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ABSTRACT

An upper-convected Maxwell (UCM) fluid flow over a melting surface situated in hot environment 
is studied. The influence of melting heat transfer and thermal stratification are properly accounted 
for by modifying the classical boundary condition of temperature to account for both. It is assumed 
that the ratio of inertia forces to viscous forces is high enough for boundary layer approximation 
to be valid. The corresponding influence of exponentially space dependent internal heat generation 
on viscosity and thermal conductivity of UCM is properly considered. The dynamic viscosity and 
thermal conductivity of UCM are temperature dependent. Classical temperature dependent viscosity 
and thermal conductivity models are modified to suit the case of both melting heat transfer and ther-
mal stratification. The governing non-linear partial differential equations describing the problem are 
reduced to a system of nonlinear ordinary differential equations using similarity transformations and 
completed the solution numerically using the Runge-Kutta method along with shooting technique 
(RK4SM). The numerical procedure is validated by comparing the solutions of RK4SM with that 
of MATLAB based bvp4c. The results reveal that increase in stratification parameter corresponds 
to decrease in the heat energy entering into the fluid domain from freestream and this significantly 
reduces the overall temperature and temperature gradient of UCM fluid as it flows over a melting 
surface. The transverse velocity, longitudinal velocity and temperature of UCM are increasing func-
tion of temperature dependent viscous and thermal conductivity parameters. At a constant value of 
melting parameter, the local skin-friction coefficient and heat transfer rate increases with an increase 
in Deborah number.

Keywords: Melting heat transfer; Viscoelastic fluid; Relaxation time; Variable viscosity; Variable 
thermal conductivity; Thermal Stratification; Exponentially Internal heat Source.

NOMENCLATURE

a stretching rate (S.I. Unit second−1)
b1 temperature dependent viscous parameter
b2 temperature dependent thermal

conductivity parameter
Bo uniform magnetic field
C f skin friction coefficient
Cp specific heat at constant pressure
di j deformation rate tensor
Li j velocity gradient tensor
M magnetic parameter
Nux local Nusselt number
Pr Prandtl number
qw heat transfer

T dimensional fluid temperature
Tm melting temperature
T∞ ambient temperature
u velocity component along horizontal

surface
v velocity component along vertical

surface
x distance along horizontal surface
y distance along vertical surface

β Deborah number (dimensionless
viscoelastic parameter)

γ space dependent heat source parameter
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ε dimensionless temperature dependent
thermal conductivity parameter

η similarity variable
θ dimensionless temperature
ϑ kinematics viscosity
κ thermal conducitivity
λ dimensional relaxation time
µ dynamic viscosity of UCM fluid

ξ dimensionless temperature dependent
viscous parameter

ρ density of UCM fluid
σ electric conductivity
τi j tensor notation
τw skin friction
ψ stream function

1. INTRODUCTION

The analysis and description of boundary
layer flow together with heat transfer of an
incompressible fluid on a stretching hori-
zontal surface has gained attention of many
researchers. Series of investigations have been
carried out towards the understanding of the
dynamics of viscoelastic material since the
contribution of James Clerk Maxwell in 1867
to the body of knowledge. The dynamics of
material having the properties of elasticity and
viscosity when undergoing deformation is a
fundamental topic in fluid dynamics. This kind
of material referred to as Maxwell fluid has
attracted the attention of many researchers due
to its wide industrial and technical applications.
The upper-convected Maxwell model can be
described as the generalization of the Maxwell
material for the case of large deformation
using the upper-convected time derivative (also
known as Oldyrold derivative) which is the
rate of change of some tensor property of
a small parcel of fluid that is written in the
coordinate system stretching with the fluid. It
is worth noticing that mathematical model of
upper-convected Maxwell has been described
(or defined) as a function of stress tensor,
relaxation time, upper convected time deriva-
tive of stress tensor, fluid velocity, material
viscosity at steady simple shear and tensor of
the deformation rate.

It is a common known fact in rheology
that given enough time, even a solid-like mate-
rial will flow Barnes et al. (1989). In view of
this, a dimensionless number that incorporates
both the elasticity and viscosity of material is
required. Poole (2012) reported the history
behind the given name ”Deborah” and further
explained Deborah number as the ratio of time
it takes for a material to adjust to deformations
according to Eugene C. Bingham and Markus
Reiner. In view of this, Sadeghy et al. (2005)
investigated Sakiadis flow of a UCM fluid. The
role played by a fluid’s elasticity on the charac-
teristics of its Sakiadis flow was analyzed. In
the same context, it was reported that at high
Deborah number, UCM flow corresponds to

solid-like behavior and low Deborah numbers
to fluid-like behavior. Recently, Shateyi et al.
(2015) investigated entropy generation on a
magnetohydrodynamic flow and heat transfer
of a Maxwell fluid over a stretching sheet in
a Darcian porous medium. In the research, a
new numerical scheme (Chebyshev spectral
collocation method) was adopted to solve the
nonlinear systems of boundary value problem.

