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ABSTRACT 

This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in an elastic 
tube. Here the flow is due to three different peristaltic waves and two different types of elastic tube. The 
constitution of blood suggests a non-Newtonian fluid model and it demands the applicability of yield stress 
fluid model. Among the available yield stress fluid models for blood, the non-Newtonian Casson fluid is 
preferred. The  Casson  fluid model describes  the  flow characteristics of blood accurately at  low shear  rates 
and when  it  flows through  small blood  vessels. Long wavelength approximation is used to linearize the 
governing equations.  The effect of peristalsis and non-Newtonian nature of blood on velocity, plug flow 
velocity, wall shear stress and the flux flow rate are derived.  The flux is determined as a function of inlet, 
outlet, external pressures, yield stress, amplitude ratio, and the elastic properties of the tube. Furthermore, it is 
observed that, the yield stress, peristaltic wave, and the elastic parameters have strong effects on the flux of 
the non-Newtonian fluid, namely, blood. One of the important observation is that the flux is more when the 
tension relation is an exponential curve rather than that of a fifth degree polynomial. Further, in the absence 
of peristalsis and when the yield stress tends to zero our results agree with the results of Rubinow and Keller 
(1972). This study has significance in understanding peristaltic transport of blood in small blood vessels of 
living organisms.  
 

Keywords: Casson fluid; Peristaltic blood flow; Fluid flux; Amplitude ratio; Wall shear stress; Yield stress; 
Elastic tube.  

NOMENCLATURE 

0a  radius of tube in the absence of the elasticity 

1a  outlet radius 

1a inlet radius 

a  change in radius of the tube due to peristalsis 
a  change in  radius of the tube due to elasticity 
c  wave speed 
P  pressure gradient 

0p  External pressure   

 p z  pressure of the fluid 

1p  inlet pressure 

2p outlet pressure 

  amplitude ratio 

0r  radius of the plug flow 

T  tension 
t time

1 2,, ,t t A K  elastic parameters 

u  velocity of the fluid flow 

pu velocity of the plug flow 

z distance along the tube from the inlet 
end 

0  yield stress 

rz shear stress 

  coefficient of viscosity 

 wave length

1 conductivity 

1. INTRODUCTION

The study of peristaltic flows of Newtonian and 
non-Newtonian fluids in symmetric and asymmetric 

channel/ an elastic tube has acquired momentum 
interest among researchers in recent years because 
of its numerous practical applications in physiology 
and biomechanical system. In particular, a 
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peristaltic mechanism is involved with swallowing 
food through the esophagus; urine transport from 
the kidney to the bladder through the urethra, 
movement of chyme in the gastro-intestinal tract; 
the transport of spermatozoa in the ducts efferentus 
of the male reproductive tract the movement of 
ovum in the cervical canal of the female fallopian 
tubes; the transport of lymph in the lymphatic 
vessels; and the vascomotion of small blood vessels 
such as arterioles, venues, and capillaries. Also, 
finger and roller pumps are frequently used for 
peristaltic pumping of corrosive or very pure 
materials so as to prevent direct contact of the fluid 
with the pump's internal surfaces. Peristaltic 
transport is a form of a material transport induced 
by a progressive wave of area contraction or 
expansion along the length of a distensible tube, 
mixing and transporting the fluid in the direction of 
the wave propagation. This phenomenon is known 
as peristalsis. To understand the behavior of 
peristaltic, quite a lot of theoretical and 
experimental attempts have been made since the 
investigation of Latham (1966). Thereafter quite a 
good number of analytical/ numerical studies 
pertaining to the flow on Newtonian fluids were 
considered by many researchers in different 
physical constraints (See, Mishra et al. 2004, 
Elshehawey et al. 2006, Hayat et al. 2006, 2008, 
Nadeem and Akbar 2009a, 2010a, Ramana Kumari 
and Radhakrishnamacharya 2011).  

