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ABSTRACT 

Taylor- Couette flow (TCF) is an important template for studying various mechanisms of the laminar-
turbulent transition of rotating fluid in enclosed cavity. It is also relevant to engineering applications like 
bearings, fluid mixing and filtration. Furthermore, this flow system is of potential importance for 
development of bio-separators employing Taylor vortices for enhancement of mass transfer. The fluid 
flowing in the annular gap between two rotating cylinders has been used as paradigm for the hydrodynamic 
stability theory and the transition to turbulence. In this paper, the fluid in an annulus between short concentric 
cylinders is investigated numerically for a three dimensional viscous and incompressible flow. The inner 
cylinder rotates freely about a vertical axis through its centre while the outer cylinder is held stationary and 
oscillating radially. The main purpose is to examine the effect of a pulsatile motion of the outer cylinder on 
the onset of Taylor vortices in the vicinity of the threshold of transition, i.e., from the laminar Couette flow to 
the occurrence of Taylor vortex flow. The numerical results obtained here show significant topological 
changes on the Taylor vortices. In addition, the active control deeply affects the occurrence of the first 
instability. It is established that the appearance of the Taylor vortex flow is then substantially delayed with 
respect to the classical case; flow without control. 

Keywords: CFD simulation; Pulsating motion; Finite geometry; Active control; Taylor-vortex flow. 

NOMENCLATURE 

d gap width= R2-R1  
H height of cylinder  
ITac1 first instability (TVF)  
LCF laminar Couette Flow 
MWVF Modulated Wavy Vortex Flow 
R1 radius of inner cylinder 
R2 radius of outer cylinder 
(r,θ, z) radial, axial and azimuthal directions 
Ta Taylor number 
Tac2 second instability (WVF)  
Tac3 third instability  (MWVF) 
TVF Taylor Vortex Flow 

TCF Taylor Couette Flow  
(U, V, W) radial, axial and azimutal velocity 

components 
WVF wavy vortex flow 

µ dynamic viscosity
 density
 radius ratio  
Ω1 angular velocity of the inner cylinder 
f frequency
ε oscillating amplitude
=H/d aspect ratio 

1. INTRODUCTION

The study of rotating flows has currently attracted 
many researchers, both fundamental and applied. 
Among the rotating systems most used, the device 
called Taylor-Couette plays an important role in the 
development of various instabilities as well as to its 
relevance as prototypical flow in the study of 
laminar-turbulent transition. Indeed, Taylor-Couette 

flow is an example of a fluid system which becomes 
turbulent more gradually than most other fluid 
flows. This system consisting of the flow in the 
annular gap between two concentric rotating 
cylinders has a great wealth especially in the 
phenomenological analysis of the fundamental 
physical processes such as: the laminar-turbulent 
transition, the various industrial applications: 
tribology, tangential filtration, crystallization, 
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turbomachinery, mixing processes, liquid- liquid 
extraction and bio-reaction. Since the pioneering 
work of Taylor (1923), the rotor-stator 
configuration has been the subject of numerous 
studies. In the case of flow between two long 
cylinders with an outer one stationary, the base flow 
depends only on the radius. Thus, the various flow 
regimes occurring in the infinite Taylor-Couette 
system are well known [Chandrasekhar, (1961); 
Coles, (1965); Fenstermacher et al., (1979); 
Diprima and Swinney, (1981); Marcus,(1984); 
Bouabdallah, (1980); Koschmieder, (1993); Avila et 
al., (2008); Sobolik et al., (2011); Martinez-Arias et 
al., (2014); Adnane et al., (2015)]. It is important to 
note that few references from the extensive 
literature that has developed in this flow for the 
large aspect ratio have been cited here.  