Considering some rheological complex
fluids such as polymer solutions, blood, ice
creams and synovia fluid, Abbas et al. (2006)
argued that the second-grade fluid model
adopted in the work of Fosdick and Rajagopal
(1979) does not give reasonable results for
flows of highly elastic fluids (polymer melts)
that occur at high Deborah number. For
such situations the upper-convected Maxwell
(UCM) model is quite appropriate. Using the
UCM model, MHD boundary layer flow of
a UCM fluid in a rectangular porous channel
was successfully investigated. The study on
dynamics of upper-convected Maxwell fluid is
extended in Hayat et al. (2006) and reported
that boundary layer thickness decreases by
increasing the magnitude of MHD parameter,
suction/injection velocity parameter and relax-
ation time parameter. In recent years, many
researchers has investigated and reported the
effect of some parameters on upper-convected
Maxwell fluid flow (see Sadeghy et al. (2006),
Abbas et al. (2008), Sadeghy et al. (2009), Pop
et al. (2012), Motsa et al. (2012), Mustafa et al.
(2012), Prasad et al. (2013) and Animasaun
et al. (2015)).

Internal energy generation can be explained as
a scientific method of generating heat energy
within a body by chemical, electrical or nuclear
process. Natural convection induced by internal
heat generation is a common phenomenon in
nature. Crepeau and Clarksean (1997) have
reported a similarity solution of a fluid problem
along a vertical plate with constant temperature
in the presence of an exponential decaying heat
generation term under the assumption that the
fluid has an internal volumetric heat generation.
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In many situations, there may be appreciable
temperature difference between the surface
and the ambient fluid. This necessitates the
consideration of temperature dependent heat
source(s) that may exert a strong influence on
the heat transfer characteristics (see Salem and
El-Aziz (2007)). Salem and El-Aziz (2008)
further stated that exact modeling of internal
heat generation or absorption is quite difficult
and argued that some simple mathematical
models can express its average behavior for
most physical situations. Recently, Animasaun
et al. (2015) reported that when the plastic
dynamic viscosity and thermal conductivity of
non-Newtonian Casson fluid are considered as
temperature dependent, exponentially decaying
internal heat generation parameter is an impor-
tant dimensionless number that can be used to
increase velocity and temperature of the fluid
as it flows.

Effect of this internally generated heat en-
ergy on the surface may lead to melting of solid
surface. From the knowledge of kinetic theory
of matter, some solids may melt if expose to a
high temperature. In an earlier study, the effect
of melting on heat transfer was studied by Yin-
Chao and Tien (1963) for the Leveque problem.
The tangential velocity profile is assumed to be
linear. It was further reported by Tien and Yen
(1965) that the approximation in Yin-Chao and
Tien (1963) is valid if one deals with a high
Prandtl number fluid so that the significant tem-
perature change takes place only within a thin
layer of fluid immediately adjacent to the solid
boundary and consequently the velocity profile
inside this thin layer can be approximated by a
linear segment. In addition, effect of melting
on heat transfer between melting body and
surrounding fluid qualitatively from the point of
view of boundary layer theory was investigated.
This contribution to the existing knowledge
attracted Epstein (1975) to present a note on a
systematic method of calculating steady state
melting rates in all circumstances involving the
melting of solid bodies immersed in streams
of warmer fluid of the same material. In the
same context, relationship between boundary
condition of evaporation and that of melting is
discussed. In recent years, many researchers
have investigated and reported the effect of
melting parameters; for details see Pop et al.
(2010), Ishak et al. (2010) and Hayat et al.
(2013).

In all of the above mentioned studies, fluid
viscosity and thermal conductivity have been
assumed to be constant function of temperature

within the boundary layer. However, it is
known that physical properties of the fluid may
change significantly when expose to internal
generated temperature. For lubricating fluids,
heat generated by the internal friction and the
corresponding rise in temperature affect the
viscosity of UCM and so the viscosity of UCM
can no longer be assumed constant. In a case
of melting as reported by many researchers
(i.e. Fukusako and Yamada (1999), Pop et al.
(2010), Ishak et al. (2010), Hayat et al. (2013)),
it is worth mentioning that temperature of fluid
layers at free stream may also have significant
effect on the intermolecular forces of upper
convected Maxwell fluid. The increase of
temperature may also leads to a local increase
in the transport phenomena by reducing the
viscosity across the momentum boundary layer
and so the heat transfer rate at the wall may
also be affected greatly.

According to Batchelor (1987), Animasaun
(2015a) and Meyers et al. (2006), it is a
well-known fact that properties which are
most sensitive to temperature rise are vis-
cosity and thermal conductivity. Recently,
Mukhopadhyay (2013) considered this same
fact in order to explain stagnation point flow
behavior on non-melting surface. Motivated
by all the works mentioned above, it is of
interest to contribute to the body of knowledge
by studying the dynamics of upper-convected
Maxwell fluid flow considering a case in which
the influence of temperature on viscosity and
thermal conductivity is properly accounted for.
In this study we aim at investigating UCM
fluid flow along a melting surface situated
in hot environment which subjects the flow
to thermal stratification. This is achieved by
modifying and incorporating all the necessary
term(s) into the boundary layer equation in line
with boundary layer theory and heat transfer
theory. Also, to unravel effects of correspond-
ing parameters on the physical quantities of
UCM fluid flow with variable thermo-physical
properties towards hot environment. Lastly,
to complements the research of Hayat et al.
(2013), Mustafa et al. (2012), Pop et al. (2010),
and Prasad et al. (2013).

