap-
proximation are presented in Fig. 6.

4. RESULTS

In the previous section analytical expressions
describing the linear stability of the system were
shown for a number of cases. Among all the re-
sults, the terms accounting for temperature de-
pendent viscosity contributions are of interest
because these ones facilitate the destabilization
of the fluid layer. Although more contributions
due to the temperature dependence of viscos-
ity, through the basic state u0, are possible these
would be small according to the approximation
K = O(ε). All mathematical expressions for
Rac show similar quadratic dependence on Re
and for all cases the critical Rayleigh number
Rac increases with the shear flow, Re. Other
findings on the velocity profiles deserve to be
mentioned as contribution to the theory of Cox
(1997) since u0 is changed with K contributions.
Found results were compared with others re-
ported in the literature. For example, for B = 0
and Re = 0, Rac reduces to well known value
720 for the case of rigid-rigid boundaries (Riahi
1985; Gertsberg and Sivashinsky 1981; Chap-
man and Proctor 1980a) and to 320 for the case
of rigid-free-boundaries (Chapman and Proctor
1980a; Sparrow et al. 1964). Another important
fact is that shear flows and temperature depen-
dent viscosity effects have opposite impact in
the stability of the system.

4.1 Consequences in the non-Linear Stabil-
ity

In this section attention is paid to non-linear
terms arising in the governing equations of this
problem. These non-linear terms appear natu-
rally when considering the temperature depen-
dence of viscosity from the beginning in the
constitutive equation as made by Wall and Wil-
son (1996) and Chung and Wulandana (2006).
These contributed terms were omitted in the
theory developed by Cox (1997) and could be
of paramount importance in the pattern selec-
tion problem. These mathematical expressions
are not shown here for being out of the scope of
this paper. However, from the present analysis
it can be said that the quadratic terms along with
the modified parallel shear flow profiles are an
improvement.

5. CONCLUSIONS

The problem of forced convection in a infinite
horizontal Newtonian fluid layer bounded by
two poorly conducting walls was studied here.

Also, small variations of viscosity with temper-
ature were taken into account. Main results of
this work point to updating and extending pre-
vious studies reported in the literature.

First, the inclusion of temperature dependence
of viscosity in the fluid constitutive equation
gave rise to new terms which are important in
the linear stability analysis. The effect of the
parameter K, accounting for slight temperature
dependence of the viscosity, was destabilizing
in all cases presented here. For the case of rigid-
rigid boundaries changes in the viscosity de-
crease the stability parameter Rac through the
term −360K and through −400K/3 for case
of rigid-free boundary conditions, respectively.
The destabilizing effect becomes more impor-
tant when both walls are solid that when the
upper boundary is open to the ambient. This
may occur due to the asymmetry in the bound-
ary conditions which physically implies less
friction in the case of upper boundary open to
the ambient. These destabilizing terms com-
ing from the viscous term in the Navier-Stokes
equations are contributed by the perturbed fluid
velocity which is smaller when the upper sur-
face is free.

Second, the imposed shear flows stabilize the
system. In other words, for fixed K the small-
est Rac is achieved when Re = 0. On the other
hand, forced convection sets in always as oscil-
latory motions in all considered cases and sta-
tionary convection may appear when Re = 0.
A possible mechanism through which the shear
flow may stabilize oscillatory motions is by
dragging the uprising heated fluid in the hori-
zontal direction. Thus, the portion of fluid may
experience heat loss before achieving the top
surface. Summarizing, the imposed shear flows
and temperature dependence of viscosity have
opposite effects on the thermoconvective stabil-
ity of the fluid layer, since the first ones are sta-
bilizers and the second one are destabilizers.

Another important result is that the fluid layer
may be stabilized by making the angle orienta-
tion γ = 90. This is equivalent to set Re = 0
since when γ = 90 the frequency of oscillation
vanishes too. From all imposed shear flows
the most unstable was that of MPF, then that
of MCF and finally that of MRF for rigid-rigid
boundaries. For rigid-free boundaries, from all
imposed shear flows the most unstable was that
of MCF, then that of MPF and finally that of
MRF. The previous Couette and Poiseuille flow,
considered by (Cox 1997), were no longer pos-
sible since the temperature dependent viscos-
ity modifies the velocity profiles. The linear
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theory of this problem was also complemented
with a third imposed shear flow characterized
by its returning feature. Also, with the help
of a short computation including the non-linear
terms of this problem it have been foreseen that
some non-linear contributions including K may
become important to the understanding of this
problem.

The present paper introduced some improve-
ments to the theory of linear stability of con-
vection forced convection. In the light of these
results a more broad non-linear stability analy-
sis shall be carried out in a future work. Also,
the problem with perfect heat conducting walls
deserves attention.
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A BASIC STATE VELOCITY PROFILES

In this appendix, analytical expressions for the
basic state velocity profiles are given. Notice
that these expressions are not approximated and
non-dimensionalized.

A1 MPF with rigid-rigid boundary condi-
tions

u0 =

(
2z+1−2K−1) ln(1−K)−2(1+ ln(1−Kz))

2ln
(
−K−1 ln(1−K)

)
+ ln(1−K)

(48)

A2 MPF with rigid-free boundary condi-
tions

u0 =
A1 +2K(K −1) ln(1−Kz)+K2(3K −2z)

2(K −1) ln(1−K)+K(K −2)
(49)

with

A1 =−2(K −1)2 ln(1−K)−2K (50)

A3 MCF with rigid-rigid boundary condi-
tions

u0 =
−K ln(1−Kz)+(K −1) ln(1−K)

K +(1−K) ln(1−K)
(51)

A4 MCF with rigid-free boundary condi-
tions

u0 =
1

K2 (K(K −1) [1+ ln(1−Kz)]

−(K −1)2 ln(1−K)
)

(52)

A5 MRF with rigid-rigid boundary condi-
tions

u0 =
K [2z(K −1) ln(1−K)−2zK −K ln(1−Kz)]

2(K −1) ln(1−K)−2K −A2
(53)

with

A2 = K2
[

ln
(

K2

K +(1−K) ln(1−K)

)
− ln(2)−1

]
(54)

A6 MRF with rigid-free boundary condi-
tions

u0 =
K [2z(K −1) ln(1−K)−2zK −K ln(1−Kz)]

2(K −1) ln(1−K)−2K −A3
(55)

with

A3 = K2
[

ln
(

K2

K +(1−K) ln(1−K)

)
− ln(2)−1

]
(56)

In all velocity profiles shown in this appendix
the small parameter ε has been erased and K is
used instead of K̄. Finally, Table 2 shows data
to complement those presented in Table 1 These
parameter values are important to generate the
velocity profiles shown in Fig. 2. Eqs. 48, 51
and 53 are plotted and presented earlier in the
section 2 as Figs. 2a-2c.

Table 2 Values of βββ222, δδδ222, ηηη222 and ϕϕϕ000 used in
Eq. 8

Rigid - rigid
Modified Couette flow

β2 = 0 δ2 = 1 η2 =−2/3 ϕ2 = 0
Modified Poiseuille flow

β2 =−8 δ2 = 12 η2 =−4 ϕ2 = 0
Modified returning flow

β2 =−6 δ2 = 7 η2 =−5/3 ϕ2 = 0
Rigid-free

Modified Couette flow
β2 = 0 δ2 = 1/2 η2 =−1 ϕ2 = 1/3

Modified Poiseuille flow
β2 =−2 δ2 =−9/2 η2 =−3 ϕ2 = 1/2

Modified returning flow
β2 =−6 δ2 = 7 η2 =−5/3 ϕ2 = 0
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