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ABSTRACT 

The unsteady laminar incompressible flow and heat transfer characteristics of an electrically conducting 
micropolar fluid in a porous channel with expanding or contracting walls is investigated. The relevant partial 
differential equations have been reduced to ordinary ones. The reduced system of ordinary differential 
equations (ODEs) has been solved numerically by lower-upper (LU) triangular factorization or Gaussian 
elimination and successive over relaxation (SOR) method. The effects of some physical parameters such as 
magnetic parameter, micropolar parameters, wall expansion ratio, permeability Reynolds number and Prandtl 
number on the velocity, microrotation, temperature and the shear and couple stresses are discussed.  

Keywords: Magnetohydrodynamics (MHD); Expanding or contracting walls; Porous channel; Wall 
expansion ratio; Quasi-linearization. 

1. INTRODUCTION

There are many fluids which are important from the 
industrial point of view, and display non-Newtonian 
behavior. Due to the complexity of such fluids, 
several models have been proposed but the 
micropolar model has been found to be the most 
appropriate one. It has been experimentally 
predicted that the fluids which could not be 
characterized by Newtonian relationships, indicated 
significant reduction in shear stress near a rigid 
body. The micropolar model has been successful in 
explaining such behaviors of the non-Newtonian 
fluids. Since its introduction, the micropolar fluid 
has been a hot area of research, and therefore many 
investigators have studied the related flow and heat 
transfer problems in different geometries. For 
example, natural convection heat transfer between 
two differentially heated concentric isothermal 
spheres utilizing micropolar fluid has been 
numerically investigated by Khoshab and Dehghan, 
(2011). Govardhan and Kishan (2011) studied the 
MHD effects on the unsteady boundary layer flow 
of an incompressible micropolar fluid over a 
stretching sheet when the sheet was stretched in its 
own plane. Ashmawy (2014) considered the 
problem of fully developed natural convective 
micropolar fluid flow in a vertical channel, under 
the slip boundary conditions for fluid velocity. The 
effect of the presence of a thin perfectly conductive 
baffle on the fully developed laminar mixed 
convection in a vertical channel containing 

micropolar fluid was analyzed by Umavathi (2011). 

There has been a growing interest of the research 
community in flows through porous channel with 
expanding or contracting walls. This is due to their 
significance in many biological and engineering 
models, including the transport of biological fluids 
through contracting or expanding vessels, the 
synchronous pulsation of porous diaphragms, the air 
circulation in the respiratory system, and the 
regression of the burning surface in solid rocket 
motors. Due to their extensive applications, many 
studies related to the internal flows in different 
geometries with contracting or expanding domains 
have been carried out. Xin-Hue et al. (2011) 
investigated the flow of a viscoelastic fluid in 
porous channels with expanding or contracting 
walls. Analytic solution of the problem was 
obtained by employing the homotopy analysis 
method (HAM) to the nolinear ODEs arising due to 
the introduction of similarity transformation. The 
study was further extended to the micropolar fluids 
by Xin-Hue et al. (2010). Xinhui et al. 2012 
considered the asymmetric viscoelastic fluid in a 
rectangular domain bounded by two porous moving 
channels with expanding or contracting walls.  

To our best knowledge, no researcher has yet 
considered the thermal behavior of micropolar fluid 
flow in a porous channel with expanding or 
contracting walls. Therefore, in this paper, we 
consider the characteristics of an unsteady, laminar, 
incompressible, and electrically conducting 
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micropolar fluid in a channel having permeable 
expanding or contracting walls, with an external 
magnetic field acting normally. A similarity 
transformation has been employed to construct a set 
of nonlinear coupled ordinary differential equations 
in the dimensionless form, which are numerically 
solved by employing an algorithm based on the 
Quasi-linearization and finite difference 
discretization. The ease in obtaining the numerical 
solution using the technique makes it superior than 
the shooting like approach used in our earlier 
investigations (for example, Ali et al. 2014) 

2. PROBLEM FORMULATION 

We consider the flow and heat transfer 
characteristics of an unsteady, incompressible, 
viscous and electrically conducting micropolar fluid 
in a porous channel with expanding or contracting 
walls under the action of an external magnetic field. 
Compared to the imposed field, the induced 
magnetic field is assumed to be negligible. Further, 
the magnetic Reynolds number (defined as the ratio 
of the product of characteristic length and fluid 
velocity, to the magnetic diffusivity) is assumed to 
be small. For small magnetic Reynolds number, the 
magnetic field will tend to relax towards a purely 
diffusive state. Moreover, it is assumed that there is 
no applied polarization voltage which implies the 
absence of any electric field. Otherwise, the 
electrical current flowing in the fluid will give rise 
to an induced magnetic field which would exist if 
the fluid was an electrical insulator. But, in the 
present study, we have taken the fluid to be 
electrically conducting. The distance between the 
porous walls is  2a t , which is much smaller than 

the width and length of the channel. Both the 
channel walls have the same permeability and are 
expanding or contracting uniformly at a time-
dependent rate  a t .  