However, the geometric parameters such as the 
aspect ratio and the radius ratio have an important 
role in the transition mechanism to turbulence. 
Cole, (1976) and Benjamin,(1978a, 1978b) were the 
first who found that the aspect ratio profoundly 
affects the flow regimes and the transition to 
turbulence. Indeed, Cole, (1976) has investigated 
the effect of finite length cylinders on the 
occurrence of the Taylor vortex flow and wavy 
vortex flow. He showed that the appearance of the 
Taylor vortices occurs for a critical Taylor number 
very close to the critical value of the classical case 
(infinitely rotating cylinders). In contrast, He found 
that the Taylor number for the onset of wavy mode 
increases when the cylinders length are reduced. 
Further, Benjamin,(1978a) has also described series 
of the experiments in cylinders of very short length 
with fixed end plates. He indicated that the bottom 
and top ends of the cylinders have significant 
effects on the flow patterns. Furthermore, Alziary 
de Roquefort and Grillaud, (1978) have employed a 
finite difference method to analyze the flow 
behavior in finite length annulus, Γ=10. They noted 
that the cellular vortices appear in the vicinity of the 
mid-plane and that for Re/Rec between 0.97 and 
1.17 the vortex intensity increased rapidly. Indeed, 
Benjamin and Mullin (1981) found a state of the 
flow structures which termed the anomalous modes 
that only exist in the finite Taylor-Couette system. 

In addition, Bielek and Koschmieder, (1990) have 
investigated experimentally the onset of Taylor 
vortices in finite length cylinders for various aspect 
ratios ranging from 3 until 3.75. They found that the 
length of fluid column has a profound effect on the 
formation and number of the Taylor vortices. 

Furthermore, the flow behavior in the short 
cylinders has been the subject of numerous 
theoretical, experimental and numerical studies 
(Hall, (1982); Lücke et al., (1984); Aitta et al., 
(1985); Heinrichs et al.,(1986); Pfister et al., 
(1988); Nakamura et al.,(1990, 1989); Cliffe et al., 
(1992); Toya et al., (1994); Linek and Ahlers, 
(1998); Mullin et al., (2002);  Czarny et al., (2002);  
Furusawa et al., (2002); , Lopez and Marques, 
(2003); Watanabe and Toya, 2012)). Recently, 
Deng et al., (2009) presented an experimental and 
numerical study on the onset of Taylor vortices in 
short cylinders with an aspect ratio of 5.17. They 

found that the vortex number decreases with 
decreasing fluid column length. 

On the other hand, the stabilization of the Taylor- 
Couette flow has been the subject of the several 
investigations in order to shifting the threshold of 
the onset of Taylor vortex flow to larger Taylor 
numbers. In addition, the superposition of an axial 
flow, known as Taylor-Couette-Poiseuille flow, has 
been used as an efficient mechanism to stabilize the 
basic flow (Snyder, (1962); Meseguer and Marques, 
(2002); Campero and Vigil, (1999); Poncet et al., 
(2014)). 

Indeed, in order to highlight the new progress in 
rotating and vortex shedding, Awasthi et al., (2014) 
have used viscous potential flow theory to analyze 
the Rayleigh-Taylor instability in the presence of 
tangential electric field. They showed that the 
electric field has a stabilizing effect on the 
considered system. In addition, Yadav et al. (2011, 
2013) have investigated the thermal instability 
problem for rotating nanofluid layer using linear 
stability theory.  

The axial oscillation of the inner cylinder has been 
also used as a stabilization strategy of Taylor-
Couette flow. Since, the seminal work of Ludwieg, 
(1964), the effect of the oscillation on the onset of 
Taylor vortices has received potential interests, both 
fundamental and applied (Donnelly,(1964); 
Barenghi and Jones, (1989); Hu and Kelly, (1995); 
Weisberg et al., (1997); Marques and Lopez,(1997, 
2000); Youd et al., (2003, 2005); Sinha et al., 
(2006)).These authors have shown that oscillations 
retarded the onset of Taylor vortices to a high 
angular velocity. More recently, Oualli et al., 
(2013) have investigated numerically the effect of 
radial oscillation of the outer cylinder on the 
laminar turbulent transition in the infinite length 
cylinders. They found that this control strategy had 
a stabilizing effect. 

