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ABSTRACT 

A linear stability analysis is carried out to discuss the effects of horizontal magnetic field and horizontal 
rotation on thermal instability problem of a couple-stress fluid through a Brinkman porous medium. After 
employing normal mode method on the dimensionless linearized perturbation equations, it is noted that for 
the stationary state, Taylor number AT promotes stabilization, whereas medium porosity hastens the onset 

of convection. The medium permeability P , magnetic field Q , couple-stress   and Darcy-Brinkman 
parameter AD play dual role in determining the stability/instability of the system under certain restrictions. 

Also, the sufficient conditions responsible for the non-existence of overstability are gained and the principle 
of exchange of stabilities holds good for a magneto-rotary system. 

Keywords: Couple-stress fluid; Magnetic field; Rotation; Brinkman porous medium.

NOMENCLATURE 

sc heat capacity of solid material 

vc specific heat of the fluid at constant 

volume  
t time co-ordinate,

d depth of fluid layer  
D

 
differentiation Operator 

1AD  Modified Darcy-Brinkman number 

H  horizontal magnetic field having 
components   

h  perturbation in magnetic field strength 

1k  darcy-Brinkman medium permeability 

Tk  coefficient of heat conduction 

xk  wave number in x direction 

yk  wave number in y direction 

k  Resultant wave number 
K vertical component of magnetic field
n frequency of the harmonic disturbance 
p

 pressure 

lP dimensionless medium permeability 

1p
 thermal Prandtl number 

2p  magnetic Prandtl number 

q velocity of fluid having components

1Q  Modified Chandrasekhar’s number 

1R  Modified Darcy-Brinkman thermal 

Rayleigh number,  

0T reference temperature 

T temperature 

1AT Modified Taylor’s number 

w  vertical fluid velocity, 
*w  complex conjugate of after applying 

normal mode method 
W  vertical component of fluid velocity 

after applying normal mode method 

iX  gravitational acceleration vector 

X  vertical component of current density 
after applying normal mode method 

Z  vertical component of vorticity after 
applying normal mode method 

p pressure gradient term 
  darcy-Brinkman medium porosity 

0 density of fluid 

s density of solid material 

  Fluid viscosity 

  couple-stress fluid viscosity 
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ef  effective viscosity 

e  magnetic permeability 

  curl Operator 
  co-efficient of thermal expansion 
  adverse temperature gradient 
  electrical resistivity  
Θ temperature component after applying 

normal mode method 
p  perturbation in fluid pressure  

  perturbation in fluid density  
  kinematic viscosity  

  kinematic viscoelasticity 
  thermal diffusivity  
  z-component of vorticity 

  z-component of current density 

Ω  horizontal rotational vector 
2

 
3-dimensional Laplacian operator 

1  modified couple-stress parameter 

  growth rate of harmonic disturbance 
after applying normal mode method,  

  perturbation in temperature T 

i  vertical unit vector,  

 

 
1. INTRODUCTION 

A basic and rigorous overview about various 
fascinating and widespread engineering applications 
of fluid mechanical phenomena has been provided 
in detail by Bansal (2004) and Gupta and Gupta 
(2013). The problem of the onset of thermal 
instability of an incompressible Newtonian fluid has 
been studied widely by Chandrasekhar (1981) and 
Drazin and Reid (1981).Stokes (1966) has proposed 
and formulated the theory of couple-stress fluids 
which has become the objective of the scientific and 
technical research because of its vital importance to 
understand the mechanism and functioning of 
lubrication process in synovial joints. Magneto-
hydrodynamics (MHD) theory of electrically 
conducting fluids in the presence of magnetic field 
has several scientific and practical applications in 
astrophysics, geophysics, space sciences etc. 
Magnetic field is also used in several clinical areas 
such as neurology and orthopaedics for probing and 
curing the internal organs of the body in several 
diseases like tumours detection, heart and brain 
diseases, stroke damage etc. Thermo-convective 
phenomenon in a rotating system is of practical 
significance and finds its applications in several 
scientific and industrial areas such as in rotating 
machinery, crystal growth, food processing 
industry, centrifugal casting of metals and thermal 
power plant. In an electric power plant, electricity is 
generated by the rotation of turbine blades. Kumar 
et al. (2014a) analyzed theoretically thermal 
instability problem of a compressible ferromagnetic 
fluid under the effects of rotation and heat source 
strength through a porous medium. Thermal 
instability problem of an electrically conducting 
couple-stress fluid heated from below through a 
porous medium in the presence of a uniform 
magnetic field has been investigated by Sharma and 
Thakur (2000). Sharma and Sharma (2004) have 
considered the effect of suspended particles on 
couple-stress fluid heated from below in the 
presence of vertical rotation and vertical magnetic 
field and noted that the effect of rotation is to 
stabilize the system, whereas the suspended 
particles have destabilizing effects. Thermosolutal 
convective problem for a couple-stress fluid 
through a porous medium under the influences of 
vertical magnetic field and vertical rotation has 
been studied by Kumar (2012) and observed that 

