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ABSTRACT 

In this paper, two new analytical models have been developed to calculate two-phase slug flow pressure drop 
in microchannels through a sudden contraction. Even though many studies have been reported on two-phase 
flow in microchannels, considerable discrepancies still exist, mainly due to the difficulties in experimental 
setup and measurements. Numerical simulations were performed to support the new analytical models and to 
explore in more detail the physics of the flow in microchannels with a sudden contraction. Both analytical and 
numerical results were compared to the available experimental data and other empirical correlations. Results 
show that models, which were developed based on the slug and semi-slug assumptions, agree well with 
experiments in microchannels. Moreover, in contrast to the previous empirical correlations which were tuned 
for a specific geometry, the new analytical models are capable of taking geometrical parameters as well as 
flow conditions into account. 

Keywords: Slug flow; Microchannels; Two-phase flow; Sudden-area change. 

NOMENCLATURE 

A pipe cross sectional area 
D pipe diameter 
ff wall shear stress 
G total mass flux 
Jg gas phase superficial velocity 
Jl liquid phase superficial velocity 

.
tm total mass flow rate 

.
lm liquid slug mass 

.
gm gas slug mass 

Kc contraction loss coefficient 
Kd momentum correction factor 
Ke expansion loss coefficient 
X vapor mass quality 

Xc liquid slug center of mass f  friction 
factor 

 homogenous gas void fraction 

  roughness 

fu front slug velocity 

g gas phase viscosity 

gu gas slug velocity 

  gas volume void fraction 

l liquid phase viscosity 

lu liquid slug velocity 

  slip ratio 

1. INTRODUCTION

The study of flow in microchannels has become of 
greater interest in recent years mainly due to its 
presence in a broad array of applications such as 
microelectromechanical systems (MEMS), 
electronics cooling, chemical process engineering, 
medical and genetic engineering, and bioengineering. 

Two-phase hydrodynamic characteristics in 
microchannels have been found to be different than 
those in large channels. Recent experimental studies 
by Ghiaasiaan and Abdel-Khalik (2000), Abdelall et 
al. (2005), Toufik et al. (2008), Kawahara et al. 
(2002), Serizawa et al. (2002), Chaoqun et al. 
(2013), Kawahara et al. (2012), Yao et al. (2014) and 
many others tried to formulate and monitor flow in 
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microchannels. However, there are still discrepancies 
in the data, mainly due to the difficulties in 
experimental setup and measurement. On the other 
hand, there are very few analytical or numerical 
studies in two-phase flows in microchannels mainly 
due to the lack of the detailed experimental data or 
robust physical-based models for simulation. He and 
Kasagi (2008) simulated a single bubble in a micro 
tube. Fukagata et al. (2007) numerically simulated 
two-phase flow in a micro tube and found that the 
gas-liquid slip ratio is approximately 1.2. They also 
found that this was in accordance with the Armand 
correlation which is valid for two phase flows in 
micro-sized channels. The presented analytical 
model in that study also revealed that the calculated 
void fraction in an abrupt flow area contraction was 
close to the Armand correlation for many data points, 
but for some points (depending on the flow 
conditions) could have up to a twenty percent bigger 
value, which leads to better agreement with 
experimental data. De Schepper et al. (2008), 
utilizing CFD simulation, investigated the 
performance of the existing numerical tools and 
approaches for modeling of two phase flows. Their 
qualitative comparisons between computed contours 
and the experimental photos showed that simulation 
could capture two-phase flow regimes except for 
slug flow. They tried all available two-phase models 
to overcome this problem; however, their simulation 
failed in capturing the slug flow regime both 
qualitatively and quantitatively. They attributed this 
fact to the presence of a small region of slug flow in 
the Baker chart. A consequence of this is the fact that 
their simulations were vulnerable to transition 
between regions. 

Two-phase flow in microchannels with abrupt area 
change is among the least studied aspects of this 
type of flow. The objective of the work reported in 
this paper is to provide a new analytical void 
fraction model in the vicinity of the area transition 
(vena contracta location) for two-phase slug flows 
and to apply this model to estimate the pressure 
drop due to the abrupt area change in 
microchannels. Compared to previous models, 
which provide a static value for the void fraction 
without geometrical or flow constraints, the new 
model provides an analytical expression for the void 
fraction that accounts for both dynamic and static 
variables. Also, this model introduces a geometrical 
parameter that has historically been ignored in 
previous experimental work. This is the average 
liquid slug length and/or the gas slug length. The 
ratio of these two lengths can be calculated by 
knowing the void fraction, but the actual length of 
each slug can vary depending on the flow 
conditions. Since the slug flow through the 
contraction behaves like pulsating flow, the actual 
length of each slug (in addition to the gas-liquid 
slug’s length) plays an important role on the 
calculated pressure drop. Moreover, it is expected 
that the actual length of the slugs controls whether 
or not the boundary layer is located in the 
developing region in each slug. We suggest that 
future experimental efforts report detailed data 
about the time-averaged slug lengths of the two 
phases as well. 

