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ABSTRACT

Investigation of unsteady MHD natural convection flow through a fluid-saturated porous medium of a
viscous, incompressible, electrically-conducting and optically-thin radiating fluid past an impulsively moving
semi-infinite vertical plate with convective surface boundary condition is carried out. With the aim to
replicate practical situations, the heat transfer and thermal expansion coefficients are chosen to be constant
and a new set of non-dimensional quantities and parameters are introduced to represent the governing
equations along with initial and boundary conditions in dimensionless form. Solution of the initial boundary-
value problem (IBVP) is obtained by an efficient implicit finite-difference scheme of the Crank-Nicolson type
which is one of the most popular schemes to solve IBVPs. The numerical values of fluid velocity and fluid
temperature are depicted graphically whereas those of the shear stress at the wall, wall temperature and the
wall heat transfer are presented in tabular form for various values of the pertinent flow parameters. A
comparison with previously published papers is made for validation of the numerical code and the results are
found to be in good agreement.

Keywords: Unsteady MHD natural convection flow; Convective surface boundary condition; Porous
medium; Optically thin fluid; Non-similar solution.

NOMENCLATURE

pc specific heat at constant pressure

g acceleration due to gravity,

rcG convective Grashof number

fh heat transfer coefficient

k thermal conductivity

pcK permeability parameter

pK  permeability of the porous medium
2
cM magnetic parameter

rP Prandtl number

rq  radiative flux vector

cR radiation parameter

T fluid temperature

fT hot fluid temperature

T free stream temperature

,u v  velocity components

u, v dimensionless velocity components
,x y  cartesian coordinates

x, y dimensionless coordinates

  Thermal expansion coefficient
 kinematic coefficient of viscosity

 fluid density

 electricalconductivity

1. INTRODUCTION

Generally, in all the problems of fluid dynamics,
unsteady flow is a natural phenomenon and steady
state models are just simplifications of the real
situation. Therefore, the investigation of unsteady

Magnetohydrodynamic (MHD) flows is significant
from practical point of view because fluid transients
may be expected at the start-up time of many
industrial processes and devices viz. electromagnetic
stirring of molten metal, forging, casting and
levitation processes, MHD energy generators, MHD
pumps, MHD accelerators, MHD flow-meters,
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controlled thermonuclear reactors, etc. Keeping in
mind the importance of such studies, considerable
amount of investigations are carried out by a number
of researchers on unsteady hydromagnetic natural
convection flow past a flat plate through fluid
saturated porous medium considering various
aspects of the problem. A reference may be made to
the research studies of Raptis (1986), Jha (1991),
Chamkha (1997), Chamkha and Ahmed (2011),
Eldabe et al. (2012), Samiulhaq et al. (2013), Das et
al. (2014), Ghosh et al. (2015) and Seth et al.
(2015a, b).

Nowadays hydromagnetic natural convection flows
considering radiative heat transfer is a topic of much
significance because thermal radiation plays an
important role in the design of nuclear power plants,
gas turbines, flight propulsion systems, automobile
engines, high temperature heat exchangers and
combustion chambers, which operate at elevated
temperatures, in order to gain thermal efficiency
(Howell et al., 2010). Besides, in several industrial
processes viz. formation and tempering of glass,
steel rolling, extraction of metals, semiconductor
wafer processing and growth of crystals, the quality
of the final product depends to a great extent on the
heat controlling factors, and the knowledge of
radiative heat transfer in the system may likely lead
to a desired product with sought qualities. England
and Emery (1969) were one of the premier
investigators to study the effects of thermal radiation
of an optically thin gray gas on the laminar free
convection flow past a stationary vertical plate.
Bestman and Adjepong (1988) investigated unsteady
hydromagnetic free convection flow with radiative
heat transfer of an optically thin fluid in a rotating
system. Chamkha et al. (2001) considered laminar
free convection flow of air past a semi-infinite
vertical plate in the presence of chemical species
concentration and thermal radiation using the
optically thin limit for a gray-gas near equilibrium.
Raptis et al. (2003) studied the effects of thermal
radiation on hydromagnetic free convection flow of
an optically thin fluid past an infinite vertical plate.
Raptis (2011) investigated oscillatory natural
convection heat and mass transfer flow past a porous
plate in the presence of radiation for an optically thin
fluid. Seth et al. (2014) investigated unsteady MHD
natural convection flow with heat and mass transfer
of an optically thin fluid past an impulsively moving
vertical plate in the presence of radiation and
chemical reaction.