It is evident that the results obtained from
the present investigation will provide useful
information for various industrial applications.
In this paper, in section 2 we presents the
mathematical formulation of the problem, in
section 3 the numerical solution is presented,
in section 4 the results and discussions are
explained and in section 5 we presents the
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conclusions based on the findings.

2. MATHEMATICAL FORMULATION

We consider steady and incompressible upper-
convected Maxwell (UCM) fluid flow with vari-
able thermo-physical properties along a melt-
ing surface situated in a hot environment. The
flow under consideration is assumed to occupy
the domain 0 ≤ y < ∞ as shown in the Fig. 1.
Boundary layer equations which best describe
upper convected Maxwell fluid flow can be de-
rived starting from Cauchy equations of motion.
Following (Dunn and Rajagopal (1995) and
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Fig. 1. Physical Configuration.

Sadeghy et al. (2005)), steady two-dimensional
fluid flow can be written as

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=−1
ρ

∂p
∂x

+
1
ρ

(
∂τxx

∂x
+

∂τxy

∂y

)
, (2)

u
∂v
∂x

+ v
∂v
∂y

=−1
ρ

∂p
∂y

+
1
ρ

(
∂τyx

∂x
+

∂τyy

∂y

)
. (3)

Where ρ is the density of the steady upper-
convected Maxwell fluid. Poole (2012) ex-
plained that in steady simple shear flow (SSSF),
the dominant elastic force will be due to the first
normal-stress difference (τxx,τyy) and the vis-
cous force is simply the shear stress (τxy). In Eq.
(2) and Eq. (3), elastic terms are ∂τxx

∂x and ∂τyy
∂y .

The viscous terms are ∂τxy
∂y and ∂τyx

∂x . Using order
of magnitude as introduced by Ludwig Prandtl
and stated in Schichting (1964), it is valid to say
that

u = O(1), v = O(δ), x = O(1), y = O(δ),(4)

and easy to show that in Eqs. (2) and (3), order
of magnitude of the two elastic terms and order

of magnitude of the two viscous terms are the
same if

τxx

ρ
= O(1),

τxy

ρ
= O(δ),

τyy

ρ
= O(δ2). (5)

This condition can be found in Sadeghy et al.
(2005). Elastic effects should be considered in a
boundary layer only for those viscoelastic fluids
for which τxx is of an order larger than τxy and
τyy. Not all viscoelastic fluid models can meet
such a strong restrictive condition. Assuming
that a fluid can be found for which the order esti-
mates as given by Eq. (5) really hold; the stress
components of a UCM fluid can indeed be rep-
resented by the above order estimates justifying
the use of such a model in the present work. The
equations of motions can be simplified to

u
∂u
∂x

+ v
∂u
∂y

=−1
ρ

∂p
∂x

+
1
ρ

(
∂τxx

∂x
+

∂τxy

∂y

)
, (6)

0+0 =−1
ρ

∂p
∂y

+
1
ρ
(0+0). (7)

In the presence of pressure gradient, the equa-
tions of motions together with continuity equa-
tion can be written as

∂u
∂x

+
∂v
∂y

= 0, (8)

u
∂u
∂x

+ v
∂u
∂y

=−1
ρ

∂p
∂x

+
1
ρ

(
∂τxx

∂x
+

∂τxy

∂y

)
, (9)

In Eq. (8) and Eq. (9), there exist five depen-
dent variables which are p, u, v, τxx and τxy. In
order to resolve this (i.e. to make the number
of unknowns equal to the number of equations),
a constitutive equation relating stress compo-
nents to the deformation field is needed. For
a Maxwell fluid, the stress tensor (τi j) can be
related to the deformation-rate tensor (di j) as
presented in Larson (1988) and Sadeghy et al.
(2005) as(

τi j +λ
∆τi j

∆t

)
= 2µcdi j (10)

The time derivative
( ∆

∆t

)
appearing in Eq. (10)

is the so-called upper-convected time derivative
which has been devised to satisfy the require-
ments of continuum mechanics (i.e. material
objectivity and frame indifference; see Larson
(1988) and Sadeghy et al. (2005)). In this pa-
per, the zero-shear rate viscosity is denoted as
µc.

∆τi j

∆t
=

Dτi j

Dt
−L jkτik −Likτk j (11)
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In Eq. (11), Li j is the velocity gradient tensor.
The Bernoulli equation for the free stream flow
just above the boundary layer where there is no
viscous shear,

p
ρ
+

u2
e

2
= constant

can be differentiated and used to eliminate the
pressure gradient Lienhard-IV and Lienhard-V
(2008)

−1
ρ

∂p
∂x

= ue
∂ue

∂x

Since the flow is along flat horizontal melting
plate, pressure p and stretching velocity at the
free stream ue are constant; hence ue

∂ue
∂x var-

nishes from the momentum equation. For an
incompressible fluid obeying upper convected
Maxwell model, the x−momentum equation
can be simplified using the usual boundary layer
theory approximations and then obtain

u
∂u
∂x

+ v
∂u
∂y

+λ
(

u2 ∂2u
∂x2 + v2 ∂2u

∂y2 +2uv
∂2u
∂x∂y

)
=

µ
ρ

∂2u
∂y2 − σB2

ρ

(
u+λv

∂u
∂y

)
(12)