rotation has a stabilizing effect, whereas magnetic 
field and couple-stress have both stabilizing and 
destabilizing effects on the system. 

The flow of fluid through a porous medium is of vital 
importance in several sectors such as in solidification, 
biological studies, chemical processing industry, 
geophysical fluid dynamics, petroleum industry, 
filtering equipment, recovery of crude oil from earth’s 
interior etc. A comprehensive and detailed 
investigation of thermo-convective problem through 
various porous mediums such as Darcy model, 
Brinkman model and Forchheimer model has been 
given in the famous book by Nield and Bejan (2006). 
It has been found, both theoretically and 
experimentally, that Darcy’s equation provides 
unsatisfactory results of the hydrodynamic conditions, 
particularly near the boundaries of a porous medium 
(Beavers et al. 1970). It is also believed that for a flow 
of high porosity Brinkman model is more superior 
over the usual Darcy model and also makes the system 
thermally more stable than the Darcy model. The 
physical properties of comets, meteorites and 
interplanetary dust strongly motivate to study the 
impact of porosity in astrophysical situations 
(McDonnel 1978). The global stability problem for 
thermal convection in a couple-stress fluid through a 
porous medium using thermal non-equilibrium model 
has been carried out by Sunil et al. (2013) and 
concluded that both couple-stress parameter and 
Darcy-Brinkman number expands the region of 
stability, whereas medium porosity contracts the 
stability region. Kumar et al. (2013, 2014b, 2015) 
have investigated theoretically the thermal instability 
problem of an Oldroydian and couple-stress fluid by 
considering the effects of various parameters such as 
vertical rotation, vertical magnetic field, suspended 
particles and variable gravity considering Darcy or 
Brinkman porous medium. 

The intention is to study the impact of horizontal 
magnetic field and horizontal rotation for the 
present theoretical investigation and also to find out 
any similarities or differences between the present 
findings with those the previous findings (Kumar 
2012, Kumar et al. 2014b, Sharma and Sharma 
2004). 

2. GOVERNING EQUATIONS 

Here, we consider an infinite horizontal layer of an 
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incompressible couple-stress fluid bounded by two 
horizontal boundaries separated at a distance d apart 
through a Brinkman porous medium. The fluid 
layer is subjected to a uniform horizontal magnetic 
field  ,0,0HH and a uniform horizontal rotation

 ,0,0 Ω . A uniform temperature gradient

dT dz  is maintained across the layer by 

underside heating. 

 
Fig. a. Geometrical sketch of the physical 

problem. 

The governing equations of conservation of linear 
momentum and conservation of mass for a couple-
stress fluid saturating a Brinkman (1947a, b) porous 
medium and subjected to Boussinesq approximation 
(1903) are presented as
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             (1)

 

. 0 q               (2) 

The equation for temperature balance is presented 
as 

    2
0 01 .v s s v T

T
c c c T k T

t
  

         
q

      (3) 

The Maxwell’s equations (1866) of 
electromagnetism are presented as 

  2

t


     

H

q H H       (4) 

and . 0 H       (5) 

The density equation of state is given by 

 0 01 T T          
   (6)

 

3. PERTURBATION TECHNIQUE 
AND NORMAL MODE METHOD 

To determine the stability or instability of the basic 
state of the system, infinitesimal perturbations are 
introduced in various physical quantities. Let

   , , , , , , , ,x y zu v w p h h h  q h denote, respectively, 

the perturbations in  0,0,0 , , , ,T p q H . 