The geometry of the problem suggests that the 
Cartesian coordinate system may be chosen with the 
origin at the middle of the channel, as shown in the 
Fig. 1. With u  and v  being the velocity 
components in, respectively, the x

 

and y directions, 
the governing equations for the problem in the 
absence of body couples are: 

 

 

Fig. 1. Physical model of the problem. 
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Here, ,  ,  ,T  pc and 0  are, respectively, the 

dynamic viscosity, density, temperature, specific 
heat at constant pressure, and thermal conductivity 
of the fluid. Further, the symbols j ,   and   
denote the microinertia per unit mass, the spin 
gradient viscosity and the vortex viscosity of 
micropolar fluids. Finally, e  is the electrical 

conductivity of the fluid, 0B  is the strength of the 

external magnetic field, and N  is the component of 
the microrotation normal to the xy  plane. 

It is important to mention that Eq. (1) is the 
continuity equation, Eqs. (2) and (3) correspond to 
the x- and y-components of the momentum equation 
(respectively), Eq. (4) is the microrotation equation, 
and finally Eq. (5) is the heat equation.  

The micro-inertia density is the intensity of the 
inertial forces due to the micro particles of the fluid, 
whereas the microrotation is defined as the rotation 
of microscopic particles of a fluid, and is evaluated 
by taking the curl of the velocity field at 
microscopic level.  

We also assume that there is strong concentration of 
microelements and the microelements close to the 
walls are unable to rotate. This assumption leads to 
the following boundary conditions for the problem: 
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Here A  is the measure of the wall permeability, 
and the dots denote the derivative w. r. t. the time t , 
whereas 1T  and 2T  (with 1 2T T ) are the fixed 

temperatures of the lower and upper channel walls 
respectively.  
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We introduce the following similarity 
transformations:                   
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It is to note that, with the above mentioned 
transformation, Eq. (1) is identically satisfied which 
means that the proposed velocity field is compatible 
with the continuity equation. It may, therefore, 
represent the possible fluid motion. 

After eliminating the pressure term from the 
governing equations, we use Eq. (7) in the resulting 
equations, and arrive at: 
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 is the wall expansion ratio, 

Re
Aa a





 is the permeability Reynolds number, 

and 
0

Pr pc

k




 
is the Prandtl number. 

The boundary conditions acquire the form: 
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F
f  , 

Re

G
g  , and consider the  

case following Majdalani and Zhou, 2003 when  
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Thus we have the following equations 
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The boundary conditions (11) are reduced as 

1; 1, 0, 0, 1f f g        and 
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3. NUMERICAL SOLUTION 

We use quasi-linearization to construct three 

sequences of vectors      ,k kf g and   k , 

which converge to the numerical solutions of Eqs. 
(12), (13) and (14) respectively. To construct 

  kf  we linearize Eq. (12), by retaining only the 

first order terms, as follows: 
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which yields 
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Now Eq. (17) gives a system of linear differential 
equations, with kf being the numerical solution 

vector of the thk equation. To solve the linear 
ODEs, we replace the derivatives with their central 
difference approximations, giving rise to the 
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sequence   kf , generated by the following linear 

system:  

( 1)kBf C                                                          (18) 

with  ( )k
n nB B f  and  ( )

1 ,k
nC C f  where n 

is the number of grid points. On the other hand, 
Eqs. (13) and (14) are linear in g and   
respectively, and therefore, in order to generate the 

sequences   kg  and   k , we write: 
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Importantly ( 1)kf   is considered to be known in 
the above equations and its derivatives are 
approximated by the respective central differences 
approximations. 