In this study on Maxwell fluid flow, it is as-
sumed that the normal stress is of the same order
of magnitude as that of the shear stress in addi-
tion to the usual boundary layer approximation
for deriving the component of the momentum
boundary layer Eq. (12). This is properly ac-
counted for by introducing σB2

ρ

(
λv ∂u

∂y

)
into the

momentum Eq. (12). In this present study, it is
important to state that exponential heat source
is adopted to account for internal distribution of
temperature in energy equation. This concept
can be traced to the idea of Crepeau and Clark-
sean (1997), Salem and El-Aziz (2007), Salem
and El-Aziz (2008), Reddy and Reddy (2011)
and Animasaun et al. (2015). The energy equa-
tion can be written as

u
∂T
∂x

+ v
∂T
∂y

=
κ

ρCp

∂2T
∂y2 +

Qo(T∞ −To)

ρCp
e(−ny

√ a
ϑ )

(13)

Equations (8), (12) and (13) are subject to the
following boundary conditions

u = 0, κ
(

∂T
∂y

)
= ρ[λ∗+ cs(Tm −T ∗

o )]v(x,0),

T = Tm, at y = 0, (14)

u → ax, T → T∞, as y → ∞. (15)

κ is the thermal conductivity, λ∗ is the latent
heat of the fluid and cs is the heat capacity of
the solid surface. In order to solve the problem
completely in unbounded domains, it is possi-
ble to augment the boundary conditions by as-
suming certain asymptotic structures for the so-
lutions at infinity. The formulation of the sec-
ond term in boundary Eq. (14) states that the
heat conducted to the melting surface is equal
to the heat of melting plus the sensible heat
required to raise the solid temperature T ∗

o to
its melting temperature Tm (for details, see Ep-
stein and Cho (1976)). The increase of temper-
ature may also leads to a local increase in the
transport phenomena by reducing the viscosity
across the momentum boundary layer and so the
heat transfer rate at the wall may also be af-
fected greatly. Due to this, it is very important
to account for the influence of temperature on
the thermo-physical properties of UCM fluid as
it flows over a melting surface within the bound-
ary layer. However, it is known that physical
properties of the fluid may change significantly
when expose to space dependent internal gen-
erated temperature. For lubricating fluids, heat
generated by the internal friction and the corre-
sponding rise in temperature affect the viscos-
ity of the fluid and so the fluid viscosity can
no longer be assumed constant. In order to ac-
count for the variation in thermo-physical prop-
erties of the fluid as it flows past a horizontal
melting surface, it is valid to consider the math-
ematical model of temperature dependent vis-
cosity model used in Animasaun (2015b) and
Sivagnana et al. (2009) which was developed
using the experimental data of Batchelor (1987)
together with the mathematical model of tem-
perature dependent thermal conductivity model
of Charraudeau (1975) as

µ(T ) = µ∗[a1 +b1(Tw −T )],

κ(T ) = κ∗[a2 +b2(T −T∞)], (16)

These mathematical models together with clas-
sical similarity variables for temperature are
modified to

µ(T ) = µ∗[a1 +b1(T∞ −T )], θ =
T −Tm

T∞ −To
,

κ(T ) = κ∗[a2 +b2(T −Tm)] (17)

From these equations, it is valid to say that

T∞ −T = (1−θ)(T∞ −To)−m1x
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In this study, the idea of Animasaun (2015a) and
Vimala and Loganthan (2015) is followed to de-
fine thermal stratification Tm at the melting wall
(y = 0) and at the free stream (T∞) are defined
as

Tm = To +m1x, T∞ = To +m2x. (18)

From these models, the following relations can
be easily deduced

b1(Tm−To)= b1m1x, b1(T∞−To)= b1m2x.(19)

To is known as reference temperature. It is
worth noticing from Eq. (19) that there exist
two differences in temperature due to stratifica-
tion that occur across the UCM fluid as it flows
over a melting surface. These proposed mod-
els implies that effect of temperature on (i) the
viscosity of UCM at the melting wall (ii) the
viscosity of UCM at the free stream may be in-
vestigated separately. In view of this, it is valid
to define temperature dependent viscous param-
eter ξ as first term in Eq. (20). The ratio of the
two terms can thus produce the dimensionless
stratification St parameter

ξ = b1(T∞ −To), b1(Tm −To) = ξSt , St =
m1

m2
(20)

Upon using Eq. (17) - Eq. (20), we obtain

u
∂u
∂x

+ v
∂u
∂y

+λ
(

u2 ∂2u
∂x2 + v2 ∂2u

∂y2 +2uv
∂2u
∂x∂y

)
=

ϑ∗[a1 +ξ−θξ−ξSt ]
∂2u
∂y2 −ϑ∗ξ

∂θ
∂y

∂u
∂y

−σB2

ρ

(
u+λv

∂u
∂y

)
(21)

u
∂T
∂x

+ v
∂T
∂y

=
κ∗[a2 +θε](T∞ −To)

ρCp

∂2θ
∂y2

+
κ∗b2

ρCp
(T∞ −To)

2
(

∂θ
∂y

)2
+

Qo(T∞ −To)

ρCp
e(−ny

√ a
ϑ )

(22)

In order to write the governing equations and
the boundary conditions in dimensionless form,
the following non-dimensional quantities are in-
troduced,

v =−∂ψ
∂x

,u =
∂ψ
∂y

,η = y
√

a
ϑ
,ψ = x f (η)

√
aϑ.

