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ABSTRACT 

The purpose of present investigation is to deal with g-jitter forces of a time varing gravity field on unsteady 
hydromagnetic flow past a horizontal flat plate in the presence of a transverse magnetic field and the flow at 
the entrance also oscillates because of an applied pressue gradient. This problem deals with mixed convection 
driven by a combination of  g-jitter and oscillating pressure gradient under the influence of an applied 
magnetic field. Analysis of this type find applications in space fluid system design and interpreting the 
experimental measurements in microgravity flow and heat transfer system. 
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1. INTRODUCTION

Magneto hydrodynamic (MHD) mixed 
convection flow is the subject motivated by 
several important applications of fluid 
engineering, geothermal and aerospace science. 
To improve the efficiency of MHD energy 
systems, scientists and engineers are 
continuously involved with both analytical and 
numerical approaches to yield a considerable 
amount of new solutions to many different flow 
scenarios (Damseh 2006, Ghosh 1994, Pop et al. 
2001, Datta and Jana 1977, Chen 2008 and 
Ghosh et al. 2011). MHD buoyancy driven mixed 
convection flow is of great interest to diverse 
new technological development on solar 
hydromagnetics with reference to a dynamo 
context of the Sun. A strong evidence of a vast 
magnetic field with the Sun in the presence of a 
magnetic mirror becomes relevant to the study of 
controlled thermonuclear fusion reaction of the 
Sun with reference to a turbulent dynamo 
mechanism of the Sun at the resonant level. In 
this situation, reflection occurs with the 
convective part of the surface of the Sun as the 
magnetic field increases abruptly in strength 
when a magnetic mirror with the Sun is taken 
into account. A charged oscillator exerts its 
influence of laser radiation due to a driving force 
so that an excitation frequency can lead to a 

resonant condition with a decisive importance to 
a dynamo mechanism of the Sun. This has been 
studied by Ghosh et al. (2013) and Ghosh (2014). 
In this context, MHD buoyancy driven mixed 
convection becomes important to a study of 
astrophysical flow in a microgravity field. 
Although MHD mixed convection flow with 
asymmetric heating of the wall has been studied 
by Ghosh and Nandi (2000), Ghosh and 
Bhattacharjee (2000), Ghosh et al. (2002), and 
Guria et al. (2007). Takhar et al. (1999) studied 
the influence of a magnetic field on unsteady free 
convection flow with the inclusion of the effects 
of heat transfer on a semi-infinite flat plate with 
an aligned magnetic field. Ghosh (1993) studied 
the transient magnetohydrodynamic viscous flow 
in a rotating parallel plate channel with 
oscillating pressure gradient for large frequency 
of oscillations at very small Ekman number 
(strong Coriolis force). Naroua (2006) studied 
magnetohydrodynamic convection driven by 
buoyancy force in a rotating heat generating fluid 
with Hall and ion slip current effects. Ghosh and 
Pop (2006) investigated in detail the 
magnetohydrodynamic effects on free convection 
boundary layer heat transfer from a finite plate of 
arbitrary inclination in a rotating environment 
permeated by a transverse magnetic field. Beg 
et.al (2009) studied steady hydromagnetic non-
similar electrically conducting forced convection 
liquid metal boundary layer flow with induced 
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magnetic field effects. Ghosh et al. (2010) 
developed a new approach on hydromagnetic free 
convection boundary layer flow of a moving 
layer past an infinite vertical flat plate under the 
influence of a transverse magnetic field showing 
the effect of Rayleigh flow. A recent study has 
been developed with g-jitter force to exert its 
influence on mixed convection flow with 
asymmetric heating of the wall in the presence of 
a magnetic field. This has been studied by  Pan 
and Ben (1998).  

The purpose of present investigation is to deal 
with the study of an oscillating mixed convection  
boundary layer flow driven by g-jitter forces 
associated with microgravity field with a decisive 
importance to a magnetic field. We consider g-
jitter forces of a time varying gravity field on 
unsteady hydromagnetic flow past a horizontal 
flat plate in the presnce of a transverse magnetic 
field and the flow entrance also oscillates because 
of an applied pressure gradient. The g-jitter field 
varies harmonically with time. Oscillating mixed 
convection driven by g-jitter forces associated 
with microgravity and magnetic field effect on 
convection is investigated. In a realistic situation, 
the co-relation of unsteadiness and g-jitter force 
becomes relevant to a time varying gravity field 
driven by a time harmonic g-jitter components 
with a frequency of oscillation and the flow at the 
entrance also oscillates because of an applied 
pressure gradient. The time varying gravity field 
will generate an oscillatory free convection 
velocity field. This is combined with forced 
oscillating flow driven by a pressure gradient. 
For a g-jitter driven flow in a cavity that bears 
direct relevance to crystal growth in space; the 
net mass flow rate in the system is zero. The 
problem deals with mixed convection driven by a 
combination of g-jitter and oscillating pressure 
gradient under the influence of an applied 
magnetic field. Analysis of this type find 
applications in space fluid system design and 
interpreting the experimental measurements in 
microgravity flow and heat transfer system.         

