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ABSTRACT 

Of concern in the paper is a study on heat transfer in the unsteady magnetohydrodynamic (MHD) flow of 
blood through a porous segment of a capillary subject to the action of an external magnetic field. Nonlinear 
thermal radiation and velocity slip condition are taken into account. The time-dependent permeability and 
suction velocity are considered. The governing non-linear patial differential equations are transformed into a 
system of coupled non-linear ordinary differential equations using similarity transformations and then solved 
numerically using Crank-Nicolson scheme. The computational results are presented in graphical/tabular form 
and thereby some theoretical predictions are made with respect to the hemodynamical flow of blood in a 
hyperthermal state under the action of a magnetic field. Effects of different parameters are adequately 
discussed. The results clearly indicate that the flow is appreciably influenced by slip velocity and also by the 
value of the Grashof number. It is also observed that the thermal boundary layer thickness enhances with 
increase of thermal radiation. 
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1. INTRODUCTION

The literature of bio-mathematics has provided 
huge number of applications in medicine and 
biology. The application of MHD has reducing 
effect on the rate of flow of blood in human arterial 
system, which is useful in treatment of certain 
cardiovascular disorders such as brain-hemorrhage 
and hypertension etc. (Korchevskii and Marochnik 
1965). Pulsed magnetic fields have been used to 
treat various conditions, such as soft-tissue injury 
(Wilson 1974), chronic pelvic pain (Varcaccio et al. 
1995). Vardanyan (1973) explored the potential use 
of MHD principles in prevention and rational 
therapy of arterial hypertension, wherein he 
reported that a magnetic field applied in a direction 
transverse to an artery bears the potential to alter the 
flow rate of blood. Halder (1994) analyzed the 
effect of magnetic field on blood flow through an 
indented tube in presence of erythrocytes. A 
mathematical model for biomagnetic fluid 
dynamics, suitable for the description of the 
Newtonian blood flow under the action of an 
applied magnetic field has been proposed by 
Tzirtzilakis (2005). 

Earlier studies on flow through porous media were 
mainly based upon the use of Darcy's law (Darcy 
1856), which relates linearly the flow velocity to the 
pressure gradient across the porous medium. Later 

developments on fluid flow through porous media 
led to different extensions of the Darcy law, such as 
the Forchheimer equation (Joseph et al. 1982) and 
the Brinkman equation (Brinkman 1947). Dash et 
al. (1996) employed the Brinkman equation to 
model the pathological blood flow when there is 
accumulation of fatty plaques of cholesterol in the 
lumen of an arterial segment and artery-clogging 
takes place by blood clots. They considered the 
clogged region as a porous medium and considered 
the permeability to be either constant or varying in 
the radial direction. Kumar et al. (2002) studied the 
unsteady laminar free convection flow of an 
electrically conducting fluid through a porous 
medium along a hot porous plate, where the suction 
velocity is time-dependent. However, none of these 
studies considered the oscillatory suction velocity 
of the fluid under the action of a magnetic field. 

Misra et al. (2011) conducted a study concerning 
blood flow through a porous vessel where they 
considered no-slip condition at the vessel wall. It is 
well-known that a viscous fluid normally sticks to 
the boundary, that is, there is no slip of the fluid 
relative to the boundary. There are, however, many 
situations where there may be a partial slip between 
the fluid and the boundary. For many fluids, such as 
particulate fluids, the motion is still governed by the 
Navier-Stokes equations, but the usual no-slip 
condition at the boundary should be replaced by the 
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slip condition (Sinha and Misra 2014). Wang 
(2002) considered a problem involving partial slip 
by considering stagnation point flows. 