Most of the theoretical investigations have been 
carried out by many researchers considering blood 
and other physiological fluids as Newtonian fluids. 
Although this approach may provide a satisfactory 
understanding of the  peristaltic  mechanism in  the 
ureter, but it fails to provide a satisfactory model 
when the  peristaltic mechanism is involved in 
small blood vessels, lymphatic vessels, and 
stomach. This necessitates the use of non-
Newtonian models for the description of peristaltic 
flows in such physiological systems. It is well 
known that blood being suspension of cells behaves 
like a Newtonian fluid when it flows through tubes 
(arteries) with larger diameter at higher shear rate. 
But it exhibits Non-Newtonian characteristics when 
it flows through tubes with small diameter at low 
shear rates. Further the viscosity of the blood gets 
increased at low rates of shear when the red blood 
cells tend to aggregate and form Rouleaux. The 
Rouleaux is a semi-solid forming a plug flow 
region. In the plug flow region we have a flattened 
velocity profile rather than the parabolic velocity 
profile which is the regular behavior of a 
Newtonian fluid. Such a behavior can be modeled 
through yield stress fluid models. The yield stress 
for blood strongly depends on fibrinogen 
concentration and the hematocrit. The values of 
yield stress for normal human blood ranges from 
0.01 and 0.06 dyn/cm2.  In view of this Casson 
model which is a yield stress model is widely used 
to explain the remarkable behavior of blood flow 
through small blood vessels at low shear rates. 
Several authors have reported theoretical and 
experimental study of the pressure flow relationship 
for different fluids through tapered tubes such as 
Newtonian, Power law and Bingham (see, 

Chaturani and Prahalad 1985, Chakravarthy and 
Mandal 2000, Mandal 2005). Recent works on 
Casson fluid flow and heat transfer under different 
physical situations were carried out by several 
researchers (Abolbashari et al. 2015, 
Krishnamurthy et al. 2015, Ramesh et al. 2015). 
Various experiments performed on blood with 
varying hematocrit, anticoagulants, temperatures, 
etc. strongly suggest the behavior of blood as a non-
Newtonian fluid namely, Casson fluid.  In  
particular,  the Casson  fluid model describes  the  
flow characteristics of blood more  accurately at  
low shear  rates  and when  it  flows through  small 
blood  vessels. Keeping this in view, Oka (1971) 
was the first among the others who developed the 
generalized non-Newtonian model namely, Casson 
model   as a special case for the study of flow 
characteristics in an elastic tube. Jayaraman et al. 
(1981) extended Oka’s work  and suggested that 
Casson  fluids  are  found  to  be more practically  
applicable  in  developing models  for  blood  
Oxygenators. Habtu and Radhakrishnamacharya 
(2011) studied the effect of peristalsis on dispersion 
in a micropolar fluid. Peristaltic transport of some 
different non-Newtonian fluids in an elastic tube 
investigated theoretically by Nadeem and Akbar 
(2009b, 2010b, 2010c, 2011). The flow of non-
Newtonian fluids in elastic inflatable and 
collapsible tubes is important to biofluid mechanics 
encountered in human body and other applications; 
for instant, transport of food and liquids in human 
throat (pharynx), the tube (esophagus) connecting 
the throat and stomach, and intestines. The 
knowledge on the mechanisms of pharyngeal, 
esophageal and intestinal transport of food and 
liquids is very useful for the treatment of patients 
with malfunctioning of these transport processes.  
Rubinow and Keller (1972) studied the flow of a 
viscous fluid through an elastic tube with 
applications to blood flow. Mishra et al. (2003) 
studied pulsatile flow of a viscous fluid through a 
porous elastic vessel of variable cross-section. 
Sarkar and Jayaraman (2001) concentrated on the 
analysis of oscillatory flow in the annulus of an 
elastic tube with applications to catheterized artery. 
Takagi and Balmforth (2011a, b) made some 
investigations on peristaltic transport of both rigid 
objects and viscous fluid in an elastic tube. 
Recently, Vajravelu et al. (2011) studied the 
Herschel-Bulkley fluid flow in an elastic tube. To 
the best of the author’s knowledge no attempt is 
available in the literature which deals with the 
combined effects of different types of peristaltic 
transport waves of non-Newtonian fluid and the 
different types of elastic tubes. This particular study 
is useful in filling the gap in this direction. 