It is well known that the heat transfer characteristics
of natural convection boundary layer flows are
strongly dependent on the thermal boundary
conditions. Most common heating processes
specifying the wall-to-ambient temperature
distributions are, usually, prescribed surface
temperature distributions or prescribed surface heat
flux distributions. Therefore, considerable amount of
research works pertaining to these flows are
available in the literature (Bejan, 1993; Gebhart et
al. 1998) considering wide range of wall conditions
and various fluid properties. However, there exists a
class of thermal boundary conditions in which the
surface heat flux depends on the local surface

temperature. Usually, this situation arises in
conjugate heat transfer problems when there is an
interaction between the convective fluid and
conduction through the bounding wall (Merkin and
Pop, 1996), and, when there is Newtonian heating of
the convecting fluid from the surface i.e. conjugate
convective flow (Merkin, 1994). Another
configuration, often arising in practical systems, is
convective heat transfer for the Blasius flow with
convective surface boundary condition, which is
primarily investigated by Aziz (2009). It may be
noted that conjugate/convective thermal boundary
conditions are known to appear in numerous
instances of the problems in science and engineering
viz. optimization of turbine blade cooling systems
(Nowak and Wróblewski, 2011), design of efficient
heat exchangers (Zhang, 2013), combustion in gas
turbines (Lefebvre, 1998), convective flows set up
where the bounding surfaces absorb heat by solar
radiation (seasonal thermal energy storage systems),
etc. Therefore, a promising sense of applicability
and the classic paper by Aziz (2009) prompted
several researchers to investigate boundary layer
flows with convective surface boundary condition
considering various aspects of the problem. Mention
may be made of the research studies of Ishak (2010),
Khan and Gorla (2010), Makinde and Aziz (2010,
2011), Rahman (2011), Magyari (2011), Butt et al.
(2012), Ferdows et al. (2013), Lok et al. (2013).
However, in all the research works pertaining to
convective surface boundary condition as mentioned
above, the convective heat transfer coefficient
associated with the hot surface is assumed to be a
function of x (where x measures distance from the
leading edge) so that the problems accept similarity
solution. But the assumption of heat transfer
coefficient to be a function on x implies that heat
transfer coefficient varies along the plate surface
which is unrealistic. In this regard, Merkin and Pop
(2011) presented a non-similar solution of the
Blasius flow with convective heat transfer by
considering heat transfer coefficient to be a constant
which is well-suited for real fluids. Merkin et al.
(2013) investigated mixed convection boundary
layer flow past a vertical surface in a porous medium
with a constant convective boundary condition.
Pantokratoras (2014) extended of the work of
Merkin et al. (2013) to a Darcy–Brinkman porous
medium.

Although there have been a lot of investigations
pertaining to convective heat transfer problems, yet,
so far no researcher has reported the study of
unsteady hydromagnetic natural convection flow of
a radiating fluid past an impulsively moving vertical
plate with convective heating assuming constant
heat transfer coefficient and constant thermal
expansion coefficient: a problem which is of utmost
importance from practical point of view. It may be
noted that the governing equations for natural
convection fluid flow problems are based on
Boussinesq approximations. It is well known that the
Boussinesq approximation is based on the
assumption that fluid thermal expansion coefficient
is constant and is equal to that of ambient fluid
(Bejan, 1993; Schlichting and Gersten, 2000).
Therefore, in view of the above, we propose to
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investigate unsteady hydromagnetic natural
convection flow of a viscous, incompressible,
electrically conducting and optically thin radiating
fluid past an impulsively moving semi-infinite
vertical plate with convective heating embedded in a
fluid saturated porous medium. Non-similar solution
to the initial boundary value problem (IBVP) is
obtained using an implicit finite difference scheme
of Crank-Nicolson type (Bapuji et al., 2008) which
is a very popular scheme due to its stability and
consistency.