Recently, heat transfer analysis have been received 
the attention (Srinivas and Gayathri 2009; Srinivas 
and Kothandapani 2008) due to its large number of 
applications in the processes like hemodialysis and 
oxygenation. Bio-heat is currently considered as 
heat transfer in the human body. In view of this 
thermotherapy and the human thermoregulation 
system (Srinivas and Kothandapani 2008), the 
model of bio-heat transfer in tissues has been 
attracted by the biomedical engineers. Radiation 
effect in blood flow is an important subject of 
research, because it has got significant applications 
in Biomedical engineering and several medical 
treatment methods, particularly in thermal 
therapeutic procedures. Sheikholeslami et al. 
(2014a) investigated effect of magnetic field on 
CuO-water nano fluid flow and heat transfer in an 
enclosure which is heated from below. They 
concluded that the enhancement in heat transfer 
increases as Hartmann number and heat source 
length increase but it decreases with increase of 
Rayleigh number. Sheikholeslami et al. (2014b) 
also studied natural convection heat transfer of Cu-
water nanofluid in an enclosure with hot elliptic 
cylinder in presence of magnetic field. Several 
investigations has been carried out by some 
researchers (Ellahi et al. 2014; )(cf. [19]-[25]) to 
examine heat transfer effect on different fluid 
models. The effect of radiative heat transfer on 
blood flow in a stenosed artery was studied 
theoretically by Prakash and Makinde (2011). Misra 
et al. (2010) reported theoretical estimates of blood 
flow in arteries during the therapeutic procedure of 
electromagnetic hyperthermia used for cancer 
treatment. Some relevant useful discussions are also 
available in that paper. Sharma et al. (2014) 
theoretically investigated the role of slip velocity on 
boundary layer flow of viscous fluid with heat 
transfer over an exponentially shrinking sheet in the 
presence of thermal radiation. Das et al. (2014) 
studied unsteady flow and heat transfer of a viscous 
incompressible, electrically conducting dusty fluid 
past vertical plate under the influence of a 
transverse magnetic field with a view to examine 
the combined effects of suction, heat absorption and 
ramped wall temperature. 

The motivation of this paper is to study the 
influence of slip velocity on unsteady MHD flow as 
well as the associated problem on heat transfer in 
the presence of thermal radiation, in the case of 
blood flow through a porous capillary in a 
pathological state, where the capillary has turned 
into a porous medium due to accumulation of fats, 
cholesterol and blood clots. The analysis presented 
here pertains to a situation when the capillary is 
subjected to a time-dependent suction velocity. 
These aspects are paid due attention in this study. 
Moreover, the unsteady oscillatory behaviour of the 
fluid flow is studied here because of the reason that, 
due to the unsteady motion of the capillary 
wall/wall temperature, the flow of the fluid 
becomes unsteady. The problem is solved 

numerically by an appropriate finite difference 
method. The study has the promise of significant 
application in electromagnetic therapy, which has 
gained much popularity in recent years in the 
treatment of cancer.  

2. MATHEMATICAL ANALYSIS 

Let us consider unsteady, two-dimensional flow and 
heat transfer of an incompressible electrically 
conducting fluid through a porous having time-
dependent permeability in the presence of thermal 
radiation. The suction velocity is considered 
oscillatory. In the mathematical analysis that 
follows, we use Cartesian coordinates ( x  , y  ), 
where the x  -axis is taken along the center line of 
the channel (see Fig. 1) and parallel to the channel 
surface, while the y  -axis is along in the transverse 
direction. The flow is considered symmetric about 
the x  -axis. The porous walls of the channel can be 
represented as =y h  and =y h   (h being half-
width of the channel). The permeability of the 
porous medium is considered to be 

0= (1 sin( ))K K n t   , and the suction velocity is 

assumed to be 0= (1 sin( ))v v n t   , where 0K  is 

the constant permeability of the medium, <<1  is 
a small positive constant, n  is the frequency of 
oscillation, and 0(> 0)v  is the scale of the suction 

velocity. As per experimental observation, blood is 
a conducting fluid. Hence under the action of the 
magnetic field, the flow of blood will be of 
magneto-hydrodynamic (MHD) nature. In the 
analysis, it is assumed that the magnetic Reynolds 
number is much less than unity so that the induced 
magnetic field is negligible in comparison to the 
applied magnetic field. We also incorporate the slip 
effect on the fluid flow. 
 

 
Fig. 1 Physical sketch of the problem. 

 
With all the above-mentioned consideration, taking 
the usual Boussinesq approximation into account, 
the equations that govern the motion of the fluid 
may be listed as  
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where   is the kinematic coefficient of viscosity, 
  is the coefficient of thermal expansion, g  being 

the acceleration due to gravity,   is the electrical 
conductivity,   is the fluid density, 0B  is the 

strength of the applied magnetic field, wT  is the 

initial temperature of the wall, k  being the thermal 
conductivity, pc  is the specific heat at constant 

pressure and rq  is the radiative heat flux. 

