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ABSTRACT 

The present study deals with the Falkner-Skan flow of rate type non-Newtonian fluid. Expressions of an 
Oldroyd-B fluid in the presence of mixed convection and thermal radiation are used in the development of 
relevant equations. The resulting partial differential equations are reduced into the ordinary differential 
equations employing appropriate transformations. Expressions of flow and heat transfer are constructed. 
Convergence of derived nonsimilar series solutions is guaranteed. Impact of various parameters involved in 
the flow and heat transfer results is plotted and examined. 
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NOMENCLATURE 

c  specific heat

g gravitational acceleration

xGr the local Grashof number 

Tk thermal conductivity

Nu local Nusselt number
Pr Prandtl number
R radiation parameter 
Rex is the local Reynold number  

u and v are velocity components 
  is dynamic viscosity 

 density of fluid

 wedge angle

1  is the relaxation time, 

2  is the retardation time, 

  mixed convection parameter

1  and 2 are the dimensionless parameters 

1. INTRODUCTION

The non-Newtonian fluids are encountered in the 
industrial and technological applications. Many 
fluids in nature do not obey the Newton's law of 
viscosity. Such fluids include polymer solutions, 
colloidal and suspension solutions, apple sauce, 
clay coating, shampoos, paints, certain oils, 
cement, sludge, drilling muds, food products, 
paper pulp, aqueous foams, slurries, grease etc. 
The rheological characteristics of non-Newtonian 
fluids cannot be predicted by employing a single 
relationship between stress and shear rate. Hence 
the non-Newtonian fluids are mainly classified 
into three types namely, the integral, differential 
and rate. Extensive studies in the literature have 
been devoted to the flows of differential type 
fluids in various geometries. However the 

differential type fluids are insufficient to describe 
the effects of relaxation and retardation times 
although they own the properties of normal 
stress, shear thinning and shear thickening. The 
rate type fluids are significant for the description 
of relaxation and retardation times effects. 
Oldroyd-B model is known as one of the subclass 
of rate type models which can predict the effects 
of relaxation and retardation times. Some of the 
recent studies relevant to Oldroyd-B model 
include the researches of (Fetecau et al. 2010, 
Fetecau et al. 2009, Zheng et al. 2011, Haitao et 
al. 2009a, Haitao et al. 2009b, Liu et al. 2011, 
Zheng et al. 2011, Fetecau et al. 2011, Jamil et 
al. 2011, Hayat et al. 2012). 

In the field of aerodynamics, the analysis of two-
dimensional boundary layer problems for steady 
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and incompressible flow passing a wedge is 
common area of interest. The study of heat 
transfer along a wedge has gained considerable 
attention due to its vast applications in industry 
and its important bearings in several 
technological and natural processes. Falkner and 
Skan (1931) firstly discussed the momentum 
boundary layer equation of two-dimensional 
wedge flows. They proposed a similarity 
transformation method in order to reduce the 
partial differential equation to the non-linear third 
order ordinary differential equation. Afterwards 
Hartee (1937) found the solution of that problem 
and also obtained the numerical values of the 
wall shear stress for different values of wedge 
angle. Abbasbandy and Hayat (2009) employed 
Hankel-Pade method to calculate the skin friction 
coefficients of the MHD Falkner-Skan boundary 
layer flow of viscous fluid. In another article, 
Abbasbandy and Hayat (2009) used the 
homotopy analysis method to obtain the analytic 
solution to this problem. Prand et al. (2011) 
established the MHD Falkner-Skan flow on a 
fixed and impermeable wedge by using the 
pseudospectral method of the Hermite functions. 
Kuo (2005) employed the differential transform 
method to analyze the heat transfer in the 
Falkner-Skan wedge flow. Radiative effects have 
important applications in several problems of 
physics and engineering. The radiation heat 
transfer effects in different flows are important in 
space technology and high temperature process. 
But a very little is known about the effects of 
radiation in the boundary layer flow of rate type 
fluids. Thermal radiation effects may play an 
important role in controlling heat transfer in 
polymer processing industry where the quality of 
the final product depends on the heat controlling 
factors to some extent. High temperature 
plasmas, cooling of nuclear reactors, liquid metal 
fluids, power generation systems are some 
important applications of radiative heat transfer 
from a wall to conductive gray fluids. A very 
significant area of research in radiative heat 
transfer, at the present time is the numerical 
simulation of combined radiation and convection 
/ conduction transport processes. The effort has 
arisen largely due to the need to optimize 
industrial system such as furnaces, ovens and 
boilers and the interest in our environment and in 
no conventional energy sources, such as the use 
of salt gradient solar ponds for energy collection 
and storage. In particular, mixed convection 
induced by the simultaneous action of buoyancy 
forces resulting from thermal diffusion is of 
considerable interest in nature and in many 
industrial applications such as geophysics, 
oceanography, drying processes, solidification of 
binary alloy and chemical engineering. The effect 
of radiation in heat transfer problems have been 
studied by Chen (2009), Mukhopadhyay (2009) 
and Hayat et al. (2010). Recently, Kim (2001) 
developed the numerical treatment for the 
Falkner-Skan wedge flow of a power law fluid. 
Hayat et al. (2011) extended the analysis of Kim 
(2001) for mixed convection. Ishak (2010) 
presented the similar solutions for flow and heat 