The motivation of this numerical study, in addition 
to its direct connection with the classical Taylor-
Couette problem, is to assess the flow response to 
the imposed radial oscillating motion. Particular 
attention is given to the onset of Taylor vortices and 
flow structures when the system is under an active 
control. The transition phenomena that appear in 
this flow are discussed under the combined effects 
of the cylinders height and the radial oscillation of 
outer cylinder. The computational domain is 
changed in time due to the different oscillating 
amplitudes. 

2. GOVERNING 
EQUATIONS AND 
NUMERICAL MODELING 

2.1   Governing Equations  

Consider the familiar problem of the motion of a 
viscous fluid in an annular gap, bounded by two 
concentric finite cylinders and two parallel end 
plates fixed to the outer cylinder. The inner cylinder 
rotates while the outer cylinder and the end walls 
are stationary, as shown in Fig.1.  
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Fig. 1. Finite Taylor Couette geometry. 

 

The dimensionless parameters governing this 
problem are the ratio of inner to outer radii 
η=R1/R2, which fixes the geometry of the annulus, 
the aspect ratio Γ=H/d corresponding to the cylinder 
height reported to the gap and the Taylor numbers. 

Where R1 and R2, are respectively the radii of the 
inner and outer cylinders, Ω1 is the angular velocity 
of the inner cylinder, ν is the kinematic viscosity 
and d = R1-R2 is the gap between cylinders. 

The flow is described by the conservation of mass 
and the Navier–Stokes equations, respectively, 
written using cylindrical variables (r, θ, z). 
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The symbol (D/Dt) stands for a differential operator 
who represents a total derivative compared to time 
t, such as: 
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where (U, V, W) are the velocity components and P 
is the pressure.  

With the following boundary conditions: 

r = R 1, V = R 1 Ω 1 and U = W = 0 for  rotating 
inner cylinder ;  

r = R 2,  U = V = W = 0 for fixed outer cylinder ;  

z= 0, U=V=W=0 for fixed lower endplate ; 

 z= H, U=V=W=0 for fixed upper endwall. 

2.2   Numerical Modeling 

The simulations were carried out using 
axisymmetric 3-D grids. More grid points are taken 
in the axial and radial directions compared with the 
azimuthal direction because there are high shear 
regions near the inner and outer cylinder walls and 
the endplates (top and bottom). The number of grid 
points determined by grid-refinement study was 
2073600 hexahedral cells, (36x360x160) in the 
radial (r), axial (z) and azimuthal (θ) directions, 
respectively. The mesh is uniformly distributed in 
the azimuthal directions but linear condensed in two 
ends and next to inner and outer wall, as illustrated 
in Fig 2. 

The numerical results are obtained using the 
simulation code Fluent, based on the finite volume 
method. The discretization scheme chosen for the 
pressure is the second order model. The third order 
MUSCL scheme was used for the moment 
equations. For the pressure-velocity coupling, the 
Pressure-Implicit with Splitting of Operators (PISO) 
algorithm was selected. The time step is fixed equal 
to ∆t =0.0002. The maximum number of iterations 
by time step is 1000 iterations.  The convergence 
criteria are based on the residuals value. The 
converged solution is assumed when all residuals 
are less than 10-6. The oscillation of the outer 
cylinder is done by a dynamic mesh model where 
the shape of the domain changes with time. For this, 
a predefined function, user defined function (UDF), 
is used to change the shape of the grid cells; create 
and eliminate the cells to ensure the desired 
pulsatile motion. 

The present numerical results, concerning the first 
and second instability, are compared and validated 
against other works for a similar geometry, as 
shown in Table 1. The computed critical Taylor 
numbers showing the onset of TVF, agree quite 
well with other data reported previously in the 
literature.  