Thus the main motivation of the present paper is to 
study the effects of peristaltic transport of a non-
linear non-Newtonian fluid model through an 
elastic tube. Here the non-Newtonian model is 
Casson model and this model can be used for 
moderate shear rates in smaller diameter tubes.  
Here the peristaltic transport of an elastic tube is 
produced by choosing the peristaltic different wave 
train on the tube due to variation in tube radius and 
wave amplitudes. Long wave length approximation 
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is used to linearize the governing equations. The 
physical quantities involved in the problem are 
written in the non-dimensional form and the 
expressions for the flow quantities such as velocity, 
plug flow velocity, and flux are determined. The 
resulting equations of the fluid flow are solved 
analytically subjected to the appropriate boundary 
conditions. Finally the effect of flux for different 
values of the pertinent parameters, and peristalsis 
for a Casson fluid is presented graphically. The 
results and the discussion presented in this study 
may be helpful to further understand the peristaltic 
motion of non-Newtonian yield stress fluids. 

2. BASIC EQUATIONS AND THE 
MATHEMATICAL 
FORMULATION 

Consider the axisymmetric peristaltic flow of a 
steady viscous, incompressible non-Newtonian fluid 
namely, Casson fluid in an elastic tube of radius 

( )a z and length L.  The blood is modeled as a non-
Newtonian Casson fluid and the flow is 
axisymmetric. The axisymmetric geometry 
facilitates the choice of the cylindrical co-ordinate 
system  , ,r z   where r and z denote the radial 

and axial coordinates and   is the azimuthal angle. 
The constitutive equation of a Casson fluid is 

*

0 0

*

00

for

for
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  

  

 

                 (1) 

where   is the component of the shear stress and 

  is  the viscosity coefficient of casson fluid, 
*

  is 

the rate of shear strain and 0  is the yield stress of 

fluid.  The momentum equation governing the flow 
is  

  ,rzr P
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
 
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Here 0   represents the yield stress of the tube. The 

non-dimensional boundary conditions are                

 
0,

0 ,
rz is finite at r

u at r a z t

 

 
                                 (5) 

3. SOLUTION OF THE PROBLEM  

To solve the equations (2) and (3) under the 
boundary conditions (5), we make use of the 
following non-dimensional quantities 
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where 0a  is the radius of the tube in the absence of 

elasticity,   is the length of the tube, c  is the wave 
speed. Using a long-wavelength approximation 
along with low Reynolds number, one can find that 
the non-dimensional governing equations reduce to 
(dropping the bars)    

 1
,rzr P

r r





                                                   (7) 

The non-dimensional boundary conditions are 

 
0,

0 ,
rz is finite at r

u at r a z t

 

                                  (8) 

Solving the equation (7) subjected to the conditions 
(8), we obtain the velocity field as 

     2 2
0
1 2 3

0
2 3 24 1

2 3 2

P
u r r a r a r r a

      


 


                                                                               (9) 

Using the boundary condition 0u r    at 0r r  , 

the upper limit of the plug flow region is obtained 
as 0 02r P . Also by using the condition 

rz a    at 'r a  (Vajravelu et al, 2011) we 

obtain 2 aP a   . Hence  

0 0

a

r

a




 
   for 0    1.                              (10) 

Using relation (10) and taking 0r r  in Eq.(9), we 

get the plug flow velocity as 

2
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The volume flux Q  through any cross-section is 

given by 

0

0
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8
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Q u rdr urdr   

                           1 4216 4 1
1
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where F        

 
            (12) 

The above Equation (12) gives the volume flux for 
a tube due to different types of peristalsis with 
varying radius  ,a z t in the absence of elasticity. 
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The variation occurs also due to different types of 
elasticity of the tube wall. Therefore, in the present 
paper, the authors investigate the effects of different 
types of elasticity of the tube wall in the presence of 
different types of peristalsis and discuss the 
consequences in the next section. 

3.2 Theoretical Determination of Flux 

We now calculate theoretically the flux Q  of an 
incompressible Casson fluid of viscosity   in an 
elastic tube (see Figure 1) of radius 

 ( , )( , "( )a z t a z t a z  where    ,a z t  is due to 

the peristalsis and   "a z  is due to the elastic 

nature of the tube), and length L (an integral 
multiple of wave length ). In the present analysis, 
the following three types of peristaltic wave forms 
are considered. 
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Fig. 1. Geometry of the physical model. 