transfer over a permeable surface with convective 
boundary conditions. 

The aim of present paper is to analyze the 
radiative Falkner-Skan flow of an Oldroyd-B 
fluid in the presence of mixed convection. The 
presentation of article is made as follows. 
Problem is formulated in the next section. 
Section three consists of the series solutions of 
the governing problem by using a very useful 
technique namely the homotopy analysis method 
(Liao (2012), Liu (2013), Hayat et al. (2013), 
Abbasbandy et al. (2013), Zheng et al. (2012), 
Rashidi et al. (2014), Turkyilmazoglu (2012), 
Ashraf et al. (2015)). Convergence analysis and 
the impact of various parameters of interest are 
presented in section four. The last section 
includes the main observations.  

2. PROBLEM DEVELOPMENT 

Let us investigate the two-dimensional Falkner-
Skan flow of an Oldroyd-B fluid. We further 
consider the heat transfer. Cartesian coordinates  

 ,x y  are used such that x  -axis is parallel to the 

wall and y  -axis normal to it. An incompressible 

fluid occupies the region 0.y   The equations 
governing the present flow situation are based on 
the conservation laws of mass, linear momentum 
and energy. Flow diagram of the problem is as 
follows: 

Taking into account the aforementioned 
assumptions, the resulting boundary layer equations 
can be written as follows: 
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The appropriate boundary conditions are 

,      0,             
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where  nU ax  is the free stream velocity,   is 

the dynamic viscosity, 1  is the relaxation time, 2  
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is the retardation time,   is the wedge angle, Tk  

is the thermal conductivity, k  is the surface 
temperature exponent, T  and T  are the 

temperatures of the fluid and ambient respectively 
and wT  is the wall temperature. We utilize [13 20, 

21] 
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where   is the similarity variable,   is the stream 

function, f  is the dimensionless stream function 
and   is the dimensionless temperature. Now the 

continuity equation  1  is identically satisfied and 

Eqs.    2 4  leads 
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Here prime denotes the differentiation with respect 
to  , 1  and 2  are the dimensionless material 

parameters,   is mixed convection parameter,  

xGr  is the local Grashof number, Pr  is the Prandtl 

number and R  is the radiation parameter. The 
definitions of these parameters are  
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Local Nusselt number  xNu  along with heat 

transfer rate  wq  are 
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                 (11) 

which in dimensionless form gives 

   1/2Re 0 .x xNu                                      (12) 

Series solutions 

The initial guesses  0 0,f   and auxiliary linear 

operators  ,  fL L  are taken as follows 
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where iC   1 5i    are the arbitrary constants. If  

[0,1]p   is the embedding parameter and f  and 

  are the non-zero auxiliary parameters then the 

zeroth-order and  m  th order deformation problems 
are stated as follows. 
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and  0( )   to final solutions  f   and ( )   

respectively. By Taylor's expansion one has 


     

 

 

0
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; ,
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m p
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
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



 







                     (32) 
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0
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,

!

m
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 







 









                      (33) 

where the auxiliary parameters are so properly 
chosen that the series (32)  and (33)  converge at  

1p   i.e. 