2. ANALYSIS 

2.1   Two-Phase Slug Flow Frictional 
Pressure Drop in a Straight Microchannel 

Damianides and Westwater (1988), Fukano and 
Kariyasaki (1993), Triplett et al. (1999), Zhao and 
Bi (2001) and Kawahara et al. (2002) developed 
overall two-phase flow regime maps taking into 
account a wide range of parameters in 
microchannels. Kawahara et al. (2002) did not 
observe any bubbly or churn flow patterns in their 
developed map for a 100-µm microchannel. On the 
other hand, for a wide range of gas and liquid 
superficial velocities, the slug-ring, ring-slug, 
multiple and semi-annular flows were observed. 

 

     
 

 
Fig. 1. Top: Experimental image, Serizawa et al. 
(2002). Bottom: Schematic picture of two-phase 

slug flow in a straight microchannel. 
 
For slug flow it can be assumed that pressure drop 
is due to the additive pressure drop of separate 
liquid and gas phases. Here we assume that a gas 
slug and a liquid slug follow each other, that there is 
no mass transfer between the phases, that the gas 
phase is incompressible in the channel (This 
assumption would not be valid for the abrupt area 
change region since the pressure changes noticeably 
in a short distance in that region), and that these 
slugs have the same velocity (see Fig. 1). This is 
completely different than homogenous flow in 
which both phases are so mixed to each other to 
behave as new homogenous flow in which it is 
normally assumed that both phases have the same 
velocity. In other words, it is assumed that the slip 
ratio is unity for homogenous flow while the slip 
ratio definition for slug flow in microchannels when 
there is periodic dry wall is not clear. The mass 
flow rate of gas and liquid in a microchannel can be 
written as  

ggg AJm 
.

                     (1)
 

lll AJm 
.

                                  (2)
 

where Jg and Jl are the superficial velocities of the 
gas and liquid phases, respectively. A is the cross 
sectional area of the circular microchannel and ρg 
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and ρl are the densities of the gas and liquid phases, 
respectively. Therefore the total mass flow rate can 
be expressed as 

)(
.

llggt JJAm  
                  (3)

 

As we mentioned, since the mass flux across the 
gas-liquid interface is zero in the interface frame of 
reference, the velocity of both phases can be 
assumed to be the same, ug=ul=u; therefore the 
velocity of the slugs in the stationary frame of 
reference can be written as 

lglg

llvg GJJ
u




)1()1( 





      (4)

 

in which α is the gas phase void fraction that is equal 
to the homogenous gas void fraction, β, for slug flows 
in microchannels and G is the total mass flux (kg/s.m2) 
of the two-phase flow. In the slug flow, for each phase, 
we have assumed that the flow is fully developed 
except close to the interfaces. This assumption may be 
reasonable only for relatively long slugs. For each 
phase, assuming a parabolic laminar, fully-developed 
velocity profile, the pressure gradient would have the 
same form as for laminar pipe flow, with a time 
weighting correction.  

)1(
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This means that at a certain location of the channel, 
in α portion of the time in which only the gas phase 
exists, the pressure gradient is due to the gas flow 
friction and in (1-α) portion of the time, in which 
the liquid phase contacts the walls, the pressure 
gradient is due to liquid friction. Using Eq.(4), 
assuming ul and ug would be the same, the above 
equation for slug flow can be rewritten as 

2 2

(1 )32
( ) ( )

(1 )
g l

g l

P G

x D

  
  

 


  

                   (6)

 

Kawahara et al. (2002) compared six different 
relations for two-phase homogenous viscosity 
models to find the pressure gradient. Five models 
had more than 100% error; however, the 
homogenous model of Dukler et al. (1964) for 
viscosity that is the same as that presented here (Eq. 
6), (µ=αµg+(1-α)µl), had the best agreement with 
the experimental data (within ±20%). However, in 
the procedure of finding Eq.(6) we did not use any 
homogenous flow assumption. The fully developed 
and parallel flow assumptions for each phase is not 
valid near the gas-liquid interface and because of 
this fact the experimental pressure drop data show 
the factor of 30.08 instead of 32.0 in Eq.(6), which 
is 6% lower than that of the conventional 
correlation (Kawahara et al., 2002). 

2.2   Flow Area Expansion Analysis, Single 
Phase 

Fig. 2 shows a schematic of the flow through a 

typical flow area expansion. The target control 
volume stretches from the area change position to a 
downstream location at which it is assumed that the 
flow reaches a fully-developed state.  

 

 
Fig. 2. Schematic of single phase flow through an 

expansion. 
 