The relevant boundary conditions are  
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in which   represents the slip length. 

By using Rosseland approximation, the relative heat 
flux can be expressed as  
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where 
å  is the Stefan-Boltzmann constant and 

åk  being the mean absorption coefficient. 

To examine the unsteady flow regime adjacent to 
the sheet, the following transformations are invoked  

0

0
= ,  = ,  = ,  =

4
w

w

T T t vu y
u T y t

v T h h

  
 

0

4
 = .

n h
and n

v



                                                       (7)

 (7) 

 Substituting eqn. (7) into eqns. (2) and (3), we get 
the following set of equations:  
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 where ( ) = 1 sin( )f t nt . 

Also, the boundary conditions (4) and (5) give rise 
to  
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The non-dimensional parameters that appear in the 
transformed equations presented above are defined 

as 0
0
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3. NUMERICAL PROCEDURE 

Equations (8) and (9) subjected to the boundary 
conditions (10) and (11) are solved numerically 
developing a suitable finite difference technique. 
The central difference scheme is employed to 
discretize the derivatives with respect to y  in Eqs. 

(8) and (9) as  
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 in which P  stands for u  and T . 

The values of u  and T  at the mesh point iy  are 

denoted by iu  and iT  respectively and at the j th 

time-step, the same variables are denoted by j
iu  

and j
iT , 

where 

= ,            = 1,2,.....iy idy i m  

= ,            = 0,1,......jt jdt j  

Now applying Crank-Nicolson formula for the Eqs. 
(8) and (9), we have  
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and  
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where dy  and dt  are the mesh sizes along the 
space and time directions. 

The system of linear Eqs. (14) and (15) are 
expressed as tri-diagonal system of equations which 
are solved by using Thomas algorithm. 

For = 0j , the system of Eq. (14) may be written as  
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We further write  
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Let us now take  

1
1 = 0.mu                                                              (20) 

Using (20), from (17) we get  

1 = .m mu q                                                             (21) 

 Now using Eq. (17), we can compute 
1
iu , for 

= 1, 2,....,3,2,1i m m   in succession. 

The same procedure can be adopted for any other 
value of j , that is for any instant of time.  

Proceeding in a similar manner, we can solve (15) 
for temperature.  

4. RESULTS AND DISCUSSION 

The effect of slip velocity on MHD flow of blood 
and heat transfer in the presence of nonlinear 
thermal radiation over a porous capillary have been 
investigated. The system of coupled differential 
Eqs. (8) and (9) subject to the boundary conditions 
(10) and (11) are solved numerically by employing 
a finite difference scheme with Newton's 
linearization method described in the previous 
section. Computational study has been carried out 
with an aim to investigate the variation of different 
quantities of interest for the following ranges of 
values of the parameters involved (Misra et al. 
2011; Prakash and Makinde 2011; Sinha and Misra 
2012): = 0,1,2,4Ha ; = 0.0,0.5,1.0,2.0 ; 

= 10, 5,5,10Gr   ; = 0.05,0.1,0.15,0.2pk ; 

= 0.005,0.01,0.015,0.02 , = 20,21,22,23Pr ; 

= 0,1,2,4Nr ; = 2n  and =1Re . 
 
Figures 2-7 respectively display the effects of 
Hartman number, Grashof number, slip parameter, 
permeability parameter, amplitude parameter and 
radiation parameter. Fig. 2 reveals that in the case 
of cooling of the capillary wall ( > 0Gr ), velocity 
decreases when the Hartman number increases. 
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Fig. 2. Velocity distribution for different values 

of Hartmann number Ha  when =1Re , = 5Gr , 

= 0.1pk , = 21Pr , =1Nr , = 1.0  and 

= 0.005 . 
 

 
Fig. 3. Velocity distribution for different values 
of Grashof number Gr  when =1Re , = 2Ha , 

= 0.1pk , = 21Pr , =1Nr , = 1.0  and 

= 0.005 . 
 