 It is important to note that the coefficient 
matrix B  in Eq. (18) will be pentadiagonal and 
not diagonally dominant, and hence the iterative 
method like Successive over relaxation (SOR) 
may fail or work very poorly. Therefore, some 
direct method like Lower-Upper (LU) triangular 
factorization or Gaussian elimination with full 
pivoting (to ensure stability) may be employed. 
On the other hand, Eqs. (19) and (20) will give 
rise to the diagonally dominant algebraic system 
when discretized using the central differences, 
which allows us to use the SOR method. Lastly, 
we may also improve the order of accuracy of the 
solution by using polynomial extrapolation 
scheme.  

4. RESULTS AND DISCUSSION 

In this section, we will interpret the graphical and 
tabular presentation of our results. The physical 
quantities of our interest are the shear stresses, 
the couple stresses and the heat transfer rates at 
the channel walls which are, respectively, 
proportional to    1 , 1f g   and  1  . 

Because of the symmetry of the problem, the 
results are given only at the lower wall. The 
physical parameters of the problem are the 
Reynolds number Re, the magnetic parameter 

,M  the Prandtl number Pr,  the wall expansion 

ratio   and the micropolar parameters 1 2,C C  

and 3C . We shall study the effect of the 

parameters on    1 , 1f g   and  1  , as well 

as, on the velocity profiles    ,f f  , the 

microrotation profile  g  , and the heat 

profile    . It is to note that 0   or 0   

according to the case when the channel walls are 
contracting or expanding, whereas Re 0  for 
suction.  

The values of micropolar parameters 1 2 3, &C C C  

are chosen arbitrarily (given in Table 1), whereas 
the first case corresponds to the Newtonian fluid.  
 
Table 1 Values of micropolar parameters used in 

the present study 
Cases 1C  2C  3C  

1 
2 
3 
4 
5 

0 
2 
4 
6 
8 

0 
0.4 
0.8 
1.2 
1.6 

0 
0.3 
0.4 
0.5 
0.6 

 
Table 2 shows the convergence of our numerical 
results as the step-size decreases, which gives us 
confidence on our computational procedure. 
 

Table 2 Dimensionless velocity  f  on three 

grid sizes and extrapolated values for 1 4,C   

2 30.8, 0.4,Re 5,C C    4, 2.5M    and 

Pr 1.5  

 f   

  
1st 

grid 
( 0.02)h   

2nd 
grid 

( 0.01)h   

3rd 
grid 

( 0.005)h 

 

Extrapolated 
values 

0.2 
0.4 
0.6 
0.8 
1.0 

0.4439 
0.7927 
0.9860 
1.0259 

1 

0.4435 
0.7921 
0.9854 
1.0255 

1 

0.4435 
0.7919 
0.9852 
1.0255 

1 

0.4434 
0.7919 
0.9852 
1.0254 

1 
 
Table 3 shows that the effect of micropolar 
structure of the fluid is to reduce the shear stresses 
while increasing the couple stresses and the heat 
transfer rates at the channel walls, whether the walls 
are expanding or contracting. It is further noted that, 
compared with the shear and couple stresses, the 
effect of the micropolar parameters on the heat 
transfer rate is not much pronounced.  It is perhaps 
due the reason that the micropolar parameters do 
not appear in the heat equation (please see Eq. 
(14)), and therefore do not influence the heat 
transfer rate directly.  
 
Table 3 Effect of the micropolar parameters on 

   1 , 1f g    and  1   for Re 1, 4M   

and Pr 1.5  

Cases 
1.5    

 1f   1g     1   

1 
2 
3 
4 
5 

4.8919 
3.3166 
2.9428 
2.7788 
2.6871 

0 
4.7287 
6.4612 
7.4153 
8.0260 

-1.5403 
-1.5560 
-1.5599 
-1.5616 
-1.5625 
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Cases 
1.5   

 1f   1f   1f  

1 
2 
3 
4 
5 

2.6648 
2.3005 
2.0183 
1.8593 
1.7587 

2.6648 
2.3005 
2.0183 
1.8593 
1.7587 

2.6648 
2.3005 
2.0183 
1.8593 
1.7587 

 
Table 4 shows that the shear stress increases with 
the Reynolds number while slightly decreasing the 
heat transfer rate, for the case of contracting 
channel walls. However, the trend is reversed for 
the expanding walls. On the other hand, a 
remarkable rise in the couple stress is noted whether 
the walls are approaching or receding. 
 

Table 4 Effect of the Reynolds number Re on 

   1 , 1f g    and  1   for 

1 24, 0.8,C C  3 0.4, 4C M   and Pr 1.5 . 