3. MAIN RESULTS  

3.1 Taylor Couette flow Without 
Control 

3.1.1  Flow Patterns  

In this part, we consider the Taylor-Couette flow 
without control. The various flow regimes obtained 
in this numerical simulation is shown in figure 3, 
corresponds to the contours of the pressure field for 
low values of Taylor  until the appearance of the 
first instability (TVF), the second instability (WVF) 
then the third instability (MWVF). 

Our simulations begin with the laminar Couette 
flow (LCF), which is the base flow in the absence 
of any disturbance. This mode can be described as a 
homogenous movement of high degree of symmetry  

z

r
θ

Z 

Ω1 

H 

R1 R2 
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             Ta=0.05                                                 Ta=0.1                                             Ta=5             

            Ta=24                                                  Ta=35.2                                              Ta=40            

             Ta=304                                                 Ta=375                                                 Ta=420      

             Ta=86                                                    Ta=134                                            Tac3=300      

             Tac1=42                                                  Tac2=59                                            Ta=60           

     

Fig. 2. Grid discretizing the computational domain. 
 

Table 1 Comparison between our numerical results and previous experimental works 
  Authors 
Ta 

Alziary et al 
(1978) 

Mahamdia et al 
(2003) 

Leng et al 
(2014) 

Our study 
Comparison with 
Mahamdia et al 

Tac1 41.8 42.25 42.5 42 0.6% 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Various flow regimes in the finite-length geometry 

 

in the fluid. At Ta=0.1, the Ekman vortices occur on 
both endwalls. For Ta = 5, we observe vertical lines 
distributed axially along the wall of the outer 
cylinder induced by the imbalance between the 
centrifugal force and the pressure gradient. From Ta 
= 35.2, it can be seen the development of rolls that 
spread from the endwalls to the middle of the 
system. Then, when the Taylor number reaches the 
critical value, Tac1=42, we observe the appearance 
of five rolls representing the first stage of the 
laminar-turbulent transition, termed Taylor vortex 
flow (TVF). Hence, this first instability is steady 
state and periodic in the axial direction. 
Furthermore, we note that the Taylor number for the 

onset of TVF in the short length cylinders is found 
very close to the critical Taylor number for the 
infinite cylinder problem.As the angular velocity of 
the inner cylinder is increased, a second critical 
Taylor number Tac2 is reached at which the 
axisymmetric Taylor vortex flow becomes unstable 
and a rotating wave appears in the flow. This state, 
known as wavy vortex flow, is time-periodic and 
breaks the continuous rotational symmetry. 
Therefore, there is a transition from time-
independent Taylor vortex flow to a time-dependent 
wavy vortex flow, which consists of the transverse 
travelling waves superimposed on the horizontal 
vortices. Indeed, we observe an azimuthal wave  
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Fig. 4. Formation of the various flow regimes/ streamlines in (r,z) plane. 

 

train rotates about the axis (oz) and propagating in 
the azimuthal (θ) direction. We note that the Taylor 
number at which the wavy vortex flow occurs in the 
finite cylinders, Tac2=59, is increased considerably 
compared to the critical Taylor number for the 
infinite length problem (Ta=48). 

When the Taylor number becomes larger, an 
additional wave mode appears which modulates the 
WVF, as shown in figure 3 at Tac3=300. This flow 
state is termed the modulated wavy vortex flow 
(MWF). 

3.1.2  Formation Processes of Taylor Cells 

Figure 4 depicts the flow structures obtained by 
representation of computed streamlines in (r, z) 
plane for several Taylor number, showing the 
formation mechanism of various flow modes that 
occur in the finite Taylor-Couette geometry. For a 
very low angular velocity, small vortices begin to 
appear near both end walls (top and bottom) in the 
form of circular cells, known as Ekman vortices. 
However, the middle of the region is free of the 
vortices. The vortices developed from the end-
boundaries, by the Ekman pumping, induced the 
formation of next vortices that propagate toward the 
center of fluid column which can be seen at Ta = 
35.2. As Taylor number is further increased, the 
cells propagate towards the center region until it 
fills completely the fluid column when Taylor 
number reaches the critical value, Tac1= 42, in 
which 10 vortices form along the axis of rotation 
showing a good overall agreement with the 
numerical results of Alziary de Roquefort and 
Grillaud, (1978) and Leng et al., (2014) for the 
same geometrical parameters.When the Taylor 
number reaches the critical value, Tac2=59, the cells 