This observation agrees with the theory, because of 
the increase in magnetic parameter Ha , the Lorentz 
force increases. It is known that Lorentz force 
opposes the flow. This implies that if we increase in 
the strength of magnetic field, flow of blood will be 
impeded. One can also note that for any values of 
Hartman number, axial velocity increases upto near 
of the upper wall and after attaining its maximum 
value, it decreases. One can have an idea of the 
velocity distribution for both cooling of the wall 
( > 0Gr ) and heating of the wall ( < 0Gr ) from 
Fig. 3. It may be noted that in the case of cooling, 
the velocity decreases as the Grashof number 
decreases, while in the case of heating, as the 
Grashof number decreases, the velocity increases. 
Fig. 4 reveals that velocity-slip at the wall of the 
capillary bears the potential to alter the velocity 
distribution to a significant extent. It is seen from 
the figure that for a fixed value of  , velocity 
oscillates with time. This figure also shows that 
blood velocity decreases as the slip factor increases. 
It may be noted that the velocity distribution is 
strongly influenced by the velocity-slip factor in the 
proximity of the wall but there is no such 
significant change in the vicinity of the axis of the 
capillary. It is revealed that the wall-slip effects 
bear the potential to arrest the velocity gradients in 
the interfacial region and also that such effects 
promote the advective transport of mobile ion 
through the capillary walls. Fig. 5 gives the 
variation in velocity with the height of the capillary. 

This figure reveals that velocity of blood increases 
with the increase in wall permeability. It is 
worthwhile to further note that for the same 
permeability, the velocity increases with the height 
of the capillary and it attains maximum value at the 
near of the upper wall of the capillary. Figs. 6 and 7 
give the variation of the blood velocity with 
amplitude parameter and the thermal radiation 
parameter respectively. From both figures, it is 
clearly seen that velocity of blood increases with 
both parameter   and Nr . 
 

 
Fig. 4. The effect of slip parameter   on velocity 

profile when =1Re , = 5Gr , = 0.1pk , = 21Pr , 

=1Nr , = 1.0  and = 0.005 . 
 

 
Fig. 5. Velocity distribution for different values 
of permeability parameter pk  when =1Re , 

= 5Gr , = 2Ha , = 21Pr , =1Nr , = 1.0  and 

= 0.005 . 
 

 
Fig. 6. Nature of velocity distribution for 

different values of   when =1Re , = 5Gr , 

= 0.1pk , = 21Pr , =1Nr , = 1.0  and = 2Ha . 
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Fig. 7. Velocity distribution for different values 
of radiation parameter Nr  when =1Re , 
= 5Gr , = 0.1pk , = 21Pr , = 2Ha , = 1.0  and 

= 0.005 . 
 

Figs. 8-10 give some characteristic temperature 
profiles for different values of radiation parameter 
Nr , Prandtl number Pr  and amplitude parameter 
  respectively. Fig. 8 demonstrates the effect of 
thermal radiation on temperature profile T . This 
figure emphasizes that as thermal radiation 
increases during blood flow in capillaries, there is a 
significant rise in the thickness of boundary layer. 
Thereby the temperature of the boundary layer in 
enhanced by an appreciable extent. Fig. 9 presents 
the change in the temperature distribution in the 
boundary layer, when the Prandtl number ( Pr ) 
changes gradually. It shows that as the Prandtl 
number increases, the temperature of the boundary 
layer diminishes. This may be attributed to the fact 
that the thermal boundary layer thickness reduces 
with an increase in Prandtl number. Further, this 
figure indicates that the temperature gradient at the 
surface increases with a rise in Prandtl number. This 
implies that an increase in Prandtl number is 
accompanied by an enhancement of the heat 
transfer rate at the wall of the blood vessel. From 
Fig. 10 which elucidates the influence of the 
amplitude parameter ( ) on temperature 
distribution, it is revealed that the temperature of 
blood at any point of the flow medium increases 
with increasing value of  . The skin-friction 
coefficient, defined as 

1

2
2
0

2
= = 2 (1)w

fC Re u
v





  

where == ( )w y h
u

y
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


  

is an important physical quantity that bears the 
potential to explore some vital information 
regarding problems such as the one under our 
present consideration. 

The values of (1)u   for different sets of 
parameters are given in Table 1. The corresponding 
values of the local skin-friction coefficient can be 
computed by using the data presented in Table 1. 
With the increases in Gr ,  , pk  and Nr , the 

skin-friction increases, while the increase in 
Ha / Pr  gives rise to the reduction in the skin-

friction. 