The density variation   due to perturbation in 
temperature   is given by

 

0        (7) 

By ignoring the nonlinear terms and assuming the 
perturbation quantities to be very small, the 
governing linearized perturbation equations (after 
eliminating the pressure gradient term) are defined 
as 
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Now, using normal mode method by decomposing 
the disturbances in the following form 
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and also making the equations (8)-(12) 
dimensionless by introducing the scaling of the 
form 
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We obtain the following dimensionless equations 
(after dropping the asterisk for convenience) as 
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where, andx yk k are horizontal wave numbers, 

 2 2 2
x yk k k  is a dimensionless resultant 

wave number and n is the growth rate (the stability 
parameter) of harmonic disturbance. 

The appropriate boundary conditions (for free 
boundaries and non-conducting medium) are 
defined as
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Eliminating        , andz X z , Z z K z from the 

equations (14) - (18) and taking a suitable solution 
for W of the form 

 0 sin ; 1,2,3,4........W W l z l                   (20) 

the dispersion relation is obtained as 

   

   
  

12
1 2 3 1 3 1

2 2 21
2 3 1 3 1

2 2
2 1 3 1 3 1

cos 1

cos cos

cos 1 cos 0

AT
A A A A A Q x x

Q
A A x A A Q x

A x x R xA A A Q x



 

 

           
    

     

 

           (21)

 

where, in obtaining equation (21), following 
modified parameters are assumed as 
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Equation (21) is the required dispersion relation 
accounting the effects of horizontal magnetic field, 
horizontal rotation, medium permeability and 
medium porosity on thermal instability of a couple-
stress fluid saturating a Brinkman porous medium. 

4. CASE OF STATIONARY STATE 

For the case of stationary convection, the marginal 
state will be defined by 0  i.e. when the growth 

rate vanishes. Substituting 0  in equation (21), an 
expression for the case of stationary instability is 
obtained as 
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 The effect of various embedded parameters on 
thermal instability problem can be examined with 
the help of the following derivatives
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where,  1
11 1 .

AD
G x

             
 

From the derivative equations (23) – (28), the 
stabilizing effect of Taylor number and 
destabilizing effect of medium porosity is 
confirmed. The magnetic field, couple-stress and 
Darcy-Brinkman parameter have stabilizing (or 
destabilizing) effect and the medium permeability 
has a destabilizing (or stabilizing) on thermal 
instability if 

     
1

22 2 2
11 cos or 1 cosAx G Q Px T P x x        

respectively. In the absence of rotation  1
. . 0Ai e T  , 

magnetic field, couple-stress and Darcy-Brinkman 
parameter always delay the onset of thermal 
convection, whereas medium permeability assures 
the destabilizing effect on the system.   

5. PRINCIPLE OF EXCHANGE OF 
STABILITIES 
ANDOSCILLATORY MODES 

Now, the conditions for which principle of 
exchange of stabilities is satisfied and the 
possibility of oscillatory modes for the couple-stress 
fluid under the effects of horizontal rotation and 
horizontal magnetic field through a Brinkman 
porous medium are determined. 

For this, multiplying equation (14) byW 
, 

integrating it over the range of z and using 
equations (15)-(18) leads to 
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(29) 

where,  1 2 22
1 0

,I DW a W dz 
21 2 22 4 2

2 0
2 ,I D W a W a DW dz
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5 0
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9 0
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10 0

I DZ a Z dz 
 

The integrals 1 10I I are positive definite. Putting

r ii    in equation (29) and equating the real 

and imaginary parts gives 
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           (30) 

and 

2 2
26 3 9 71

0 0
0

4 4
e e

i
g a EI I I d II

d
  
  

              
 

(31) 

Equation (30) implies that either 0 or 0r r    

which implies that the system may be unstable or 
stable. Hence the modes may be oscillatory or non-
oscillatory, respectively. It is obvious from equation 
(31) that the quantity inside the bracket is positive. 