2. FORMULATION OF THE
PROBLEM

Consider unsteady hydromagnetic natural
convection flow of an electrically conducting,
viscous, incompressible and optically thin radiating
fluid past a semi-infinite vertical plate embedded in
a fluid saturated porous medium. Coordinate system
is chosen in such a way that x - axis is considered
along the plate in upward direction and y - axis
normal to plane of the plate in the fluid. A uniform
transverse magnetic field 0B is applied in a

direction which is parallel to y - axis. Initially i.e. at

time 0t  , both the fluid and plate are at rest and

are maintained at a uniform temperature T . At

time 0t  , plate starts moving in x - direction with

uniform velocity 0U in its own plane and the right

hand surface of the plate is heated by convection
from a hot fluid with uniform temperature fT 

( fT T  ) which provides a constant heat transfer

coefficient fh . Physical model of the problem is

presented in Fig. 1. No applied or polarized voltages
exist so the effect of polarization of fluid is
negligible. This corresponds to the case where no
energy is added or extracted from the fluid by
electrical means (Cramer and Pai, 1973). It is
assumed that the induced magnetic field generated
by fluid motion is negligible in comparison to the
applied one. This assumption is justified because
magnetic Reynolds number is very small for liquid
metals and partially ionized fluids which are
commonly used in industrial applications (Cramer
and Pai, 1973).

Fig. 1. Physical model of the problem.

Keeping in view the assumptions made above, the
mathematical model for unsteady hydromagnetic
natural convection flow of a viscous,
incompressible, electrically conducting and optically
thin radiating fluid past a semi-infinite vertical plate
with convective heating in a fluid saturated porous
medium, under Boussinesq approximation, is given
by
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subject to following initial and boundary conditions

0 : 0, for 0,t u v T T y          (4a)
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0, asu T T y      (4c)

where
, , , , , , , , , , andp r pu v g T c k q K         are,

respectively, fluid velocity in x -direction, fluid
velocity in y -direction, kinematic coefficient of

viscosity, fluid density, electrical conductivity,
acceleration due to gravity, thermal expansion
coefficient, fluid temperature, specific heat at
constant pressure, thermal conductivity of fluid,
radiative flux vector and permeability of porous
medium.

In the case of an optically thin fluid the local radiant
absorption (Raptis, 2011) is expressed as:

 * * 4 44rq
a T T

y
 

    


(5)

where *a is absorption coefficient and * is
Stefan-Boltzmann constant.

It is assumed that the temperature difference within
the fluid flow is sufficiently small such that fluid
temperature 4T may be expressed as a linear
function of the temperature. This is accomplished by
expanding 4T in a Taylor series about free stream
temperature T . Neglecting second and higher order

terms in series, 4T is expressed as

4 3 44 3 .T T T T      (6)

Making use of Eqs. (5) and (6) in Eq. (3), we obtain
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In order to represent equations (1), (2) and (7) in
dimensionless form, we introduce the following
dimensionless quantities and parameters
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where andr rcP G are, respectively, Prandtl number

and convective Grashof number (Pantokratoras,
2014). 2 , andc pc cM K R are, respectively, magnetic

parameter, permeability parameter, radiation
parameter for convective surface boundary condition
which are introduced in this paper for the first time.

Equations (1), (2) and (7) with the help of non-
dimensional quantities and parameters defined in (8)
assume the following form
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Initial and boundary conditions (4a) to (4c), in non-
dimensional form, are given by

0 : 0 for 0,t u v T y     (12a)
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(12b)

0, 0 asu T y   (12c)

3. NUMERICAL SOLUTION

The set of non-linear coupled equations (9) to (11)
subject to the initial and boundary conditions (12a)
to (12c) are solved numerically using an implicit
finite difference technique of Crank-Nicolson type
as described by Soundalgekar and Ganesan (1981),
Muthukumarswamy and Ganesan (1998) and Bapuji
et al. (2008). It is well known that the boundary
layer thickness changes along x (Merkin and Pop,
2011). Therefore, the calculation domain must be
wider than the momentum and thermal boundary
layer thicknesses to ensure greater accuracy. For the
present problem we have considered xmax=12, ymax=8

(corresponding to y   ). The finite difference
equations for each time step constitute a tridiagonal
system of equations which are solved by Thomas
algorithm (Carnahan et al., 1969). Numerical
solutions for the fluid temperature and fluid velocity
are obtained corresponding to desired degree of
accuracy for the required time by performing
computations for a number of time steps. This is a
well-established method for finding solution of any
problem which is parabolic in nature and has been
widely used to find accurate results by researchers
and scientists in this field. Also, the stability and
convergence of the scheme is analyzed in detail by
Muthukumarswamy and Ganesan (1998) and Bapuji
et al. (2008). Therefore, we skip these portions to
avoid repetition.