 
Further, we assume that the fluid enters in to the 
tube with the pressure 1p and leaves it with 

pressure 2p , while pressure outside the tube is 0p . 

If z  denotes the distance along the tube from the 
inlet end, then the pressure  p z in the fluid at z 

decreases from   10p p  to   2p p  . As a 

consequence of the pressure difference   0p z p , 

between the inside and outside of the tube, the tube 
may expand or contract: Hence, the shape of its 
cross section may deform due to the elastic property 
of the wall. Therefore, the conductivity 1 of the 

tube at z will depend on the pressure difference. We 

consider  1 1 0p z p      as a known function 

of   0p z p . This conductivity is assumed to be 

the same as that of a uniform tube having the same 
cross section as that at z. We assume that the Q is 
related to the pressure gradient by the relation 

  1 0Q p p dp dz                                   (14) 

Now, from (12) and (14), we observe that 

  4
1 0 8p p Fa                                             (15) 

Taking elastic property in addition to the peristaltic 
movement of the tube wall into consideration, we 

can take   4

1 8F a a    where a  is the 

change in radius of the tube due to peristalsis and 
a  is the change in the radius of the tube due to 
elasticity. As the flow is of Poiseuille type, at each 
cross section, the radius a  is a function of 

pressure 0p p ,  0a p p   and the wall 

deformation due to the infinite train of peristaltic 
waves represented by equation (13) which is a 
function of z  and t  . Integrating (14) with respect 
to z  from 0z  and using the inlet 

condition   10p p  , we obtain  

 
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1

p p

p z p

Qz p dp

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where   0p p z p    . This equation 

determines  p z  implicitly in terms of Q and z. To 

find Q , we set 1z   and   21p p  in equation 

(16) to obtain  

 
  

1 0
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1
1
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Q p dp



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Now, using (15) in (17), we have 

1 0

2 0

4( ' '')
'

8

p p

p p

F a a
Q dp






                                     (18) 

Eq. (18) can be solved if we know the form of the 
function  0''a p p . If the stress or tension  ''T a    

in the tube wall is known as a function of ''a , then 

 a p   can be found using the equilibrium 

condition (Rubinow and Keller 1972)   

  0T a a p p                                                  (19) 

3.3 Application to Flow Through an Artery 

We now find flow through an artery by two 
different methods. 

3.3.1 Method of Rubinow and Keller  

Roach and Burton (1959) determined the static 
pressure-volume relation of a 4 cm long piece of the 
human external iliac artery, and converted it into a 
tension versus length curve. Using least squares 
method, (Rubinow and Keller , 1972) we have  

     51 21 1T a t a t a                                (20) 

where 1 13t    and 2 300t   .When we substitute 

(19) in (20) we get 
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Using (21) in (18), we get the flux as given below: 
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We observe that equation (23) reduce to the 
corresponding results of Rubinow and Keller (1972) 
for the flow of Newtonian fluid  0, 0a and    

in an elastic tube.

 

3.2.2  Method of Mazumdar 

Following Mazumdar (1992), the tension relation 
can be written as 

   '' Ka KT a A e e                  (24) 

where A=0.007435 and K=5.2625. When we 
substitute (24) in (19) we get 
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Using (26) in (18), we get the flux as follows: 
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                                                                             (27) 

Where  a z  is given by equation (13) and 

 0a a p p                                   (28) 

We note that 1a  and 2a   are determined by solving 

(19) with 1p p and 2p p , respectively. The above 

integral (27) after numerical evaluation gives the 
value of flux for Casson’s model in an elastic tube. 
We observe that equation (27) reduce to the 
corresponding results of Mazumdar (1992) for the 
flow of Casson fluid in an elastic tube without 
peristalsis (i.e. 0a   ). Using the above two cases 
we find the flux for a Casson fluid in an elastic tube. 