     0
1

,m
m

f f f  



                                 (34) 

     0
1

.m
m

     



                                   (35) 

The general solutions are  

   *
1 2 3 ,m mf f C C e C e                    (36) 

   *
4 5 ,m m C e C e                              (37) 

In which *
mf  and  *

m   are special functions. 

Convergence of the series solutions 

Note that the series solutions in Eqs.  34  and 

 35  contain two auxiliary parameters f  and  . 

The convergence of series solutions depend upon 
these auxiliary parameters. For range of values of 
these parameters, the   curves at 15  th-order of 
approximations have been plotted in Fig. 2. It is 
found that the admissible values of f  and   are 

1.3 0.25f     and 1.2 0.5    . The 

series converge in the whole region of   when 

1.0.f      The residual errors of f  and   

are 
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Fig. 1. Physical Model. 

 

 
Fig. 2.  -curves for the functions f  and θ. 

 

 
Fig. 2a. Residual Error for ( ).f   

 

 

Fig. 2b. Residual Error for ( ).g   
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3. DISCUSSION 

The aim of this subsection is to present the 
effects of pertinent parameters on the velocity, 
temperature and surface heat transfer. Figs. 3 and 
4 are displayed to see the effects of 1  on the 

velocity and temperature profiles. It is observed 
that both the velocity profile and momentum 
boundary layer thickness decrease by increasing 

1 . However the thermal boundary layer 

thickness and temperature increase. The 
dependence of material parameter  2  on the 

velocity and temperature profiles are shown in 
the Figs. 5  and 6  respectively. These Figs. 
indicate that the velocity profile and momentum 
boundary layer thickness are increasing functions 
of 2  while reverse behavior is observed in the 

case of temperature and thermal boundary layer 
thickness. 

 

 
Fig. 3. Influence of 1  on / ( ).f   
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Fig. 4. Influence of 1  on ( ).   

 

 
Fig. 5. Influence of 2  on / ( ).f   

 

 
Fig. 6. Influence of 2  on ( ).   

 

Variation of parameter n  on the velocity and 
temperature are sketched in the Figs. 7 and 8. 
Clearly the effects of n  on the velocity and 
temperature profiles are quite reverse. Influence of 
mixed convection parameter   on both the velocity 
and temperature profiles are given in the Figs. 9 and 
10. It is observed that the velocity and momentum 
boundary layer thickness increase with the increase 
of mixed convection parameter   while the 
temperature and thermal boundary layer thickness 
decrease. Figs. 11 and 12 are drawn to see the 
variation of   on the velocity and temperature 
profiles. It is noticed that the velocity and 
momentum boundary layer thickness increase when 
  increases It is also found that the temperature 
and thermal boundary layer thickness are increasing 
functions of .  We have drawn Figs. 13  and 14  to 
see the variation of radiation parameter R  on the 
velocity ( )f   and temperature ( )   profiles. 

 

 
Fig. 8. Influence of n  on ( ).   

  

 
Fig. 9. Influence of   on / ( ).f   

 

  
Fig. 10. Influence of   on ( ).   

 

 
Fig. 11. Influence of   on / ( ).f   
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Fig. 12. Influence of   on ( ).   

 

 
Fig. 13. Influence of R  on / ( ).f   

 

 
Fig. 14. Influence of R  on ( ).   

 
It is seen that the effect of R  on both the 
temperature and velocity profiles are similar. It is 
further noted that the momentum and thermal 
boundary layer thicknesses are increasing functions 
of R . Figs. 15 and 16 are sketched to see the 
variation of surface temperature parameter k  on 
the velocity ( )f   and the temperature ( )  . Both 

( )f   and ( )   decrease with the increase in k . It 
is also observed that both the momentum and 
thermal boundary layer thicknesses decrease when 
k  increases. Influence of Prandtl number Pr  on 
the velocity and temperature profiles are shown in 
the Figs. 17 and 18. These Figs. show that by 
increasing the values of Pr  both the velocity and 
temperature profiles decrease. 