Applying the one-dimensional conservation of 
energy equation for the control volume shown in 
Fig. 2 leads to the following: 
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where ke is the expansion loss coefficient and ρave is 
the average density in the expansion area.  1 and 

 3 are kinetic energy correction factors, which can 
be defined as 

3

3

aveAu

dAu




 

    

        

                                                       (9)
 

where uave is the average velocity. When u=uave that 
is uniform flow, 1.0  . For laminar flow though a 
round pipe 2.0   and for turbulent flow 

1.05  . Now, applying the one-dimensional 
conservation of momentum equation 

1 3 1 3p pM M F F  
                                       (10)

 
2 2

1 1 1 1 3 3 3 3 1 3 3 3d dk A u k A u P A P A    
     (11) 

Where 1dk  and 2dk  are momentum correction 

factors, which are defined as 

2
2

u dAkd Auave



                                          (12) 

When u=uave that is uniform flow, 1.0dk  . For 

laminar flow though a round pipe 1.33dk  and for 

turbulent flow (1/7 law profile), 1.02dk  .  

By dividing both sides of Eq.(11) by A3, 
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where the area ratio is defined as 

3

1

A
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                                         (14) 

Therefore Eq.(8) can be written as 
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 For an incompressible flow this equation leads to  
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and if a flat velocity profile is assumed (which is 
common practice for the definition of loss 
coefficient), this equation leads to the Borda-Carnot 
relation 

2
)1( 

e
k

                
(17)

 

In this study, to have consistency with the collected 
data of Toufik (2008), the same simple relation was 
used to compare our modeling results to the 
experimental data. Therefore, both modeling and 
experimental loss coefficients can be found by 
combining Equations (8) and (17) as follows: 
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Where P is either the modeling or experimental 
pressure difference across the expansion area. In 
this relation several simplifying assumptions were 
applied. All correction factors of momentum and 
kinetic energy were assumed to be unity. Moreover, 
this relation inherently assumes that the flow is 
incompressible, which is valid for the liquid phase. 
However, for the gas phase this assumption may not 
be valid under some conditions. When frictional 
loss is included, as it must be for a very long and 
narrow pipe, the incompressible flow analysis 
previously considered applies until the pressure 
drop does not exceed 10% of the initial pressure 
(ASHRAE, 2001). Since compressibility makes the 
analysis very complicated, Toufik (2008) assumed 
that the gas phase behaves as incompressible and 
Kawahara et al.  (2002) used the average gas 
density between inlet and the outlet conditions of 
the pipe to calculate the loss coefficient. However, 
in the next section we will show that the 
incompressible assumption is not valid for two-
phase slug flows through a sudden area change, 
since the density ratio of phases is on the order of 
O(1000), providing a sharper gradient of pressure 

along the channel. 

2.3   Flow Area Contraction Analysis, Single 
Phase 

It is common practice that the converging section of 
the flow (until the vena contracta) in which 
deceleration takes place from the vena contracta   to 
the fully-developed flow region can be modeled as 
flow through a sudden expansion (Kays, 1950). 
According to this assumption, expansion after the 
vena contracta to the downstream region can be 
modeled similarly to that in the flow expansion that 
was mentioned in the previous section. For 
incompressible flows it can be written as: 

2

22)21
1

22
1

(1

cC

cCcC
d

k
ck






           
(19)

 

 

 
Fig. 3. Schematic of single phase flow in 

Contraction. 
 
where 1/c cC A A , is the Vena-contraction 

coefficient. Geiger (1964) suggested an 
experimental correlation for CC 
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In this study to have consistency with the collected 
data of Toufik (2008), the same simple relation was 
used to compare our modeling results to the 
experimental data. Therefore, both modeling and 
experimental loss coefficients have been calculated 
based on the  assumption as 
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2.4   Two-Phase Pressure Change across 
Area Change (Conventional Models) 

It is common practice that using the same analysis 
for single-phase flows, the pressure drop in sudden 
expansions and contractions in two-phase flows 
without phase change and for flat velocity profiles, 
can be expressed as follows (see Abdelall et al., 
2005, Kawahara et al., 2002, and Toufik, 2008): 
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where G1 is the mixture mass flux in the smallest 
channel and subscripts refer to Stations 1 and 3 in 
Fig. 2. The quantity ρ’ is the momentum density 
which was defined by Lahey and Moody (1993) 
according to the following equation: 
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where x is the vapor mass quality and α is the void 
fraction of the flow. Toufik et al. (2008) assumed 
that if both phases are incompressible, x and α both 
would remain constant during the flow area 
expansion and contraction. So Eq.(22) can be 
simplified to 
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In the next section we will show that in 
microchannels assuming constant α during the 
expansion or contraction may not be valid since 
each phase accelerates or decelerates at a different 
rate because of the different densities, wall shear 
forces and viscosity. In order to use the above 
equation, a closer equation needs to correlate vapor 
mass quality to the void fraction. The quality-void 
relation for one-dimensional flows is related to the 
slip ratio “S” according to the following: 
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For homogenous flows S=1. Two-phase flows 
across sudden contractions are considerably more 
complicated than those across sudden enlargements. 
In the flow area contraction in two-phase flows, it is 
still unclear whether the characteristics of the vena-
contracta in two phase flow are the same as those of 
single phase flows. However, for two-phase flows, 
in analogy with single-phase flows using the vena 
contracta concept, Collier (1972) and Hewitt et al. 
(1993) suggested the following: 
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where G1 is the mixture mass flux and Cc is the 
coefficient of contraction which is a function of the 
area ratio. Chisholm (1983) recommended  