begin to oscillate in the circumferential direction 
corresponding to the onset of wavy mode (WVF). 
Further, the adjacent vortices are not independent 
and the waves have an S-shape. In addition, there is 
a tightening in the outflow zone and a stretching in 
the inflow zone. This is, probably, due to the 
exchange of momentum between the adjacent cells. 
Hence, the exchange of fluid between contiguous 
vortices increases with increasing of the values of 
Taylor number (more important in inflow than in 
outflow). From Tac3 = 300, we can see the 
modulation of vortices that announces the 
occurrence of the modulated wavy vortex flow 
(MWF). Beyond the onset of MWVF, the vortices 
periodically oscillate from the S-shape to the 
flattened shape. 

3.2 Taylor-Couette Flow under Active 
Control 

 

 
Fig. 5. Critical Taylor number versus oscillating 

amplitude (ε). 
 

The aim of this part is to investigate the response of  

Ta=   0.05      1        5       24       35.2      40        42       59       90     300    340     375   

H 

Inner cylinder Outer cylinder 
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ε=0    ε=1% ε=7% ε=12.5%                    ε=0   ε=1% ε=7% ε=12.5%                        ε=0  ε=1% ε=7% ε=12.5%    
(a) Static pressure                                           (b) Radial velocity                                 (c) Azimuthal vorticity 

Fig. 6. Configuring of the Taylor Couette flow in the (r, z) plane / First instability.  
 

 

 

 

 

 

a) Without control (ε=0)                    b) With control (ε=7%)                      c) With control (ε=12.5%) 

Fig. 7. Mean pressure versus axial position for different oscillating amplitudes ε. 

 

the Taylor Couette flow to an active control. The 
controlled flow is executed by varying the outer 
cylinder cross section in a sinusoidal movement as 
follow: 

2 (1 ε sin 2 πft )r R                                        (7) 

when ε is oscillating amplitude (ε=Δr/R2) and f is 
the frequency.  

The numerical calculations are carried out over a 
range of oscillating amplitude from 0 until 
12.5%.The flow without control corresponds to ε=0. 
The frequency of oscillation is kept fix at the value 
f = 50 Hz. 

3.2.1 Variation of the Critical Taylor 
Number 

Figure 3 shows the variation of the critical Taylor 
number, Tac1, versus the oscillating amplitudes. It 
is noticed that the critical Taylor number, 
characterizing the onset of Taylor vortex flow, 
increases drastically when the oscillating amplitude 
increases.  For the nominal case, ε=0, Tac1=42 and 
when the value of ε reaches 12.5% the Tac1 
increases rapidly up to 74. Therefore, the onset of 
Taylor vortex flow is substantially delayed with 
respect to natural case. We note that the increase of 
Taylor number is observed for the entire range of 
the applied deforming amplitudes from 0.1 to 
12.5%. Therefore, the radial oscillation of the outer 
cylinder has a stabilizing effect on the onset of the 

first instability: the relaminarization phenomenon. 