Thus, 0i  which shows that the oscillatory 

modes are not allowed in the system and the 
principle of exchange of stabilities is satisfied.

 

6. CASE OF OVERSTABILITY 

Here, the possibility of whether instability may 
occur as overstability has been examined. Equating 
the real and imaginary parts of equation (21) yields 
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(33) 

Eliminating R1from equations (32) and (33) and 

assuming 2
1 y  , a three degree polynomial in y is 

obtained as 
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where,  1
1

1
1 1 .

ADG
G x

P P
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The coefficients 1 2anda a involving large number 

of terms are not included as they don’t play any role 
in determining the overstability of the system. 

 

 
Fig. 1. Variations of Rayleigh number 

1R  with 

wave number x for various values of magnetic 

field  1Q = 10,20,30,40, and fixed values of 

1 111, 5, 2, 2, 1000, 45 .A AP D T        
 

 

Since 1 must be real for overstability to occur, 

therefore all the three roots of y should be positive. 

From equation (34), the product of roots 3

0

a

a

 
  
 

i.e. negative and this has to be positive. 

Since 0a is always positive as obvious from 

equation (35) and 3a will be positive if  
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  (37) 

The inequalities (37) are the sufficient conditions 
for the non-existence of overstability, the violation 
of which does not necessarily imply the occurrence 
of overstability. 

The effects of various embedded parameters 
(medium permeability, medium porosity, magnetic 
field, rotation, couple-stress, Darcy-Brinkman) on 
thermo-convective problem and also the variations 
in Rayleigh number under these physical 
parameters are depicted graphically in the Figs. 1 -
6. 
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Fig. 2. Variations of Rayleigh number

1R with 

wave number x for various values of rotation 

parameter  
1AT 1000,5000,10000,20000 and 

fixed values of
1 12, 3, 10, 5,AP D    

1 200, 45 .Q     

 
Fig. 3. Variations of Rayleigh number 1R  with 

wave number x for various values of 
permeability  2,4,6,8P  and fixed values of 

1 11 11, 10, 2, 2, 1000, 45 .A AQ D T          

 

7. CONCLUSIONS 

In the present note, the effects of various embedded 
parameters have been analyzed theoretically on 
thermal convection problem in a couple-stress fluid 
through a Brinkman porous medium using normal 
mode method. The following results are drawn 
while investigating the problem: 

(a). For the case of stationary convection, it is 
concluded that 

 

 
Fig. 4. Variations of Rayleigh number 1R  with 

wave number x for various values of Porosity

 2,4,6,8 and fixed values of 

1 11 13, 200, 10, 5, 1000, 45 .A AP Q D T        

 

 
Fig. 5. Variations of Rayleigh number 1R with 

wave number x for various values of couple-
stress parameter  1 2,4,6,8 and fixed values of 

1 1 11, 10, 2, 1000, 10, 45 .A AP D T Q       
 

 

 the rotational parameter rules out the 
possibility of the onset of convection, whereas 
medium porosity accelerates the onset of 
thermal convection. 
 

 the medium permeability, magnetic field, 
couple-stress and Darcy-Brinkman parameter 
have both stabilizing and destabilizing effects 
in the presence of rotation, whereas for a non-
rotating system, magnetic field, couple-stress 
and Darcy-Brinkman number have stabilizing 
effects and medium permeability has a 
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destabilizing effect. 

(b). The principle of exchange of stabilities (PES) 
holds good in the presence of both horizontal 
rotation and magnetic field. Also, the 
sufficient conditions for the non-existence of 
overstability are obtained. 

(d). The practical relevance and importance of the 
present finding is that the couple-stress 
parameter in a Darcy-Brinkman model have a 
stabilizing impact on the system in the 
absence of rotational effects. In addition, it 
has also been observed that for the horizontal 
magnetic field and horizontal rotation, the 
result for PES is quite different with those of 
previous findings (Kumar 2012, Sharma and 
Sharma 2004) for vertical magnetic field and 
vertical rotation.  

 

 
Fig. 6. Variations of Rayleigh number 1R with 

wave number x for various values of Brinkman 
parameter  

1
4,6,8,10AD and fixed values of 

11 12, 10, 2, 1000, 20, 45 .AP T Q        
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