2. FORMULATION OF THE 

PROBLEM AND ITS SOLUTION 

Consider an unsteady MHD flow of a viscous 
incompressible electrically conducting fluid past a 
horizontal flat plate of finite dimension, directed 
along the positive x -axis, in the presence of an 
applied uniform transverse magnetic field. This 
model is considered by representing the flow 
system of a flat plate with significant effect of 
pressure gradient. The flow is driven by a g-jitter 
field in the presence of a transverse magnetic field. 
In such a situation, a time varying gravity field 
driven by a time harmonic g-jitter forces and the 
flow at the entrance will also oscillate because of an 
applied pressure gradient. It is assumed that the 
plate is isothermal where the constant surface 
temperature WT  of the plate is exposed to the fluid. 

The temperature of the surrounding fluid is 0T at a 

distance from the plate. A layer of the ascending 

heated fluid appears at the plate. x-axis is taken at 
the leading edge of the plate and the y-axis is 
oriented in the direction perpendicular to its surface. 
A uniform magnetic flux 0B  is applied parallel to 

y-axis (see Fig.1). 
 

 
Fig. 1. Geometry of the problem. 

 
Following Lewandowski (1991) and Ghosh et al. 
(2010) we assume that in the moving layer, 
temperature varies under the following condition: 

2
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This has also been described by Isachenko et al. 
(1969) in their monograph, where 0T T   and 

0w wT T   . In the present investigation, the 

temperature profile can be described in the moving 
layer with reference to 0 constantWT T  . 

Under the assumption (1), the following boundary 
conditions are satisfied 

w    at  0y  ,  0    at  y                       (2) 

The unsteady MHD momentum conservation 
equation in the component form 
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From (1) and (4), we have 
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 (5) 

We assume that at the leading edge of the plate the 
boundary layer growth is constant. Due to 
symmetry of the boundary layer growth, we have 
taken    

Constant H
x
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 


(say).                                       (6) 

Then equation (5) transformed into 
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The velocity and temperature boundary conditions 
are  

0u at 0,y 0u at ,y                                 (8) 

  w at 0,y 0  at .y          

where 0 0, , , , , , ,u g p B    are, respectively, the 

velocity component in x-direction, kinematic  
viscosity, boundary layer thickness, gravitational 
acceleration, electrical conductivity, fluid density, 
pressure and magnetic flux density.  

Assume that 

0 0( ) , ( ) , ,        i t i t i tu u y e g t g e p p e                   (9) 

where 0g is the gravitational acceleration and t  is 

the  time.  

Introduce the non-dimensional variables  

2

2
, , ,
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F t
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 
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                   (10) 

Combining equations (7) and (3) together with Eq. 
(5) subject to (9) the following equation can be 
obtained in a dimensionless form with reference to 
(10)  

2
2 3 2

0 2

2
( ) ,

3

F
i F Gr H p M F  




    


       (11) 

where   3 2
0 0 /wGr g T T     is the Grashof 

number, 2 2 2
0 ( / )M B    is the Hartmann 

number and
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  is the 

dimensionless pressure gradient. 

The corresponding velocity boundary conditions are  

0 at 0 and 0 at 1F F                           (12) 

The corresponding temperature boundary 
conditions are 

1 at 0 and 0 at 1                                  (13) 

Equation (11) together with the boundary 
conditions (12) and (13) can be solved and the 
solution is  
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where  

1/ 2
4 2 1/ 2 21
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    M M                              (15) 

With the help of (14), (10) and (9), one can easily 

obtained the value of  1

  
 

u
F




 , where 

 1 ,F t  is given by 

   1 , . i tF t F e                                              (16) 

The pressure gradient 0p is determined by requiring 

that flow satisfies the following condition 

1

0
( ) 1F d                                                         (17) 

Equation (17) is valid when the rate of mass flow is 
constant. 

The expression of 0p can be determined by using 

(17) together with the equation (14) 
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If the rate of mass flow is zero, then the expression 
for pressure gradient (18) reduces to   

0

1

6
p H Gr                                                         (19) 

On using (18), Eq. (16) becomes 
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If the mass flow rate is zero, the equation (20) can 
be transformed into pure free convection flow. 
Using (19) the equation (16) turns into 
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In the absence of Grashof number ( 0)Gr  this 
gives pure forced convection flow. Then equation 
(20) turns into                                           
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3. RESULTS AND DISCUSSION 

To determine the physical insight into the MHD 
flow pattern the velocity distributions  are depicted 
graphically in Figs.2-5 for several values of 