Re  
1.5    

 1f   1g     1   

3.0 
3.5 
4.0 
4.5 
5.0 

2.9879 
3.0032 
3.0199 
3.0378 
3.0567 

8.4576 
8.9771 
9.4985 
10.0192 
10.5374 

-1.5590 
-1.5587 
-1.5585 
-1.5582 
-1.5580 

 

Re  
1.5    

 1f   1g     1   

3.0 
3.5 
4.0 
4.5 
5.0 

1.6564 
1.5667 
1.4844 
1.4125 
1.3527 

10.1184 
11.7264 
13.5062 
15.4296 
17.4634 

-0.4383 
-0.4386 
-0.4388 
-0.4389 
-0.4390 

 
It is obvious from the Table 5 that the role of the 
external magnetic field is to enhance both the shear 
and couple stresses while lowering the heat transfer 
rate, for both the cases of  . 

Table 5 Effect of the magnetic parameter M on 

   1 , 1f g    and  1   for 

1 24, 0.8,C C  3 0.4,Re 1C    and Pr 1.5  

M  
1.5    

 1f   1g     1   

0 
25 
50 
75 
100 

2.7832 
3.6593 
4.3340 
4.8900 
5.3675 

6.3829 
6.7894 
7.0627 
7.2619 
7.4151 

-1.5619 
-1.5511 
-1.5437 
-1.5382 
-1.5339 

 

M  
1.5   

 1f   1g     1   

0 
25 
50 
75 

100 

1.8141 
2.8971 
3.6818 
4.3067 
4.8321 

5.4674 
6.0599 
6.4369 
6.7037 
6.9053 

-0.4385 
-0.4300 
-0.4247 
-0.4211 
-0.4183 

 

Table 6 predicts that the wall expansion ratio 
increases the shear and couple stresses as well as 
the heat transfer rate, when the walls are 
contracting. Again, a completely opposite trend is 
noted for the expanding walls.  

It is clear from the Table 7 that the Prandtl number 
enhances the heat transfer rate only in case of 
contracting walls. It does not affect the other two 
physical quantities, due to the one way coupling of 
the governing equations (please see Eqs. (12)-(14) ).  

Physical model of the problem is shown in the Fig. 
1, whereas the streamlines for the present problem 
are shown in the Fig. 2. 
 

Table 6 Effect of the wall expansion ratio   on 

   1 , 1f g   ,  1   for 1 4,C   

2 30.8, 0.4, 4,Pr 1.5C C M     and Re 1  

   1f   1g     1   

-2.5 
-1.5 
0.0 
1.5 
2.5 

3.1683 
2.9428 
2.5485 
2.0183 
1.4886 

6.6371 
6.4612 
6.1076 
5.5850 
5.0734 

-2.1421 
-1.5599 
-0.8755 
-0.4368 
-0.2608 

 
Table 7 Effect of the Prandtl number Pr on 

 1  For 1 2 34, 0.8, 0.4,C C C    4M   and 

Re 1  

Pr  
1.5    1.5   

 1    1   

0.1 
0.5 
0.9 
1.3 
1.7 

-0.5462 
-0.7662 
-1.0421 
-1.3742 
-1.7575 

-0.4955 
-0.4781 
-0.4611 
-0.4448 
-0.4289 
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Fig. 2. Contours of stream function for 

1 2 34, 0.8, 0.4,Re 5,Pr 1.5,C C C    

2.5, 4M   . 

 

It is to mention that the position of viscous layer 
(the point 0   for which   0f   ) lies in the 

middle of the channel, that is, in the plane 0z  , 
due to same amount of suctions at the two walls. 
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However, it may shift towards either of the walls for 
the asymmetrical case, which may be a topic of a 
subsequent study. Moreover, the normal velocity 
takes its dimensionless value 1  at the lower wall, 
and acquires its maximum value1  at the upper one, 
with a point of inflection lying at 0  (due to the 
symmetry of the problem) where it changes its 
concavity.  

Figures (3-10) reflect the effect of the micropolar 
parameters on the velocity, microrotation and heat 
profiles. It is noted that, for both the cases of  , 
the micropolar parameters increase the magnitude 
of the normal velocity and the microrotation across 
the whole computational domain. The streamwise 
velocity is, however, raised only in the middle of 
the channel. Again, the micropolar parameters are 
not much influential for the thermal distribution.   