(23)

It is important to note that the first two terms
of Eq. (23) automatically satisfy continuity Eq.
(8). Then, Eq. (21) and Eq. (22) becomes

[a1 +ξ−θξ−ξSt −β f f ]
d3 f
dη3+

(
f −ξ

dθ
dη

+2β f
d f
dη

+Mβ f
)

d2 f
dη2−

(
d f
dη

+M
)

d f
dη

= 0 (24)

[a2 + εθ]
d2θ
dη2 + ε

dθ
dη

dθ
dη

−PrSt
d f
dη

−Prθ
d f
dη

+

Pr f
dθ
dη

+Prγe(−nη) = 0 (25)

The corresponding boundary conditions take
the form

d f
dη

= 0, m
dθ
dη

+Pr f = 0, θ= 0 at η= 0(26)

d f
dη

→ 1, θ → (1−St) as η → ∞ (27)

Here Deborah number β = λa, temperature de-
pendent thermal conductivity parameter ε =
b2(T∞ − To), Magnetic field parameter M =
σB2

aρ , Coefficient of thermal diffusivity α =

κ
ρCp

, Prandtl number Pr =
Cpµ

κ , Heat source pa-

rameter γ = Qo
ρCpa and melting parameter m =

(T∞−To)Cp
λ∗+cs(Tm−T ∗

o )
. The physical quantities of inter-

est are the skin friction coefficient C f and Local
Nusselt number Nux which are defined by

C f =
τw

ρ(uw)2 , Nux =
aqw

κ(T∞ −To)

where the wall skin friction τw and heat transfer
from the surface qw are

τw =

[
µ
(

∂u
∂y

∣∣∣∣
y=0

−
(

λ2uv
∂u
∂x

+ v2 ∂u
∂y

∣∣∣∣
y=0

]

qw = −κ
(

∂T
∂y

∣∣∣∣
y=0

Using variables Eq. (23)

Re1/2
x C f =

(
d2 f
dη2 −β f f

d2 f
dη2 +2β

d f
dη

d f
dη

∣∣∣∣
η=0
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Nux

Re1/2
x

=−
(

∂θ
∂η

∣∣∣∣
η=0

, Re1/2
x =

axx
ϑ

the local Reynolds number is defined as Re1/2
x .

3. METHOD OF SOLUTION

Numerical solutions of the ordinary differen-
tial equations Eq. (24) and Eq. (25) with the
Neumann boundary conditions Eq. (26) and
Eq. (27) are obtained using classical Runge-
Kutta method with shooting. The BVP can-
not be solved on an infinite interval, and it
would be impractical to solve it for even a very
large finite interval. In this work, we impose
the infinite boundary condition at a finite point
η∞ = 6 . The set of coupled ordinary dif-
ferential equations along with boundary condi-
tions have been reduced to a system of five si-
multaneous equations of first order for five un-
knowns following the method of superposition
Na (1979). In order to integrate the correspond-
ing I.V.P. the values of f (0), f ′′(0) and θ′(0) are
required, but no such values exist after the non-
dimensionalization of the boundary conditions
Eq. (14) and Eq. (15). It is important to report
that, we may easily obtain f (0) by setting m =
0. The suitable guess values for G1 = f ′′(0),
G2 = θ′(0)and G3 = f (0) are chosen and then
integration is carried out. The condition is used
as Guess = [(PrG3 + mG2);0;G1;0;G2]. The
calculated values for f (η) and θ(η) at η = 6 are
compared with the given boundary conditions in
Eq. (27) and the estimated values f (0), f ′′(0)
and θ′(0) are adjusted to give a better approxi-
mation of the solution. Series of values for f (0),
f ′′(0) and θ′(0) are considered and applied with
fourth-order classical Runge-Kutta method us-
ing step size ∆η = h = 0.01 . The above proce-
dure is repeated until asymptotically converged
results are obtained within a tolerance level of
10−4. It is worth mentioning that there exist no
related published articles that can be used to val-
idate the accuracy of the numerical results. Eq.
(24) - Eq. (27) can easily be solved using ODE
solvers such as MATLAB’s bvp4c solver (see
Shampine et al. (2010)).

3.1 Verification of the results

In order to verify the accuracy of the present
analysis, the results of Classical Runge-Kutta
together with shooting have been compared
with that of bvp4c for the limiting cases when
ξ = ε = γ = 0, β = 0.3, St = 0.3, M = 0.5 and
n = 1 at various values of Pr and m. The com-
parison in the above cases is found to be in ex-
cellent agreement, as shown in Table 1. The ex-
cellent agreement is an encouragement for fur-

ther study of the effects of other parameters on
the dimensionless governing equations repre-
senting UCM fluid flow over a melting surface.