11639.0
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where ρh is the average homogenous flow density 
between Points 2 and C (the minimum area) which 
can be found from the average slip ratio between 
these points  
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Also the momentum density ρ’ is defined in Eq.(23) 
and void fraction α is defined as  
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in which, x, is the vapor mass quality.  

With the same analogy for the pressure drop in the 
pipe, effective mixing caused by sudden contraction 
may justify the assumption of homogenous flow, 
and leads to 

llc PP                  (31)
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However, Schmidt and Friedel (1997) have shown 
that the vena contracta phenomenon may not occur 
in two-phase flow at all. In the next sections we will 
introduce an analytical model for slip ratio value in 
vena contracta   location. We will then introduce a 
new model for pressure drop in contraction for two-
phase slug flow in microchannels.   

2.5   New Analytical Model for Void 
Fraction in Contraction 

As we have shown for pressure drop in the straight 
microchannel pipe flow, if the flow behaves like the 
slug flow, the nature of flow is similar to a pulsing 
flow and the frequency of the pressure pulses in the 
vicinity of the contraction depends on the length 
and velocity of liquid and gas slugs. In all cases, not 
only does void fraction not remain constant but the 
two-phase flow regime may also change from that 
of a big pipe to that of a small pipe. Fig. 4 shows a 
schematic of the flow in a microchannel with a 
sudden contraction. We are assuming that the liquid 
slugs are incompressible while gas slugs are 
compressible.  

Even though the constant static pressure far 
upstream of the contraction is not a perfect 
assumption for this pulsating type flow, because of 
the friction, damping, and simplicity we have set 
the far upstream pressure constant while the 
downstream pressure was allowed to oscillate. 
Since we are looking for the pressure difference 
between the up- and downstream locations, we 
expect that this assumption would not have a major 
effect on the final results since with a simple 
shifting we can set either the downstream or 
upstream pressure as the reference pressure 

Even though obtained results show that all 
movements and oscillations have been affected by 
gas and liquid slug’s length in the bigger pipe, 
published experimental work does not reveal much 
information on these lengths or correlate them to the 
other properties. For a fixed gas slug length, LG, 
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liquid slug length, Ll, is just a function of quality (or 
void fraction). However, from experimental 
photographs in the literature, gas slug length varies 
from 1 to 15 times the pipe diameter (see Fig. 1) 
and for this case we have assumed the initial length 
of the gas slug to be seven times that of the bigger 
pipe diameter, D3, and for different qualities, the 
corresponding liquid slug lengths could be 
calculated. At this point we recommend for that 
subsequent experimental studies provide detailed 
information on the time-averaged values of slug 
lengths under different conditions.  

The proposed model assumes that the liquid slug 
hits the facing wall of the contraction at t=0 and 
after this point, the velocity of the center of mass of 
the liquid slug and those of the front and tail of this 
slug as well as the pressure and velocity of the gas 
slug following the liquid slug would be monitored 
until the latter passes the contraction and reaches a 
steady state condition.       

 
Fig. 4. Schematic of two-phase slug flow in a 

microchannel facing a contraction. 
 
A brief algorithm of the present model is shown in 
Fig. 5. The gas slug pressure behind the target 
liquid slug is characterized by an equation of state. 
If the ideal gas assumption is assumed to apply on 
the gas slug, the pressure can be expressed as 

RTxxP )()(                 (34) 

The liquid slug’s center of mass location is 
determined by 
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where ρl and ml are liquid slug density and mass, 
respectively. Lf and L3 were defined in the 
schematic in Fig. 4. The center of mass velocity, uc, 
can be obtained by differentiating Eq. (35) with 
respect to time. Applying the continuity equation to 
the liquid slug, the front liquid slug velocity in the 
smaller pipe, uf, can be correlated to the center of 
mass velocity by this nonlinear relationship 
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When liquid slug is going through the contraction, 
the pressure in the vicinity of the front walls reaches 
values very close to the stagnation pressure. The 
actual integration of the numerical results (CFD 
modeling which is not presented in this paper) over 
this surface reveals that the average pressure on this 
wall is almost 94 percents of the stagnation pressure 
and slightly changes by changing the area ratio. 
However, for simplicity we have assumed that this 
pressure is the same as the stagnation pressure.  