4. RESULTS AND DISCUSSION  

The objective of the present investigation is to 
understand the change in flow pattern, and 
estimate the increase in the flow resistance in a 
small artery due to the presence of a catheter (by 
modeling the Cow’s blood as Casson fluid, which 
flows due to a peristaltic wave). Here, Blood is 
modeled as a Casson fluid and this model 
considers the yield stress parameter along with the 
elasticity of wall and peristalsis. The main 
advantage of this model is that it includes the 
expressions for tension as a fifth degree 
polynomial and also as an exponential function. 
Further, the flow is assumed to be steady, laminar, 
fully developed and axially symmetric.  The 
expressions for velocity, plug flow velocity, wall 
shear stress and the flux flow rate are derived 
analytically. The flux is determined as a function 
of inlet, outlet, yield stress and the elastic property 
of the tube. In order to assess the quantitative 
effects of catheterization; the non-Newtonian 
fluid; Peristaltic wave motion; the elastic property 
of the tube; flux; and inlet and outlet radius 
involved  in the problem, the numerical  
computations are carried with the Mathematica 
software  for the analytical expressions. The 
numerical results are plotted graphically in Figs. 
2-5.  

Figs. 2(a-c) respectively, represent the profiles for 
the flux with the axis for different values of 
amplitude ratios and different peristaltic waves, 
namely, when the wave is sinusoidal, trapezoidal 
and square, by Rubinow and Keller method for the 
flow through an artery. From the graphical 
representations it is clearly noticed that as the 
amplitude ratio increases the flux also increases. 
This observation is more consistent when the 
peristaltic wave is sinusoidal as compared to other 
two ways, namely, square wave and trapezoidal 
wave. In Figs. 3(a)-Fig.3(c) flux with the axis 
profiles are presented for the same set of physical 
parameters except the flow through an artery by 
one more method namely, Mazumdar method. 
Comparison of the Figures reveals that the flux 
increases as the amplitude ratio increases. 
Furthermore, it is clearly notify that the flux is 
more when the peristaltic wave is trapezoidal as 
compared to other two waves.  

Fig. 4(a)-Fig. 4(b) respectively, describe the 
method of Rubinow and Keller for the variations 
of flux with the axis for different values of yield 
stress parameter and the elastic parameter.  It is 
observed that the flux in non-Newtonian case is 
greater than the flux in the Newtonian case. This 
is consistent with the physical situation of the 
yield stress and the non-linear nature of non-
Newtonian fluid namely, Casson fluid. The 
variation of flux with the axis for Casson fluid is 
calculated for different values of yield stress and 
is depicted in Fig.4 (a).  It can be clearly seen 
from Fig. 4 (a) that for a given axis, the flux 
depends on yield stress and it decreases with 
increasing yield stress. This trend is even true 
when the flow is through a small artery by the 
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method of Mazumdar shown graphically in Fig. 
4(c). A comparison of Fig. 4(a) and Fig. 4(c) 
reveals that the flux is much more enhanced in 
Rubinow and Keller method as compared to 
Mazumdar method. The effect of an increase in 
the elastic parameter is to increase the flux for the 
non-Newtonian model when the other elastic 
parameter is fixed shown graphically in Fig. 4(b). 

 

 
Fig. 2(a). Variation of  Q Vs. z  for different 

values of amplitude ratio with 0.1,t   

. 1 2 1 20.5, 13, 300, 0.2, 0.3.t t a a        
 

 
Fig. 2(b). Variation of Q Vs. z  for different 
values of amplitude ratio with 0.1, 0.5,t   . 

1 2 1 213, 300, 0.2, 0.3.t t a a      
 

 
Fig. 2(c). Variation of  Q Vs. z  for different 
values of amplitude ratio  with 0.1, 0.5,t    

1 2 1 213, 300, 0.2, 0.3.t t a a     . 

 
Fig. 3(a). Variation of Q Vs. z  for different 
values of amplitude ratio with 0.1, 0.5,t   . 

1 20.007435, 5.2625, 0.2, 0.3.A K a a      
 

 
Fig. 3(b). Variation of  Q Vs. z  for different 
values of amplitude ratio with 0.1, 0.5,t    

1 20.007435, 5.2625, 0.2, 0.3.A K a a      
 

 
Fig. 3(c). Variation of  Q Vs. z  for different 
values of amplitude ratio  with 0.1, 0.5,t   . 