Non-dimensional wall shear stress and non-
dimensional wall heat transfer are expressed as:
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3.1 Validation of Numerical Solution

In order to verify the correctness of our numerical
results we have first applied our numerical scheme
to the problem considered by Merkin and Pop
(2011) and have compared our results with those of
Merkin and Pop (2011) which are provided in
tabular form by Pantokratoras (2014). For the sake
of comparison we have considered steady flow past
a stationary plate inside moving free stream in the
absence of magnetic field, thermal buoyancy force,
porous medium and thermal radiation. In our
numerical scheme steady state solution is reached
for large value of time t (i.e. t=7) when it was found
that the absolute difference between the numerical
values of fluid temperature and fluid velocity
obtained for two consecutive time steps is less than

610 . A comparison is made between the values of
wall temperature T(0) computed in this paper with
the values of Merkin and Pop (2011) and
Pantokratoras (2014).  These values of wall
temperature are presented in tabular form in Table 1.

Table 1 Validation of numerical code by
comparing values of wall temperature taking

1rP 

x

T(0)
Merkin
and Pop
(2011)

T(0)
Pantokratoras

(2014)

T(0)
Present

code

0.001 0.062 0.062 0.062

0.124 0.457 0.446 0.455

1.867 0.784 0.780 0.783

8.335 0.895 0.892 0.892

110.335 1.0 0.970 0.985

It is perceived from Table 1 that the numerical
values of wall temperature T(0) obtained through
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our numerical scheme are in a good agreement with
the values of Merkin and Pop (2011) and
Pantokratoras (2014). This favorable comparison
lends confidence and justifies the correctness of the

results to be presented subsequently.

4. RESULTS AND DISCUSSION

In order to analyze the effects of the magnetic field,
thermal buoyancy force, permeability of the
medium, radiation, thermal diffusivity and time on
the flow field, the numerical solution of the fluid

velocity  ,u t is depicted graphically versus the

boundary layer coordinate  in Figs. 2 to 7 for

various values of the magnetic parameter 2
cM ,

convective Grashof number rcG , permeability

parameter pcK , radiation parameter cR , Prandtl

number rP and time t. It is revealed from Figs. 2 to 7

that, the fluid velocity is maximum at the surface of
the plate and it decreases uniformly upon increasing
the boundary layer coordinate  to approach the
free stream value.

Fig. 2. Velocity profiles when Grc=10, Kpc=0.4,
Rc=2, Pr=0.71, x=1 and t=0.3.

Fig. 3. Velocity profiles when , Kpc=0.4,
Rc=2, Pr=0.71, x=1 and t=0.3.

It is revealed from Fig. 2 that u decreases by
increasing 2

cM throughout the boundary layer

region. 2
cM signifies the relative strength of the

magnetic force to the viscous force, 2
cM increases

upon increasing the strength of the magnetic force.
This implies that the magnetic field tends to retard
the fluid flow throughout the boundary layer region.
This phenomenon is attributed to the Lorentz force,
induced due to the movement of an electrically-
conducting fluid in the presence of a magnetic field,
which has a tendency to resist the fluid motion.

Fig. 4. Velocity profiles when , Grc=10,
Rc=2, Pr=0.71, x=1 and t=0.3.

It is evident from Fig. 3 that u increases upon
increasing rcG throughout the boundary layer

region. rcG represents the relative strength of the

thermal buoyancy force to the viscous force,

rcG increases upon increasing the strength of the

thermal buoyancy force. This implies that the
thermal buoyancy force tends to accelerate the fluid
flow throughout the boundary layer region. It is
perceived from Fig. 4 that u increases as pcK

increases. It may be noted that an increase in pcK

implies that there is a decrease in the resistance of
the porous medium. Due to this reason, the
permeability of the medium tends to accelerate the
fluid flow throughout the boundary layer region. It is
observed from Fig. 5 that u decreases upon
increasing cR throughout the boundary layer region.

This implies that the thermal radiation tends to
retard the fluid flow for an optically-thin fluid. It is
noticed from Fig. 6 that u decreases upon increasing

rP throughout the boundary layer region. rP is a

measure of the relative strength of the viscosity to
thermal diffusivity of the fluid and
therefore, rP decreases upon increasing the thermal

diffusivity. It is widely known that natural
convection flow is induced in a fluid with low
Prandtl number. If the Prandtl number decreases,
then the strength of the thermal buoyancy force
increases due to the thermal diffusion which tends to
accelerate the fluid flow throughout the boundary
layer region. Fig. 7 reveals that u increases upon
increasing t throughout the boundary layer region.
This implies that the fluid velocity gets accelerated
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with the progress of time.