On the other hand nonlinear shear forces act on the 
liquid slug. For laminar flows, the friction factor, f,  
is a sole function of the Reynolds number. For 
turbulent flow, which is the case here since the 
diameter is very small, the fully-rough wall 
assumption is appropriate. Thus, the Colebrook’s 
natural roughness function that is independent of 
the Reynolds number, have been used to describe 
the friction as 

)/log(214.1
1 D
f


                              (37) 

Conventional values of turbulent and laminar 
Reynolds numbers in two-phase slug flows may be 
questionable since there is no obvious length scale 
to define the Reynolds number. One can define it 
based on the diameter of the pipe while because the 
small length of the slugs (the same order of the 
diameter) one may prefer to define it based on the 
average length of the slugs. Moreover, it seems that 
if we fix our frame of reference on the moving 
slugs, because of the short length of the slugs, most 
or all of the slug length would be in the developing 
region. This indicates that the length of the slug 
plays an important role in slug flows. While this 
seems to be the case,  no one seems to have reported 
on the time-averaged values of the slug length. 

Because of this fact, even for laminar flow, since it 
is expected that for the most part the slug is located 
in the developing region in which the velocity 
gradient and consequently the overall friction factor 
are greater than what is expected from the parabolic 
velocity profile for laminar flows, Eq.(37) may 
present a closer approximation of the real friction 
factor for slug flows. 

As can be seen in the schematic figure and 
algorithm, since the net forces and moving 
mechanism are different before and after passing of 
the liquid slug tail from the contraction area, 
calculations should be performed separately for 
these regions (see the algorithm) 

As long as the liquid slug tail travels in the bigger 
pipe, the front velocity and the center of mass 
velocity will correlate well with Eq. (36) and the net 
force acting on the liquid slug can be calculated as 
follows: 

 
)()( 333113 fffave FLDFLDAPPF  

(38)
 

where Ff  is the wall shear stress, P is the variable 
gas slug pressure and Pave is the average pressure 
acting on the front face of the contraction. They can 
be calculated from the following equations:  
 

fflf ufuF 
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1
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(39)
 

 isave PPP  )1(3                (40)
 

In each time step, the liquid slug center of mass 
velocity can be calculated based on the momentum  
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Fig. 5. Summary of algorithm used for modeling the average void fraction in the vicinity of the flow 

area contraction. 
 

change and the net forces acting on the slug 
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where i, i+1, represent the current and next time 
steps, respectively. Then the front velocity, uf , 
would be obtained from Eq. 36 and the tail velocity 
can be easily found by u3(x)=σuf. With knowing the 
tail velocity, u3(x), the gas slug pressure can be 
calculated by finding the volumetric compression of 
the gas slug. Therefore, applying the equation of 
state for an ideal gas, the following correlation can 
be obtained 

))(/()( 33
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1 uudtL
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RTm
P i

f
igi  

 
             (42)

   

where mg is the gas slug mass (using the 
initially7D3 assumption for the gas slug length 
mentioned earlier). Since walls periodically wet and 
dry with the liquid and gas slugs, it is expected that 
for such a small diameter, the temperature of the gas 
slug would remain constant, hence, in developing 
Eq.(42), we have assumed that this process is 
almost isothermal. This seems to be valid for small 
compression ratios, but it may not be valid for cases 
that include phase change between vapor and liquid 
slugs where the mass of the gas slug would not be 
conserved anymore. These processes continue until 
the liquid slug tail passes the bigger diameter pipe 
and enters the smaller pipe. Then the net force 
acting on the liquid slug can be calculated from 

flj FLDAPPF 111)( 
              (43)

 

where Ll1 is the liquid slug length in the smaller 
pipe. Practically Pj is the gas slug pressure 
subsequent to the liquid slug; however, for 
simplicity since the gas slug length is very long in 

comparison with the diameter of the smaller pipe, it 
can be assumed that Pj is equal to the downstream 
pressure P1. So as we mentioned, calculation starts 
when the liquid slug hits the facing walls of the 
contraction at t=0 (s). At this stage Lf=0 (Figure 4) 
but the front velocity is uf=u3/σ and the tail velocity 
at this infinite small time is equal to u3 (boundary 
conditions).  

 

 
Fig. 6. Gas slug pressure, liquid center of mass 

velocity and liquid front velocity. 
 