 
Fig. 15. Influence of k  on / ( ).f   

 

 
Fig. 16. Influence of k  on ( ).   

 

 
Fig. 17. Influence of Pr  on / ( ).f   

 

 
Fig. 18. Influence of Pr  on ( ).   
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The momentum and thermal boundary layer 
thicknesses also decrease by increasing Pr . Clearly 
an increase in the values of Pr  leads to a decrease 
in the thermal diffusivity. Figs. 19 22  are drawn 
to see the influence of Deborah numbers 1  and 

2,  mixed convection parameter ,  wedge angle 

,  radiation parameter R , Prandtl number Pr  , 

surface temperature parameter k  and velocity 
index n  on the local Nusselt number (0).   It is 

observed from Fig. 19 that 1  and 2  have quite 

opposite effects near the wall on the local Nusselt 
number (0)  i.e an increase in 1  leads to 

decrease in local Nusselt number (0) . Away 

from the wall, (0)  decreases for increasing 

values of 2.  Fig. 20 depicts the effects of   and 

  on (0) . It is noticed that (0)  increases 

through increase of mixed convection parameter   
and wedge angle  . Fig. 21 depicts that variation 
of n  and k  have opposite effects on (0).  It is 

noted that (0)  is decreasing function of R  

while increasing function of Pr  (see Fig. 22). A 

close look at Table 1 indicates that th25  -order 
approximation gives convergent series solutions.  

 

 
Fig. 19. Influence of 1  and 2  on / (0).  

 

  
Fig. 20. Influence of   and   on / (0).  

 

 
Fig. 21. Influence of n  and k  on / (0).  

 
Table 1  Convergence of the homotopy solutions 

for different order of approximation when 
Pr 1.0 , 0.3  , 1.5n  , 0.5,k   R = 0.3, 

k = 0.5, / 4,   1 0.2,   2 0.3   and 

0.5f      

Order of 
approximation 

/ / (0)f  / (0)  

1 0.90330 0.78889 
5 0.86304 0.64042 
10 0.86077 0.62757 
15 0.86047 0.62627 
20 0.86045 0.62616 
25 0.86044 0.62616 
30 0.86044 0.62616 

4. CONCLUSIONS 

Mixed convection effects in the Falkner-Skan 
wedge flow of an Oldroyd-B fluid are investigated. 
Analysis is modeled and analyzed in the presence of 
thermal radiation. The following points are worth 
mentioning: 

Table 1  shows that convergence of the functions 

f  and   are obtained at th25  -order 
approximations up to five decimal places when  

0.5.f       

Thermal boundary layer thickness increases with 
the material parameter 1  while reverse behavior is 

seen in case of momentum boundary layer 
thickness. 

Influence of mixed convection parameter   
increases the velocity and momentum boundary 
layer thickness while it decreases the temperature 
and thermal boundary layer thickness. 

An increase in material parameter 2  increases the 

velocity and reduces the thermal boundary layer 
thickness. 

Both temperature and thermal boundary layer 
thickness decrease when the Prandtl number Pr  is 
increased. 



M. Bilal Ashraf et al. / JAFM, Vol. 9, No. 4, pp. 1753-1762, 2016.  
 

1761 

Influence of wedge angle   and radiation 
parameter R  on both the temperature and velocity 
profiles are quite similar. 

Thermal boundary layer and momentum boundary 
layer thicknesses are decreasing functions of 
surface temperature exponent k  . 

Surface heat transfer (0)  increases with an 
increase of wedge angle , mixed convection 

parameter ,  radiation parameter R, Prandtl 

number Pr and surface temperature exponent k . 

In case of material parameter 1  the surface heat 

transfer (0)  decreases while the material 

parameter 2  decreases it near the boundary and 

increases far away. 
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