Fig. 5. Velocity profiles when , Grc=10,
Kpc=0.4, Pr=0.71, x=1 and t=0.3.

Fig. 6. Velocity profiles when , Grc=10,
Kpc=0.4, Rc=2, x=1 and t=0.3.

Fig. 7. Velocity profiles when , Grc=10,
Kpc=0.4, Rc=2, x=1 and Pr=0.71

In order to investigate the effects of radiation,
thermal diffusion and time on the temperature field,

numerical solutions for the fluid temperature  ,T t
are depicted graphically versus the boundary layer
coordinate  in Figs. 8 to 10 for various values of

cR , rP and t taking 2 4cM  , 10rcG  and

0.4pcK  . It is revealed from Figs. 8 to 10 that the

fluid temperature is maximum at the surface of the
plate and it decreases uniformly upon increasing the
boundary layer coordinate  to approach the free
stream value. Figs. 8 to 10 show that the fluid
temperature T decreases upon increasing either cR

or rP whereas it increases upon increasing t.

Fig. 8. Temperature profiles when Pr=0.71, x=1
and t=0.3.

Fig. 9. Temperature profiles when Rc=2, x=1 and
t=0.3.

Fig. 10. Temperature profiles when Rc=2, x=1
and Pr=0.71.

This implies that the thermal diffusion tends to
enhance the fluid temperature whereas thermal
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radiation has a reverse effect on it. The fluid
temperature enhances with the progress of time and
it gradually attains the steady-state value for large
time i.e. t>1.5.

Figures 11 and 12 demonstrate the variation of the
fluid velocity and the fluid temperature for different
values of the distance x (where x is the distance
along the surface measured from the leading edge).
It is seen from Figs. 11 and 12 that as x increases,
the velocity and temperature profiles become steeper
near the surface of the plate. This implies that the
momentum and thermal boundary layer thicknesses
decrease along the distance from the leading edge
which is in agreement with the results obtained by
Pantokratoras (2014).

Fig. 11. Velocity profiles when , Grc=10,
Kpc=0.4, Rc=2, Pr=0.71 and t=0.3

Fig. 12. Temperature profiles when ,
Grc=10, Kpc=0.4, Rc=2, Pr=0.71 and t=0.3.

However, it is observed from Fig. 11 that the fluid
velocity decreases uniformly starting from its
maximum value at the plate surface which is not seen
in the velocity profiles presented by Pantokratoras
(2014) (where the velocity profiles attain maximum
value near the plate but not at the plate). This nature
of velocity profile in the present problem is due to the
flow of an electrically-conducting fluid in the
presence of a magnetic field whose tendency is to
retard the fluid flow by virtue of the Lorentz force
which tends to stabilize the fluid motion.

The non-dimensional wall temperature  0, T t and the

non-dimensional wall heat transfer  0, T t are the

most important entities in the problems concerning
convective surface boundary conditions because the
wall temperature although not known a priori, but it
plays a key role in inducing natural convection due to
the difference between wall temperature and the
ambient fluid temperature. Therefore, we present the

numerical values of  0, T t and  0, T t in tabular

form in Table 2 for various values of
2, , , , , andc r c rc pcR P x t M G K in order to study the

effects of various agencies on them. It is evident from

Table 2 that  0, T t decreases upon increasing

, , andc r rc pcR P G K whereas it increases upon

increasing 2and ct M .  0, T t increases upon

increasing , , andc r rc pcR P G K whereas it decreases

upon increasing 2and ct M . Both  0, T t and  0, T t

increase upon increasing x. This implies that the
thermal radiation, thermal buoyancy force and the
permeability of the medium tend to reduce the wall
temperature whereas these parameters have the
reverse effect on the wall heat transfer. The magnetic
field and the thermal diffusion tend to enhance the
wall temperature whereas they have the reverse effect
on the wall heat transfer. As we move along the
leading edge, the wall temperature and the wall heat
transfer become enhanced. The wall temperature gets
enhanced and the wall heat transfer gets reduced with
the progress of time.

The numerical values of the wall shear stress

 0,u t are presented in tabular form in Table 3 for

various values of 2 , , , , , andc rc pc c rM G K R P x t . It is

noticed from Table 3 that  0,u t increases upon

increasing 2, , andc c rx M R P whereas it decreases upon

increasing , andrc pcG K t . This implies that the

magnetic field and the thermal radiation tend to
enhance the wall shear stress whereas the thermal
diffusion, thermal buoyancy force and the permeability
of the medium have the reverse effect on it. The wall
shear stress increases along the distance from the
leading edge and it reduces with the progress of time.