Because the gas viscosity is much smaller than that 
of a liquid, the gas slug can travel through in the 
contraction rapidly while the liquid slug (having the 
higher momentum (Order (1000))) hits the front 
walls of the contraction and produces pressure 
waves that are directly transferred from the 
incompressible liquid slug to the gas slug and 
causes a phenomenon similar to that of a water 
hammer but with smaller magnitudes. This is 
because gas slugs are much more elastic than liquid 
slugs and this fact reduces the strength of the 
pressure waves. Water slugs pass through the 
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contraction with more restriction due to the larger 
friction and the smaller average pressure difference 
on both sides of the liquid slug (Eq. (43)). This 
causes a small chocking and reduction in the liquid 
slug velocity. On the other hand, the slugs that 
follow come with higher velocities and compress 
the gas slug behind the liquid slug passing through 
the contraction. The gas slug pressure, P, increases 
until the liquid slug completely gets inside the 
smaller pipe. Then the gas slug that follows, which 
has already been compressed, shoots the liquid slug 
in the smaller pipe. Because of this fact, the 
shooting speed of the liquid slug exceeds the steady 
state velocity of the downstream flow, which leads 
to a decrease in the pressure of the gas slug that 
follows, while the wall shear force is also affecting 
the slug motion. This spring-damper type (here 
spring behavior of gas slug is not linear) of 
oscillation may continue until the wall shear force 
damps this oscillation and the liquid slug velocity 
reaches the steady state condition of the 
downstream flow. 
 
This phenomenon can be seen in more detail in Fig. 
6. In this figure the liquid slug’s center of mass 
velocity, uc, slightly decreases at the initial stages 
due to the chocking (adverse front wall forces and 
excess shear forces) that was mentioned earlier. 
This reduction would be sharper for the smaller area 
ratios, σ. The liquid front velocity in the smaller 
pipe initially starts from the steady state value in the 
small pipe and decreases sharply due to the 
reduction of uc as well as the change in the center of 
mass position that is dynamically moving. After 
passing the contraction, both the slug’s center of 
mass velocity and the front velocity become equal 
after the oscillation to be damped by the wall 
friction. Since the pressure-volume relation and 
damping forces are not linear, none of these 
oscillations are sinusoidal in nature, thus, all the 
main frequencies can be extracted with a Fast 
Fourier Transform algorithm.  
 
To find the gas void fraction at the vena contracta, 
knowing the location of the vena contracta is 
important. Although extensive experimental 
studies have been reported on air-water two-phase 
flows in mini and microchannels, there seems to 
still exist considerable discrepancies, largely due 
to the difficulties in experimental setup and 
measurements (Kandlikar, 2002 and He and 
Kasagi, 2008). To understand the detailed physics 
of slug flow in microchannels, advanced 
numerical simulations were performed to help 
develop a more precise analytical model. 
Numerical studies on single-phase air-water flows, 
showed that for turbulent water flow the position 
of the minimum cross sectional area (due to the 
vena contracta) occurs at 0.25D1 downstream of 
the sudden contraction (this number for laminar 
flow is 0.15D1) and the minimum cross sectional 
diameters are 0.85D1 and 0.92D1 for turbulent and 
laminar flow, respectively. The conventional 
definition of the slip ratio is the ratio of the time-
averaged value of the gas phase velocity to the 
liquid phase velocity. For a small pressure drop it 
is common practice that the compressibility effects 

be neglected. However, this assumption is not 
valid in the vicinity of the contraction where the 
pressure gradient is significant. Especially in two-
phase flows the density ratio between phases is 
typically in the order of 1000 and all changes take 
place in considerably shorter distances, thus, the 
variation of the gas density could not be neglected. 
With this analytical model the length of liquid and 
gas slugs can be determined at any time. 
Therefore, if compressibility effects of the gas 
slug were taken into account, the time-averaged 
void fraction in the vena contracta may be 
expressed by the time averaging of the volume of 
the gas slug. 
 
Time-averaged void fraction of the gas slug in the 
vicinity of the vena contracta location (x=0.25D1) 
can be calculated from  
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(44) 

 
where VG and Vf are the gas and liquid slug 
volumes, respectively. Time starts when the gas-
liquid interface reaches the vena contracta location, 
while t2 corresponds to the time that the tail of the 
two liquid and gas slugs that follow pass the vena 
contracta location. 
2.6   New Pressure Drop Model for Slug 
Flow through a Contraction in 
Microchannels 

Pressure drop across sudden contraction for two-
phase flow assuming overall long and short slug 
flow regimes can be determined by the same 
concept that was used for the singular pipe. Pressure 
drop through the contraction for a single-phase flow 
can be found using Eq.(32).  So for the flat velocity 
profile which is a reasonable assumption for slug 
flow in an α portion of time, the pressure drop is 
due to the gas phase motion, and in (1- α) portion of 
time, the pressure drop is due to the liquid phase 
motion, so the time-averaged pressure drop can be 
written as 
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(45) 