1 20.007435, 5.2625, 0.2, 0.3.A K a a      

 
The effects of the other remaining parameters on 
the flux with the axis profiles are drawn graphically 
in Figs. 5(a)-5(d) for the flow through an artery by 
Mazumdar method. From the Figs. 5(a) and 5(b) it 
is observed that as the elastic parameter A is to 
increase the flux in the presence of a Casson fluid 
when the other elastic parameter K is fixed. This 
trend is even true with the other elastic parameter, 
namely, K.  This is shown graphically in Fig. 5(b). 
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The flux profiles with inlet and outlet elastic radius 
variations are shown graphically in Figs. 5(c)-5(d). 
For a fixed value of outlet radius the effect of 
increasing values of inlet elastic radius makes the 
flux to decrease and hence Q decreases as the inlet 
elastic radius increases. However this is the 
opposite of the behavior when we fix inlet elastic 
radius and vary the outlet elastic radius (Fig. 5(d)). 
This is consistent with the physical situation.  
 

 
Fig. 4(a). Variation of Q Vs. z  for different 

values of yield stress with (by Rubinow and Keller 
method for Sinusoidal wave), 0.1, 0.6,t    

1 2 1 213, 300, 0.2, 0.3.t t a a      
 

 
Fig. 4(b). Variation of Q Vs. z  for different 

values of elastic parameter 2t  with (by Rubinow 

and Keller method for Sinusoidal wave), 0.1,t   

0.6,   1 2 1 213, 300, 0.2, 0.3.t t a a     . 
 

 
Fig. 4(c). Variation of  Q Vs. z  for different 

values of  yield stress with (by Mazumdar method 
for Sinusoidal wave), 0.1, 0.5,t   . 

1 20.007435, 5.2625, 0.2, 0.3.A K a a      

 
Fig. 5(a). Variation of Q Vs. z  for different 

values of elastic parameter A with 0.1, 0.5,t   . 

1 20.6, 5.2625, 0.2, 0.3.K a a       

 

 
Fig. 5(b). Variation of Q Vs. z  for different 

values of elastic parameter K with 0.1, 0.5,t   . 

1 20.6, 0.007435, 0.2, 0.3.A a a       

 

 
Fig. 5(c). Variation of Q Vs. z  for different 

values of inlet elastic radius 1a   with
 

0.1,t  . 
0.5,  0.4, 0.007435, 5.2625,A K     

2 0.6.a    
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Fig. 5(d). Variation of  Q Vs. z  for different 

values of inlet elastic radius 2a   with 0.1,t   

10.5, 0.4, 0.007435, 5.2625, 0.3.A K a        
 

5. CONCLUSIONS 

The present study deals with the Poiseuille flow of a 
non-Newtonian fluid with non-zero yield stress, 
namely Casson fluid, to study the changes in the 
blood flow pattern when a catheter is inserted into 
an elastic tube. Blood is modeled as a Casson fluid. 
This fluid model considers the yield stress 
parameter along with the elasticity of wall and 
peristalsis. The results are analyzed for different 
values of the pertinent parameters namely, yield 
stress, radius, different wave forms, amplitude ratio 
and the elasticity of the tube wall. Some of the 
interesting findings are: 
 the flux increases with an increase in the radius 

of the tube; 
 the flux decreases with increasing values of the 

yield stress; 
 the flux increases with an increase in the values 

of amplitude ratio; 
 the flux increases with increasing values of the 

elastic parameters; 
 the flux is more for a trapezoidal wave case than 

the square wave case or the sinusoidal wave 
case; and the back flow occurs if the inlet radius 
is more than the outlet radius. Rubinow and 
Keller method is better than the Mazumdar 
method with respect to the effect of yield stress 
and the amplitude ratio. 

The newly derived Casson formulae will facilitate 
modeling non-Newtonian rheology in single 
distensible tubes which can be attributed to 
elasticity and peristalsis. This is a major addition to 
the existing modeling capabilities. 
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