4. DISCUSSION OF RESULTS

The numerical computations have been carried
out for various values of temperature depen-
dent viscous parameter, Stratification parame-
ter, Deborah number, Magnetic field parameter,
temperature dependent thermal conductivity pa-
rameter, Prandtl number, Space dependent heat
source parameter, Intensity of heat distribution
on space parameter and melting parameter us-
ing numerical scheme discussed in the previous
section. To avoid any corresponding effect(s) on
the fluid flow (i.e. decrease in the volume and
changing of state) of UCM due to high tempera-
ture when investigating the effect of dimension-
less temperature dependent viscous and thermal
conductivity parameters, variable a1 = a2 in Eq.
(16) may be considered as unity. In order to
illustrate the results graphically, the numerical
values are plotted in Figs 2 - 13.
From Table 1, it is observed that the magnitude

of −θ′(0) which is proportional to local heat
transfer is small when m = 0 and large when
m = 0.5 as Prandtl number increases. This re-
sult shows a significant increase in local heat
transfer rate with an increase in melting rate. In
real life, melting is a phase transformation pro-
cess that is accompanied by absorption of ther-
mal energy. Hence, this accounts for the absorp-
tion of thermal energy at the wall which corre-
sponds to an increase in the rate of heat trans-

Table 1 Comparison of fff ′′′′′′(((000))) and −−−θθθ′′′(((000)))
using Runge-Kutta together with shooting

techniques and bvp4c with PPPrrr and mmm when
ηηη∞∞∞ === 666

f ′′(0) f ′′(0)
RK4SM bvp4c

Pr = 0.3,m = 0 0.0223028 0.022302813
Pr = 0.4,m = 0 0.0223028 0.022302813
Pr = 0.5,m = 0 0.0223028 0.022302813
Pr = 0.7,m = 0 0.0223028 0.022302813

Pr = 0.3,m = 0.5 0.0146914 0.014691075
Pr = 0.4,m = 0.5 0.0171746 0.017174749
Pr = 0.5,m = 0.5 0.0187310 0.018731087
Pr = 0.7,m = 0.5 0.0204998 0.020499887

−θ′(0) −θ′(0)
RK4SM bvp4c

Pr = 0.3,m = 0 −0.0716716 −0.071671675
Pr = 0.4,m = 0 −0.0606259 −0.060625997
Pr = 0.5,m = 0 −0.0508994 −0.050899542
Pr = 0.7,m = 0 −0.0344803 −0.034480445

Pr = 0.3,m = 0.5 −0.0683261 −0.068325631
Pr = 0.4,m = 0.5 −0.0581836 −0.058183585
Pr = 0.5,m = 0.5 −0.0491345 −0.049134832
Pr = 0.7,m = 0.5 −0.0336167 −0.033616759
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Fig. 3. Temperature Gradient profiles θθθ′′′(((ηηη)))
for different values of stratification

parameter (SSSttt ).

fer with melting. This result is in good agree-
ment with the report of Fukusako and Yamada
(1999). The variations of temperature profiles
θ(η) along similarity variable η with different
values of stratification parameter are plotted in
Fig. 2. At a constant value of stratification pa-
rameter, it is seen that θ(η) enlarges continu-
ously as η grows. At all points in the fluid do-
main (0 ≤ η ≤ 6), it is seen that θ(η) decreases
with an increase in the magnitude of stratifica-
tion parameter with a negligible decrease few
distance from the melting surface and signifi-
cant decrease thereafter till freestream. Physi-
cally, increase in the magnitude of stratification
parameter corresponds to a systematic way of
decreasing the heat energy from the freestream
(i.e. to control the heat energy from upper hot
environment into the fluid domain). It is worth
mentioning that as the heat energy is reducing,
hence the temperature of the UCM fluid within
the fluid layer is decreasing. The negligible de-
crease near the melting surface shown in Fig.
2. can be traced to the rate of melting which
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Fig. 4. Velocity Profiles fff ′′′(((ηηη))) for different
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occurs at the wall (i.e. m = 0.2). This behav-
ior near the horizontal wall can be controlled by
either increasing or decreasing the magnitude of
m while increasing thermal stratification param-
eter. The result is in good agreement with real
life situation based on the fact that a decrease
in temperature is significant near freestream and
decreases negligibly as η tends from 6 to 0. It is
also noticed that this decrease obey the melting
boundary condition of temperature at the wall
(θη=0 = Tm = 0). It is observed in Fig. 3. that
temperature gradient is a decreasing function of
stratification at all point of η. It is further seen
that all profiles tend to 0.4 as η → 6. From
this graph, it is evidently to report that −θ′(0)
which is proportional to local heat transfer rate
increases significantly with an increase in strat-
ification. In Fig. 3, we also notice that −θ′(0)
increases negligible at the freestream with an in-
crease in St . In this study, setting m = 0 can se-
riously affect the melting processes at the wall.
In addition to this fact, existence of melting at
the wall together with an increase in stratifica-
tion parameter depicts a negligible increase in
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longitudinal velocity and significant increase in
transverse velocity (see Fig. 4 and Fig. 5).
As temperature decreases with an increase in
stratification parameter, velocity profiles are ex-
pected to decrease as reported in Animasaun
(2015a). It is worth noticing that such effect ex-
ists due to the presence of suction and the kind
of fluid under consideration (Casson fluid). In
this research, mathematical model which denote
melting heat transfer has replaced the suction at
the wall. It is also important to remark that the
results we obtained here is in good agreement
with that of Fig. 6. reported in Hayat et al.
(2013). We believe that this influence requires
further investigation by replacing melting heat
transfer model with suction model (i. e. to study
the effect of suction on UCM fluid with vari-
able thermo-physical properties subject to ther-
mal stratification).
It is also important to report that the influence
of freestream temperature together with inter-
nally exponential heat source account for the
increase in velocity and transverse velocity of
UCM as it flows. Infact, these influences to-
tally subdues the effect of increasing stratifica-
tion which ought to decrease the velocity profile
as reported in Animasaun (2015a). The varia-
tions of f (η) along η with different values of
ξ are plotted in Fig. 6. It is seen that the in-
crease of ξ leads to the enhancement of the ve-
locity profiles. We further notice that, increase
in the magnitude of ξ has no effect on f (η)
near the melting wall. As shown in Fig. 6, ξ
has an evident effect on f (η) that the larger the
value of ξ is, the greater the velocity is. The
physics behind this is that, as magnitude of ξ
increases at a constant value of b1, this corre-
sponds to an increase in temperature difference
of (T∞ − To). Hence, this increase in temper-
ature weakens the intermolecular forces which
hold the molecule of UCM so tight. In view
of this, the dynamic viscosity is gradually re-
duced and corresponds to increase in velocity
as shown in Fig. 6 and Fig. 7. It is further
observed in Fig. 7. that increase in the magni-
tude of temperature dependent viscous parame-
ter has negligible effect on velocity profiles near
the free stream. Physically, the temperature of
UCM near the hot environment (free stream) is
almost the same. In such a situation, the flow
velocity approaches to the maximum value. In
this study, it is important to note that increase in
the temperature dependent thermal conductivity
parameter (ε) at a constant value of b2 corre-
sponds to an increase in temperature difference
(T∞ −To). This explains the increase in temper-
ature profiles shown in Fig. 8. due to increase
in the magnitude of ε.
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In the absence of melting heat transfer, thermal
stratification and energy equation, Eq. (24) -
Eq. (27) reduces to the fluid flow problem con-