Another important characteristic of the present 
study is the local Nusselt number Nu , defined as 

1

2= = (1)w

w

hq
Nu Re

kT
   

where == ( )w y h
T

q k
y




 

The values of skin-friction and Nusselt number on 
the stretching wall, computed on the basis of the 
present study are presented in tabular form. 

 

 
Fig. 8. Temperature distribution for different 
values of Nr  when =1Re , = 5Gr , = 0.1pk , 

= 21Pr , = 2Ha , = 1.0  and = 0.005 . 
 

 
Fig. 9. Temperature distribution for different 
values of Pr  when =1Re , = 5Gr , = 0.1pk , 

= 2Ha , =1Nr , = 1.0  and = 0.005 . 
 

 
Fig. 10. Temperature distribution for different 
values of   when =1Re , = 5Gr , = 0.1pk , 

= 21Pr , =1Nr , = 1.0  and = 2Ha . 



A. Sinha / JAFM, Vol. 9, No. 4, pp. 1819-1827, 2016.  
 

1825 

Table 1 Distribution of –u(1) 

Ha  Gr    pk  Pr  Nr  (1)u   

2.0 5.0 1.0 0.1 21.0 1.0 0.00001812 

3.0 5.0 1.0 0.1 21.0 1.0 -0.0000188 

4.0 5.0 1.0 0.1 21.0 1.0 -0.00004827 

2.0 10.0 1.0 0.1 21.0 1.0 0.00010535 

2.0 20.0 1.0 0.1 21.0 1.0 0.0002798 

2.0 5.0 0.5 0.1 21.0 1.0 -0.0002959 

2.0 5.0 2.0 0.1 21.0 1.0 0.00013234 

2.0 5.0 1.0 0.15 21.0 1.0 0.0000378 

2.0 5.0 1.0 0.2 21.0 1.0 0.00005026 

2.0 5.0 1.0 0.1 20.0 1.0 0.000028725 

2.0 5.0 1.0 0.1 22.0 1.0 0.00000834 

2.0 5.0 1.0 0.1 21.0 2.0 0.000117224 

2.0 5.0 1.0 0.1 21.0 4.0 0.00027226 

 
Table 2 Distribution of T(1) 

Gr Nr Pr (1)T   

5 1 21 0.032484904 

10 1 21 0.03100677 

5 2 21 0.022950606 

5 1 20 0.031209597 

 
From this table, one can have an idea of the 
variation in Nusselt number for different values of 
Grashof number Gr , radiation parameter ( Nr ) and 
Prandtl number ( Pr ). This table shows that 
increase in Pr , enhances the Nusselt number, 
while increase in Grashof number or radiation 
parameter leads to a reduction in local Nusselt 
number.  

5. CONCLUDING REMARKS 

A mathematical model formulated and analyzed has 
been motivated towards investigating the effect of 
non-linear thermal radiation on the flow and heat 
transfer in a capillary whose lumen being porous 
and wall permeable, when the system is subjected to 
the action of an external magnetic field. The porous 
matrix in the lumen of the capillary is supposed to 
be formed on account of some particular types of 
pathology of the capillary. The erythrocyte slip at 
the walls of the capillary has been duly account for. 

The problem is formulated in terms of a non-linear 
boundary value problem that has been solved 
numerically by developing an appropriate finite 
difference scheme and using the Crank- Nicolson 
formula. 

From this study, we can draw the following 
conclusions: 

(i) The blood velocity can be controlled by suitably 
adjusting (increasing/decreasing) the magnetic 
field strength/the slip coefficient. The results 
presented should be of sufficient interest to 
surgeons who usually want to keep the blood 
flow rate at a desired level during the entire 
surgical procedure. 

(ii) The velocity of blood along the axis of the 
capillary increases with a rise in permeability. 

(iii) The temperature of blood inside the boundary 
layer also reduces, if the Prandtl number 
increases. 

(iv) Thermal radiation bears the potential to bring 
about a significant change in the temperature 
field of the boundary layer. With a rise in 
thermal radiation, the thermal boundary layer 
thickness increases by an appreciable extent. 
This result is very much useful in the treatment 
of electromagnetic hyperthermia because the 
main objective of electromagnetic hyperthermia 
treatment is to rise the temperature of the 

cancerous tissues above 042 C . 
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