For the case of expanding walls, the effect of the 
Reynolds number is similar to that of micropolar 
parameters (please see Figs. (11-18)). however, for 
the other case, we note two points: the Reynolds 
number is not much influential; and the way it 
affects the streamwise velocity and the 
microrotation, is changed. 
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Fig. 3. Normal velocity profiles for 

Re 5, 4,M   Pr 1.5, 2.5  and various 

cases of micropolar parameters. 
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Fig. 4. Streamwise velocity profiles for 

Re 5, 4,M   Pr 1.5, 2.5   and various 

cases of micropolar parameters. 
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Fig. 5. Microrotation profiles for 

Re 5, 4, Pr 1.5,M   2.5   and various 

cases of micropolar parameters. 
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Fig. 6. Temperature profiles for 

Re 5, 4, Pr 1.5,M   2.5   and various 

cases of micropolar parameters. 
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Fig. 7. Normal velocity profiles for 

Re 5, 4,Pr 1.5,M   2.5    and various 

cases of micropolar parameters. 
 
It is clear from the Figs. (19-26) that, no matter the 
channel walls are expanding or contracting, the 
magnetic field exerts a drag like force (called the 
Lorentz force) on the fluid, which is responsible for 
reducing the normal velocity and the microrotation. 
The streamwise velocity, on the other hand, is 
raised in the small regions near the two channel 
walls. Hence the resistive force tends to drag the 
fluid towards the channel walls, which not only 
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results in increasing the shear stress at the wall but 
also causes greater spinning of the micro fluid 
particles hence, increases the couple stress as well 
(evident from Table 5). 
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Fig. 8. Streamwise velocity profiles for 

Re 5, 4,M   Pr 1.5, 2.5   and 

various cases of micropolar parameters. 
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Fig. 9. Microrotation profiles for 

Re 5, 4, Pr 1.5,M   2.5    and various 

cases of micropolar parameters. 
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Fig. 10. Temperature profiles for 

Re 5, 4, Pr 1.5,M   2.5    and 

various cases of micropolar parameters. 
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Fig. 11. Normal velocity profiles for 

1 2 34, 0.8, 0.4,C C C   4,M 

Pr 1.5, 2.5   and various Re . 
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Fig. 12. Streamwise velocity profiles for 

1 24, 0.8,C C  3 0.4, 4,C M 

Pr 1.5, 2.5   and various Re . 
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Fig. 13. Microrotation profiles for 

1 2 34, 0.8, 0.4,C C C   4,M 

Pr 1.5, 2.5   and various Re . 
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Fig. 14. Temperature profiles for 

1 2 34, 0.8, 0.4,C C C   4,M 

Pr 1.5, 2.5   and various Re . 



Y. Asia et al. / JAFM, Vol. 9, No. 4, pp. 1807-1817, 2016.  
 

1814 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



f 
( 

 )

 

 

 Re = 1

 Re = 5

 Re = 9
 Re = 13

 Re = 17

 
Fig. 15. Normal velocity profiles for 

1 24, 0.8,C C  3 0.4,C 
4, Pr 1.5, 2.5M      and various Re . 
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Fig. 16. Streamwise velocity profiles for 

1 24, 0.8,C C  3 0.4, 4,C M   

Pr 1.5, 2.5    and various Re . 
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Fig. 17. Microrotation profiles for 

1 24, 0.8,C C  3 0.4, 4,C M   

Pr 1.5, 2.5    and various Re . 
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Fig. 18. Temperature profiles for 

1 24, 0.8,C C  3 0.4, 4,C M 

Pr 1.5, 2.5    and various Re . 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



f 
( 

 )

 

 

 M = 0

 M = 25

 M = 50
 M = 75

 M = 100

 
Fig. 19. Normal velocity profiles for 

1 24, 0.8,C C  3 0.4, Pr 1.5,C  

Re 2, 2.5   and various M . 
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Fig. 20. Streamwise velocity profiles for 

1 24, 0.8,C C  3 0.4, Pr 1.5,C  

Re 2, 2.5   and various M . 
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Fig. 21. Microrotation profiles for 

1 24, 0.8,C C  3 0.4, Pr 1.5,C  

Re 2, 2.5   and various M . 
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Fig. 22. Temperature profiles for 

1 24, 0.8,C C  3 0.4, Pr 1.5,C  

Re 2, 2.5   and various M . 
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Fig. 23. Normal velocity profiles for 

1 24, 0.8,C C  3 0.4, Pr 1.5,C  

Re 2, 2.5    and various M . 
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Fig. 24. Streamwise velocity profiles for 

1 24, 0.8,C C  3 0.4, Pr 1.5,C  

Re 2, 2.5    and various M . 
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Fig. 25. Microrotation profiles for 

1 24, 0.8,C C  3 0.4, Pr 1.5,C  

Re 2, 2.5   and various M . 
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Fig. 26. Temperature profiles for 

1 24, 0.8,C C  3 0.4, Pr 1.5,C  

Re 2, 2.5    and various M . 