where Cc was defined in Eq. (27) and u1 is velocity of 
slugs in the smaller pipe. This was defined in Eq. (4) 
and α is the void fraction in the vicinity of the vena 
contracta, which can be found from the new 
analytical model of averaged void fractions presented 
in the previous section. It is well known that void 
fraction values around the vena contracta controls 
the pressure drop. Different empirical void fraction 
models can be found in the literature; however each 
model is valid for a specific regime or experimental 
condition. Moreover, these models are tuned for 
straight pipe flows. As mentioned earlier, for the 
sudden area change it is common to use one of those 
correlations to find an expression that makes a better 
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fit for the experimental data (see Chalfi and 
Ghiaasiaan, 2008, Abdelall et al., 2005, Kawahara et 
al., 2002, Hewitt et al.,  1993, and Collier, 1972). So, 
a good amount of the previous work is practically 
based on curve fitting of existing void fraction or slip 
ratio correlations for the straight pipe to the 
experimental data associated with the flow in 
contractions. However, the one-dimensional model 
discussed in the previous section showed that the gas 
phase accelerates quicker than the liquid phase in a 
sudden contraction due to the lower density and wall 
shear forces. These analyses led to introducing a new 
model for the void fraction in the vicinity of the 
contraction. In the following, results of the new 
models for void fraction and pressure drop (Eq. (45)) 
will be compared to the conventional models and 
experimental data. 

Abdelall et al.’s (2005) experimental data were 
used for evaluating the model in this paper. In 
their experiment, Abdelall et al. (2005) 
determined the pressure drop using linear 
interpolation of the pressure data up and 
downstream of the contraction (Fig. 3). Two-phase 
regime maps in microchannels are slightly 
different than those of macrochannels mainly due 
to the larger surface tension effects and the 
reduced gravitational forces.  Kawahara et al. 
(2002) studied the flow regime map for a 100 µm 
diameter pipe and compared it to other available 
maps for microchannels. The closest map to 
Abdelall et al.’s (2005) test rig is the test case of 
Tripllet et al. (1999) whose data were obtained for 
a 1.1 mm diameter tube (close to the average 
diameter of Abdelall et al.’s test rig). Therefore, it 
is expected that Fig. 7 would show the overall 
flow regime map of this case study. It can be seen 
that all of the data in the bigger pipe (upstream of 
the contraction) are in the slug or ring-slug flow 
modes, which makes them more appropriate for 
our model. The downstream regime, on the other 
hand, is in multiple zones, which means that all 
bubbly, ring-slug, slug annular, churn, annular and 
slug flows can be observed and our model for the 
slug flow may not be appropriate. However, since 
there is a transitional process for regime change 
and we are just looking to examine the vena 
contracta location, which is located a short 
distance downstream of the contraction, it can be 
expected that the flow regime would not change 
from the initial slug regime state to a completely 
multiple zone regime in this short distance. Also, 
even if it changes, since we are time averaging 
void fractions through the contraction process, the 
side effects of this issue would be damped with 
this integration. 

Fig. 8, shows the relation between the void fraction 
α and homogenous void fraction β (slip ratio S=1) 
using different models for α and/or slip ratio, S. 
Armand (1946) proposed α=0.833 β for the 
conventional tube.  

Based on the experimental data of a 100 µm 

diameter tube Kawahara et al. (2002) introduced the 

following equation:
  

 
Fig. 7. Two-phase flow regime map for a 1.1 mm 

diameter tube, Triplett et al. (1999) Bold big 
circles are Abdelall et al.’s (2005) data which 
were used for the analytical model (Hollow 

big bold circles are for the larger 
diameter pipe and solid big bold 

circles are for the smaller 
diameter pipe). 
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For the annular flow when the minimum entropy 

generation rule is applied, Zivi (1964) introduced 

the following expression for the slip ratio  
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where c=0.7 in the modified model. If curve fitting 
were to apply on the data points to minimize the 
error in the pressure drop using the presented model 
in Eq. (45), the following correlation can be 
proposed for the average void fraction in the 
vicinity of the contraction area for β>0.4 
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(48)      

All of the above correlations (except the curve fit) 
were tuned for the straight pipe flow. However, the 
new analytical model for the void fraction 
(Equations 34 to 45) was obtained based on the slug 
and semi-slug flow assumptions in which the void 
fraction dynamically changes in the transitional area 
due to the difference in acceleration or deceleration 
of each phase 

Calculated averaged void fractions with the 
proposed dynamic model are shown in Fig. 8. As 
can be seen, for this area ratio and flow conditions, 
the data correlate well in the high volume-fraction 
region and correlate well with the Armand 
correlation for the smaller volume–fraction region. 
Moreover, against the other models, the dynamic 
model’s data are not on a line or a special curve and 
the data depend on the flow conditions as well as 
the geometrical constrains. It is interesting that the 
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results of the new analytical model show 
outstanding agreement with the experimental curve 
fit, so it seems that it can describe the physics of 
this phenomenon quite well.   

 

 
Fig. 8. Relationship between homogeneous void 
fraction and void fraction for different models 

in the vicinity of the flow area contraction. 
    

 
Fig. 9 (a). Comparison of six void fraction 

models (New analytical model). 
 
 

 
Fig. 9 (b). Comparison of six void fraction 

models (Armand’s correlation). 

 
Fig. 9 (c). Comparison of six void fraction 

models (Kawahara et al.’s correlation). 
 

 
Fig. 9 (d). Comparison of six void fraction 

models (Homogeneous model). 
 