1785



A. J. Omowaye and I. L. Animasaun / JAFM, Vol. 9, No. 4, pp. 1777-1790, 2016.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

V
el

oc
ity

 P
ro

fil
es

 f 
/  (

 η
 )

 

 

β = 0.1

β = 0.2

β = 0.3

β = 0.4

ξ = 0.2, ε = 0.2, β varies, 
S

t
 = 0.2, M = 0.5, P

r
 = 0.7,

γ = 0.25, n = 1, m = 0.2

β

Fig. 9. Velocity Profiles fff ′′′(((ηηη))) for different
values of Deborah number (βββ) when

ξξξ === εεε === 000...222.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η

T
em

pe
ra

tu
re

 P
ro

fil
e 

θ 
( 

η 
)

 

 

3.8 4 4.2

0.32

0.34

0.36

0.38

0.4
β = 0.1

β = 0.2

β = 0.3

β = 0.4

β

β

ξ = 0.2, ε = 0.2, β varies, 
S

t
 = 0.2, M = 0.5, P

r
 = 0.7,

γ = 0.25, n = 1, m = 0.2

Fig. 10. Temperature Profiles Profiles θθθ(((ηηη)))
for different values of Deborah number (βββ)

when ξξξ === εεε === 000...222.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

S
he

ar
 S

tr
es

s 
P

ro
fil

es
 f 

//  (
 η

 )

 

 

β = 0.1

β = 0.2

β = 0.3

β = 0.4

β

ξ = 0.2, ε = 0.2, β varies, 
S

t
 = 0.2, M = 0.5, P

r
 = 0.7,

γ = 0.25, n = 1, m = 0.2

Fig. 11. Shear stress Profiles fff ′′′′′′(((ηηη))) for
different values of Deborah number (βββ)
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sidered by Motsa et al. (2012) if f ′(0) = 1,
f (0) = R = 0 and f ′(η → ∞) = 0 where R
is defined as suction parameter. In this limit-
ing case, increase in the magnitude of Deborah
number corresponds to decrease in velocity pro-
files. Physically, this result is true. At a con-

stant value of stretching rate (with S.I. unit s−1),
increase in the magnitude of Deborah number
implies increase in relaxation time; hence, the
UCM fluid behaves like a solid as it flows. This
account for the decrease in velocity profiles. It
is worth mentioning that this result holds due to
the stretching at the wall. In view of this, no-slip
condition (u = 0 at y = 0) tends to have a great
influence on the effect of increasing Deborah
number on velocity profile of UCM. To unravel
the dynamics of UCM fluid flow over melt-
ing surface towards hot environment, it is valid
to consider (i) T (y = 0) = Tm which leads to
θ(η = 0) = 0, (ii) T (y → ∞)→ T∞ which leads
to θ(η→∞)→ (1−St), (iii) u(y= 0)= 0 which
leads to f ′(η) = 0, and (iv) u(y → ∞) → ue
which leads to f ′(η) → 1. All these facts ac-
count for the increase in velocity function with
Deborah number as shown in 9. We then ex-
amine the effects of Deborah number on the
profiles of temperature and shear stress. It is
observed in Fig. 10. that temperature profiles
decreases with an increase in the magnitude of
Deborah number within the fluid domain. It is
shown in Fig. 11. that shear stress of UCM
decreases very close to the free stream with an
increase in Deborah number.