As   varies from negative to positive, we note 
the rise in the magnitudes of the normal velocity 
and the microrotaion across the whole domain. 
The temperature profile, however, tends to 
become an almost linear function of the 
dimensionless spatial variable   (please see 
Figs. (27-30)).  
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Fig. 27. Normal velocity profiles for 

1 24, 0.8,C C  3 0.4, 4,C M   

Re 2, Pr 1.5   and various  . 

 

Fig. 28. Streamwise velocity profiles for 1 4,C   

2 30.8, 0.4, 4,C C M   Re 2, Pr 1.5   and 
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3



g 
( 
 

)

 

 

   = -2.5

   = -1.5

   = 0.0

   = 1.5

   = 2.5

 
Fig. 29. Microrotation profiles 

for 1 24, 0.8,C C   

3 0.4, 4,C M  Re 2, Pr 1.5   and various  . 
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Fig. 30. Temperature profiles for 

1 24, 0.8,C C  3 0.4, 4,C M 

Re 2, Pr 1.5   and various  . 

 
Figures (31-32) show that, in the case of contracting 
walls, the Prandtl number tends to lower the thermal 
distribution in the lower half of the channel whereas 
an opposite effect is noted in the upper half. The 
trend is however reversed for the case of expanding 
walls. 

Compared with the work of Aski et al. 2014, we 
have noticed a qualitative change in the way in 
which the micropolar parameters and the Reynolds 
number affect the streamwise velocity profiles in 
case of expanding walls. Both the parameters tend 
to lower the velocity distribution near both the 
walls, predicting a negative velocity component in 
these regions. Thus, the parabolic nature of the 
profile for the Newtonian fluid at low Reynolds 
number is changed. No such change was noticed in 
the work of Aski et al. 2014, where the channels 
were stationary. We therefore conclude that this 
particular influence of the micropolar parameters 
and the Reynolds number is due to the expanding 
channel walls. Moreover, we notice a non uniform 
way in which the Reynolds number affects the 
microrotation profiles for the case of approaching 
walls. It decreases the magnitude of the 
microrotation everywhere except for the small 
regions near the two walls where the trend is 
opposite, which is again contrary to the results 
reported by Aski et al. 2014.      
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Fig. 31. Temperature profiles 

for 1 24, 0.8,C C  3 0.4, 4,C M 

Re 2, 2.5   and various Pr . 
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Fig. 32. Temperature profiles for 

1 24, 0.8,C C  3 0.4, 4,C M 

Re 2, 2.5    and various Pr . 

5. CONCLUSUONS 

The characteristics of laminar, incompressible, 
viscous and unsteady flow of an electrically 
conducting micropolar fluid in a porous channel 
with expanding or contracting walls under the 
action of an applied magnetic field are explored 
numerically. 

It has been observed that the micropolar structure of 
the fluid is responsible for reducing the shear stress 
while increasing the couple stress and the heat 
transfer rate at the channel walls, whether the walls 
are expanding or contracting. The shear stress 
increases with the Reynolds number while slightly 
decreasing the heat transfer rate, only for the case of 
contracting channel walls. The external magnetic 
field always enhances both the shear and couple 
stresses while lowering the heat transfer rate. The 
wall expansion ratio increases or decreases the three 
physical quantities according to the case of 
contracting or expanding walls, whereas the Prandtl 
number enhances the heat transfer rate only in case 
of contracting walls.  

The micropolar parameters increase the magnitudes 
of the normal velocity and the microrotation across 
the channel, for the both wall conditions. For 
approaching walls, the Reynolds number decreases 
the magnitude of the microrotation everywhere 
except for the small regions near the two walls 
where the trend is opposite. No matter the channel 
walls are expanding or contracting, the magnetic 
field reduces the normal velocity and the 
microrotation. In case of expanding walls, the 
micropolar parameters and the Reynolds number 
tend to lower the velocity distribution near both the 
channel walls, predicting a negative velocity 
component in these regions. For contracting walls, 
the Prandtl number tends to lower the thermal 
distribution in the lower half of the channel whereas 
an opposite effect is noted in the upper half. The 
trend is however reversed for the case of expanding 
walls. 
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