5. CONCLUSION

A non-similar solution to the fundamental problem
concerning unsteady hydromagnetic natural
convection flow through a fluid-saturated porous
medium of a viscous, incompressible, electrically-
conducting and optically-thin radiating fluid past an
impulsively-moving semi-infinite vertical plate with
a convective surface boundary condition is obtained
using an efficient implicit finite-difference scheme
of the Crank-Nicolson type. Significant findings are
predicted and they are summarized as follows:

 The momentum and thermal boundary layer
thicknesses decrease along the distance from the
leading edge.
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Table 2 Wall Temperature and Wall heat transfer

cR rP x t 2
cM rcG pcK (0, )T t  0,T t

2 0.71 0.5 0.3 4 10 0.4 0.39842 0.43518
5 0.71 0.5 0.3 4 10 0.4 0.34222 0.48589
8 0.71 0.5 0.3 4 10 0.4 0.30362 0.52166
2 0.3 0.5 0.3 4 10 0.4 0.50865 0.35285
2 0.5 0.5 0.3 4 10 0.4 0.44254 0.40188
2 1 0.5 0.3 4 10 0.4 0.35710 0.46691
2 0.71 0.05 0.3 4 10 0.4 0.32938 0.15239
2 0.71 1 0.3 4 10 0.4 0.39861 0.61523
2 0.71 10 0.3 4 10 0.4 0.40273 1.97847
2 0.71 0.5 0.5 4 10 0.4 0.43022 0.41339
2 0.71 0.5 0.7 4 10 0.4 0.44312 0.40443
2 0.71 0.5 0.7 1 10 0.4 0.43873 0.40718
2 0.71 0.5 0.7 7 10 0.4 0.44523 0.40313
2 0.71 0.5 0.7 4 5 0.4 0.44478 0.40341
2 0.71 0.5 0.7 4 15 0.4 0.44116 0.40564
2 0.71 0.5 0.7 4 10 0.2 0.44497 0.40329
2 0.71 0.5 0.7 4 10 0.8 0.44166 0.40533

Table 3 Wall shear stress
2
cM rcG pcK cR rP x t  0,u t

1 10 0.4 2 0.71 1 0.3 1.02719
4 10 0.4 2 0.71 1 0.3 1.72580
7 10 0.4 2 0.71 1 0.3 2.30646
4 5 0.4 2 0.71 1 0.3 2.14879
4 15 0.4 2 0.71 1 0.3 1.30282
4 10 0.2 2 0.71 1 0.3 2.21610
4 10 0.8 2 0.71 1 0.3 1.45187
4 10 0.4 5 0.71 1 0.3 1.88720
4 10 0.4 8 0.71 1 0.3 1.99922
4 10 0.4 2 0.3 1 0.3 1.30325

4 10 0.4 2 0.5 1 0.3 1.56344

4 10 0.4 2 1 1 0.3 1.86901
4 10 0.4 2 0.71 0.05 0.3 1.03608
4 10 0.4 2 0.71 0.5 0.3 1.22089
4 10 0.4 2 0.71 10 0.3 5.50286
4 10 0.4 2 0.71 1 0.5 1.51218
4 10 0.4 2 0.71 1 0.7 1.41621

 The thermal buoyancy force, permeability of the
porous medium and the thermal diffusion tend to
accelerate the fluid flow throughout the boundary
layer region whereas the magnetic field and the
thermal radiation have the reverse effect on it.

 The fluid flow gets accelerated and the fluid
temperature becomes enhanced with the progress
of time.

 Thermal diffusion tends to enhance the fluid
temperature whereas thermal radiation has the
reverse effect on it.

 The thermal radiation, thermal buoyancy force and
the permeability of the porous medium tend to
reduce the wall temperature whereas these
parameters have the reverse effect on the wall heat
transfer. The magnetic field and the thermal
diffusion tend to enhance the wall temperature
whereas these parameters have the reverse effect
on the wall heat transfer. The wall temperature

becomes enhanced and the wall heat transfer tends
to reduce with the progress of time.

The magnetic field and the thermal radiation tend to
enhance the wall shear stress whereas the thermal
diffusion, thermal buoyancy force and the
permeability of the porous medium have the reverse
effect on it. The wall shear stress reduces with the
progress of time.
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