Fig. 12. and Fig. 13. illustrates the effects
of Deborah number and melting heat transfer
rate on local skin friction coefficient and local
heat transfer rate. At a constant value of Deb-
orah number, the local skin friction coefficient
reduces significantly with an increase in melt-
ing rate. Physically, increase in melting rate ab-
sorbed all heat energy near the wall and this en-
hance drag. The same effect is observed when
the magnitude of Deborah number is increased.
It is further observed that the rate at which lo-
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cal skin friction decreases with melting is low
at small magnitude of β and high at large mag-
nitude of β. In Fig. 13, it is shown that −θ′(η)
which is proportional to local heat transfer rate
increases with melting heat transfer rate and
also increases with an increase in the magnitude
of Deborah number. The values of f (0), f ′(0)
and −θ′(0) for different values of m and β are
listed in Table 2 - 4. It is seen that at a con-
stant value of β, transverse velocity at the wall
(η = 0) decreases with m (see Table 2). It is

Table 2 Values of Transverse velocity at the
wall fff (((000))) for different values of melting
parameter mmm when ξξξ === εεε === SSSttt === 000...222, βββ

varies, MMM === 000...555, PPPrrr === 000...777, γγγ === 000...222555, nnn === 111
and mmm varies when ηηη∞∞∞ === 666

f (0) f (0)
β = 0.1 β = 0.3

m = 0.1 −0.028659690 −0.028087040
m = 0.2 −0.056323955 −0.055329768
m = 0.3 −0.083061375 −0.081774033
m = 0.4 −0.108928104 −0.107462729
m = 0.5 −0.133987521 −0.132428171

Table 3 Values of Transverse velocity at the
wall fff ′′′′′′(((000))) for different values of melting

parameter mmm when ξξξ === εεε === SSSttt === 000...222, βββ
varies, MMM === 000...555, PPPrrr === 000...777, γγγ === 000...222555, nnn === 111

and mmm varies when ηηη∞∞∞ === 666
f ′′(0) f ′′(0)

β = 0.1 β = 0.3
m = 0.1 0.0201296768 0.0221872933
m = 0.2 0.0186232546 0.0203127802
m = 0.3 0.0172505593 0.0186068275
m = 0.4 0.0159924637 0.0170528754
m = 0.5 0.0148444582 0.0156300600

Table 4 Values of local heat transfer rate at
the wall −−−θθθ′′′(((000))) for different values of

melting parameter mmm when ξξξ === εεε === SSSttt === 000...222,
βββ varies, MMM === 000...555, PPPrrr === 000...777, γγγ === 000...222555, nnn === 111

and mmm varies when ηηη∞∞∞ === 666
−θ′(0) −θ′(0)
β = 0.1 β = 0.3

m = 0.1 −0.200617833 −0.196609283
m = 0.2 −0.197133845 −0.193654188
m = 0.3 −0.193809875 −0.190806077
m = 0.4 −0.190624182 −0.188059777
m = 0.5 −0.187582530 −0.185399439

further observed in Table 2 that at high value of
melting (i.e. m = 0.5), the magnitude of f (0)
when β = 0.3 is greater than when β = 0.1.

5. CONCLUSION

We have numerically studied the similarity
solutions of steady upper-convected Maxwell
fluid flow over melting surface situated in hot
environment. The corresponding influences of
thermal stratification, variation in viscosity and
thermal conductivity due to temperature are
properly considered. The governing (dimen-
sional) partial differential equations are con-
verted into (dimensionless) nonlinear ordinary
differential equations by using similarity trans-
formation. Mathematical expressions which
can be used to investigate the effects of tempera-
ture on the viscosity of UCM at the melting wall
and near the freestream is presented. The di-
mensionless governing equations are solve nu-
merically. Results for the skin friction coeffi-
cient, local Nusselt number, transverse veloc-
ity profiles, velocity profiles as well as tem-
perature profiles are presented for different val-
ues of the governing parameters. Effects of the
melting parameter, temperature dependent vis-
cous parameter, temperature dependent thermal
conductivity parameter, Deborah number and
Prandtl number on the flow and heat transfer
characteristics are thoroughly examined. The
main points of the present study can be summed
up as follows:

• Longitudinal velocity and transverse ve-
locity are increasing functions of stratifi-
cation parameter. The classical effect of
increasing stratification on velocity is sub-
dued by the intense freestream temperature
together with internal exponentially heat
source.

• At small magnitude of Deborah number
within (0.1 ≤ β ≤ 0.3), local skin friction
coefficient decreases significantly with an
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increase in melting. The local skin fric-
tion coefficient increases significantly with
an increase in Deborah number at large
magnitude of melting parameter and in-
creases more significantly at small mag-
nitude of melting parameter. The magni-
tude of transverse velocity at the wall f (0)
when β = 0.3 is larger than when β = 0.1.
Within small range of melting heat transfer
(i.e. 0.1 ≤ m ≤ 0.2), decrease in local skin
friction is more pronounced when magni-
tude of Deborah number is very large.

• At a constant value of Deborah number, lo-
cal heat transfer rate decreases with melt-
ing heat transfer. At each value of melt-
ing parameter within (0.1 ≤ m ≤ 0.5), lo-
cal heat transfer rate increases with Debo-
rah number.

• As UCM fluid experiencing deformation
over a given time frame, the behavior (dy-
namic) of UCM is strongly dependent on
the stretching at the wall. Increase in Deb-
orah number corresponds to an increase in
velocity profiles provided u(x,y = 0) = 0
and u(x,y → 0) → ue (Blasius Boundary
Condition).
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