 
Fig. 9 (e). Comparison of six void fraction 

models (Pure curve fit of experimental data). 
                               
Fig. 9 illustrates a comparison of different models 
with the experimental data for the pressure drop 
across the sudden contraction in microchannels. 
Before taking a look at the details, it can be seen 
that all of six figures show the robustness of Eq. 
(45) for slug flows. If we compare the maximum 
error in these figures with the latest conventional 
models (Eq. (26)), that were applied by Chalfi and 
Ghiaasiaan (2008) and Abdelall et al. (2005) who 
reported 500% error for the homogenous model and 
100% error for the slip flow models, the robustness 
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of the proposed model for pressure drop should be 
clear. These figures show that the presented model 
(Eq.(45)) is robust enough that the maximum error 
would not exceed than 310% (for the homogenous 
model) regardless of what model is used to calculate 
the void fraction, α, at the vena contracta   location. 

 

 
Fig.9 (f). Comparison of six void fraction models 

(Zivi’s correlation). 
 
 

 
Fig. 10. Nondimentional pressure drop versus 

two-phase Reynolds number for the 
experimental data of Abdelall 

et al. (2005). The constant 
void fraction lines are 

also shown here. 
 
In Fig. 9(d), it can be seen that the homogenous 
model has the worst accuracy. The error in the 
Kawahara et al.’s correlation in Fig. (9)b is also 
significant. Chalfi and Ghiaasiaan (2008) and 
Abdelall et al. (2005) reported 100% error for the 
pressure drop using Zivi’s model for α using the 
conventional model for the pressure drop, however, 
in Fig. 9.f it can be seen that Eq. (45) could reduce 
the maximum error to 50%.    
 
Armand’s correlation in Fig. 9(b) which was used 
by Chalfi and Ghiaasiaan (2008) and Abdelall et al. 
(2005) and was their most accurate model which 
showed 30% error, with the presented model shows 
20% error. 
 
With a curve fit and tuning based on the 
experimental data defined by Eq. (48), the error in 

the presented model can be reduced to 8% which is 
shown in Fig. 9€.  
 
As was mentioned earlier, all of the above 
models are either based on the empirical model or 
the homogenous model and more importantly 
they were tuned for the straight pipe flow. But the 
new purely analytical model for the void fraction 
could have a good agreement with experimental 
data (see Fig. 9(a). After curve fitting the data 
(Fig. 9.e) this analytical model has the second 
most accurate prediction and reduced error to 
20%.  More importantly, since this is an 
analytical model, all changes in the flow 
properties and different geometrical constrains 
can also be monitored and studied. Furthermore, 
it can provide better understanding of the physics 
taking place in slug flows facing the contraction 
that were harder to study before using the more 
conventional models.  
 
 
Pressure drop in nondimensional form versus the 
two-phase flow Reynolds number can be seen in 
Fig. 10. Nondimensionalization is obtained based 
on the new correlation introduced in Eq.(45) in 
which Eq.(48) is used to define the gas void 
fraction, α, in the vicinity of the contraction along 
with the total mass flux, G. So, the 
nondimensional pressure drop is defined as 
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While the two-phase Reynolds number is defined as 
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It can be seen that all nondimensional values of the 
pressure drop are in the range between 0.945 and 
1.16 (close to unity). Also the data are showing a 
weak function of the two-phase Reynolds number 
which indicates that this nondimensional parameter 
for the pressure drop is the main nondimensional 
parameter. To have more precise prediction of the 
pressure drop, some curves can be introduced to 
distinguish the data based on their void fraction 
values. It can be seen that for any given two-phase 
Reynolds number there are two possible regions for 
the nondimensional pressure drop. This may come 
from the fact that for any given two-phase Reynolds 
number in reality there are two different gas-liquid 
slug lengths. The smaller length of liquid slug 
corresponds to the larger pressure drop and vice 
versa. So it seems that with additional experimental 
data about the slug length, the pressure drop in slug 
flows in microchannels can be more precisely 
predicted to even have better accuracy than the 
current accuracy (8% error). So to achieve this goal 
many experiments should be conducted on the slug 
lengths. 
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3. CONCLUSIONS 

In this paper a new analytical model for void 
fraction calculation was developed. The model 
revealed some important phenomena that are 
occurring in two-phase slug flows through a sudden 
area contraction.  Against the previous models 
which used slip ratio correlations of straight pipes 
for the flow in the contraction, the new model 
directly tackled this problem and provided accurate 
predictions of the void fraction. Moreover, based on 
the new model, we were able to find the value of the 
real void fraction in the vicinity of the vena 
contracta, which helped to develop another 
correlation for the pressure drop in two-phase slug 
flows through the area contraction. Results showed 
excellent progress in pressure drop prediction. This 
new model could reduce the minimum (60%) and 
maximum (500%) errors of the more conventional 
models to a minimum of 8% and a maximum of 
310%.   
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