2M , Gr ,  and  t .  It is evident from 

Figs.2-5 that the profiles are parabolic in nature 
and maximum peak of the profile occurs at the 
central section of the boundary layer region. Due 
to the symmetry of the boundary layer region the 
profiles are of parabolic in nature at the central 
region. Fig.2 shows that the fluid velocity 
decreases with an increase in 2M  in the region 
0.27 0.70  . This happens due to setting up of 
Lorentz force in the presence of a transverse 
magnetic field, which impedes fluid velocity. In 
addition, there exists a flow reversal at the two 
ends of the boundary layer region. This happens 
in the case of a flow reversal under the influence 
of an induced pressure gradient when the 
decelerated fluid particle is to be forced outward 
and the fluid velocity increases near the two ends 
of the boundary layer region  with an increase in 

2M  in the regions 0 0.27   and 0.70 1  . 
Fig.3 demonstrates that a flow reversal occurs at 
the two ends of the boundary layer region with a 
decisive importance to induced pressure gradient. 
Also, an increase in free convection parameter 
i.e. Grashof number Gr  that leads to increase the 
fluid velocity in the region 0 0.5  and it 

decreases in the region 0.5 1  . This trend is 
due to the fact that the positive Grashof number 
Gr  acts like a favourable pressure gradient 
which accelerates the flow in the boundary layer 
region. It is noticed from Fig.4 that in the central 
section of the boundary layer region the fluid 
velocity increases with an increase in frequency 
parameter   and the occurrence of flow reversal 

at the two ends of the boundary layer region leads 
to decrease the fluid velocity  with an increase in 
frequency parameter   in the 

regions 0 0.27   and 0.70 1   . It is 
interesting to note that the fluid velocity vanishes 
at the critical distances 0.27  and 

0.70  from the plate. Fig.5 indicates that   the 

fluid velocity decreases with an increase in phase 
angle t . This happens in the case of stability 

criteria when the phase angle determines the 
critical value for retarding the fluid velocity so 
that the flow becomes stable where no flow 
reversal occurs at the boundary of the plate.  
 

 
Fig. 2. Velocity profiles for 2M  when 5Gr  , 

2   and / 2t  . 

 

 
Fig. 3. Velocity profiles for Gr  when 2 = 5M ,  

2   and / 2t  . 

 

 
Fig. 4. Velocity profiles for   when 2 = 5M ,  

5Gr   and / 2t  . 
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Fig. 5. Velocity profiles for t  when 2 = 5M ,  

5Gr   and 2 . 
 
We shall now discuss a few particular cases of 
interest. 

Case I: In the case of a horizontal flat plate, the 

point of separation is determined by 
0

0.
dF

d  

 
 

 
 

The mean value of the boundary layer thickness 
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symmetry of the boundary layer thickness, the 
length of its growth is constant. Since the curvature 
of the velocity profile depends on pressure gradient 
it is stated that in the absence of pressure gradient, 
the length of its boundary layer growth is zero. 
Therefore 
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Hence equation (17) reduces to 
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Using (23) and (24), the equation (16) becomes 
equivalent to (22) (Pure forced convection). 

Case II: In the limiting case of a pure free 
convection 0( 0)p  the equation (16) turns into   
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(25) 

 The physical quantity of engineering significance is 
the shear stress (skin friction) at the plate. Using 
equation (16), the non-dimensional shear stress at 
the plate is given by 
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Numerical results of the shear stress at the plate are 
presented graphically in Figs.6-8 for several values 
of Gr ,  and  t . It is seen from Fig.6 that the 

shear stress at the plate decreases with an increase 
in either magnetic parameter 2M

 or Grashof 
number Gr . Figs.7 and 8 show that the shear stress 
at the plate increases with an increase in either 
frequency parameter    or phase angle t . 

 

 
Fig. 6. Shear stress for Gr  when 2   and 

/ 2t  . 
 

 
Fig. 7. Shear stress for   when 5Gr   and 

/ 2t  . 
 
The critical Grashof number for which there is no 

flow reversal with reference to 
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where  
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Fig. 8. Shear stress for t  when 5Gr   and 

2  . 
 

It is numerically verified that no flow reversal 
occurs at the plate 0.   Fig.9 shows that the 

critical Grashof number increases with an increase 
in either frequency parameter   or magnetic 

parameter 2M . 

 

 
Fig. 9. Critical Grashof number for  . 

 

4. CONCLUSION 

The present investigation is subjected to a study of 
an oscillating mixed convection boundary layer 
flow driven by g-jitter forces associated with 
microgravity field under the influence of an applied 
magnetic field with induced pressure gradient. The 
g-jitter field varies harmonically with time. The 
time varying gravity field emerges the backbone of 

an oscillatory free convection velocity field. This is 
combined with the forced oscillating flow driven by 
a pressure gradient. It is evident from numerical 
result that the influence of a magnetic force leads to 
fall the velocity at the central section of the 
boundary layer region while there exists a flow 
reversal at the two ends of the boundary layer 
region. The effect of Grashof number corresponds 
to a free convection flow in the presence of a 
pressure gradient to accelerate the flow in the 
boundary layer region. It is interesting to note that 
the phase angle determines the critical value for 
retarding the fluid velocity. The effect of skin 
friction at the plate plays a significant role on 
increasing the magnetic force. It is stated that 
critical Grashof number leads to a stabilizing 
influence on the flow field. 
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