3.2.2 Flow Structures 

Figure 6 shows contours of static pressure, radial 
velocity and azimuthal vorticity, respectively in 
(r,z) plane for some oscillating amplitudes. It is 
observed that the pulsating motions applied to the 
Taylor Couette flow have a significant effect on the 
flow structures, resulting by substantial 
modifications in the vortices shape. Gradually as 
the amplitude of oscillation increases, the cell size 
decreases in which the circular shape of the vortex 
becomes elliptical. We note, also, the appearance of 
three different zones; blue zones, characterizing the 
low speed, move towards the outer cylinder while 
red zones, characterizing the high speed, localize 
near the inner cylinder with the occurrence of a 
green intermediate zone between the two preceding 
zones similar to an axial jet, as illustrated in fig.6 
(b). In addition, the flow  behavior can also be seen 
in figure 7, showing the distribution of the mean 
pressure component in the middle of the gap plotted 
against axial position, for the nominal case and two 
oscillating amplitudes, ε =7% and 12,5 %, 
respectively. For the flow without control, ε =0, 
there are two wide peaks in the curve correspond to 
the Ekman vortices at the top and bottom end walls. 
In contrast, when the flow is under active control, ε 
≠0, all vortices have the same shape. Thus, from the 
profile of mean pressure, it is clearly seen that the 
flow is still symmetric whatever the amplitude of 

RR

Pres

RR
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oscillation applied. 

 

 

 

 

 

 

 

 

  ε=0                                                               ε=0.5%                                                 ε=2%    

 

 

 

 

 

 

 

                            ε=7%                                                                       ε=12.5%      

Fig. 8. Taylor vortices structures for different oscillating amplitudes / Streamline in the (r,z) plane. 

 

3.2.3   Behaviour of the Taylor Vortices 

We report in fig.8, the computed streamlines in the 
annulus, representing the projection of the flow in 
the (r, z) plane, which has allowed us to highlight 
the following observations:  

 For the flow without control, ε=0, there are ten 
cells inside the annulus, each cell rotates in the 
opposite direction with the adjacent cell. The 
cells are separated by radial jets of angular 
momentum emanating from the cylinders 
boundary layers [49]. This flow pattern is 
steady and periodic in the axial direction. Each 
pair of cells has an axial wavelength Λ=2d. 

 For a low amplitude, ε=0.5%, the cells are 
slightly inclined relative to the vertical axis and 
stretched radially. 

 For a medium amplitude, ε=2%, the cells shape 
is changed to become oval and elongated in the 
axial direction. Thus, we see that the two 
adjacent cells is gathered in the same housing 
forming a doublet stable similar to the 
recirculating eddies behind a fixed cylinder 
placed on a uniform stream at small Reynolds 
number (5<Re<40);  known as Föppl vortices, 
Melkoumian and Protas, (2014). 

 For high amplitudes, ε≥7%, the vortices lose 
their circular form and the flow shows a similar 
configuration to the flow behind a circular disc 
in a uniform flow,  Yang et al., (2014) and, 
Krasny and Nitsche, (2002). 

4. CONCLUSION 

In this paper, we have investigated the Taylor-

R1 R2 R1 R2 R1 R2 

R1 R2 

H

R1 R2 
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Couette problem in a finite geometry under an 
active control. The viscous incompressible fluid 
between two rotating cylinders was simulated 
using a three-dimensional CFD code, with the 
inner cylinder rotates with a constant angular 
velocity while the outer one is stationary and 
subject to pulsatile motion. For the nominal case 
(without control), the flow regimes encountered 
through this study when the Reynolds number is 
increased stepwise are: laminar Couette flow, 
Taylor-vortex flow, wavy vortex flow and 
modulated wavy vortex flow. However, in the 
controlled case, the radial oscillation of outer 
cylinder profoundly affects the flow behavior and 
leads to significant topological changes in the 
Taylor vortices. In addition, the controlling 
strategy led to a significant flow relaminarization; 
the occurrence of Taylor vortex flow is 
considerably delayed. The stabilization of Taylor 
Couette flow has direct applications to centrifugal 
pumps and lubrication problems when laminar 
flow regime is desired. Furthermore, this strategy 
of flow control remains important in the tribology 
in order to establish the optimum conditions for 
the lubrication of bearings transmission speeds in 
the automotive industry, aeronautics and plants 
producing electricity. 
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