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ABSTRACT 

In the present work, the effect of magnetic field on double diffusive natural convection in a cubic cavity filled 
with a binary mixture is numerically studied using the finite volume method. Two vertical walls are 
maintained at different temperatures and concentrations. The study is focused on the determination of the 
entropy generation due to heat and mass transfer, fluid friction and magnetic effect. The influence of the 
magnetic field on the three-dimensional flow, temperature and concentration fields, entropy generation and 
heat and mass transfer are revealed. The main important result of this study is that the increase of Hartmann 
number damped the flow and homogenized the entropy generation distribution in the entire cavity.  
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NOMENCLATURE 

B


 magnetic field 
C dimensionless species concentration   
C’h high species concentration  
C’l low species concentration  
D species diffusivity 

Xe


direction of magnetic field 

g acceleration of gravity 
Ha  Hartmann number 

J


 dimensionless current density

J  current density intensity  
k thermal conductivity 
L cavity side 
Le Lewis number 
N buoyancy ratio 
n


unit vector normal to the control volume 
surface

Nu Nusselt number 
Pr Prandtl number 
R gas constant 
Ra Rayleigh number 

'
genS  generated entropy 

Sh Sherwood number 
T dimensionless temperature 
t dimensionless time

T’c  cold wall temperature  
T’h  hot wall temperature  
u


dimensionless velocity
x, y, z Cartesian coordinates 

 thermal diffusivity

T coefficient of thermal expansion 

C  coefficient of compositional 

expansion
 dimensionless electric potential

i Irreversibility coefficient

 dynamic viscosity
 kinematic viscosity
 density

e  electrical conductivity  




dimensionless vorticity



dimensionless stream function  
Superscripts 
‘ dimensional variable

Subscripts 
1,2,3,4 index of the Irreversibility 
coefficient 
Max maximum 
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1. INTRODUCTION 

The natural convection which is produced by 
volume forces resulting simultaneously from 
temperature and concentration gradients is generally 
referred either to the thermosolutale convection or 
double diffusion. Beghein et al. (1992) studied 
numerically a steady-state thermosolutal convection 
in a square cavity filled with air, submitted to 
horizontal temperature and concentration gradients. 
The study in a two-fluid mixture in rectangular 
enclosure has drawn a great deal of research 
(Trevisan 1992 and Costa 1997). The double 
diffusive natural convection carried out in a two 
dimensional cavity filled with a binary fluid and 
subjected to horizontal temperature and 
concentration gradients with cooperating volume 
forces has been studied by Gobin and Bennacer 
(1996). They have shown that for a high Lewis 
number, the thermal transfer decrease as the 
buoyancy ratio increase. 

The analytical and numerical study of double-
diffusive natural convection in a rectangular 
enclosure filled with non-Newtonian fluid is carried 
out by Makayssi et al. (2008). Indeed, the authors 
proposed an analytical solution based on the 
approximation of parallel flow in the case of a 
shallow cavity. This analytical solution has good 
agreement with the numerical solution. Recently, 
Nithyadevi and Yang (2009) treats the case of a 
partially heated enclosure with Soret and Dufour 
coefficients around the density maximum. The 
effect of the various parameters (thermal Rayleigh 
number, center of the heating location, density 
inversion parameter, Buoyancy ratio number, 
Schmidt number, and Soret and Dufour 
coefficients) on the flow pattern and heat and mass 
transfer has been depicted. More recently, an 
extension of a compressible flow model to double-
diffusive convection of binary mixtures of ideal gas 
enclosed in a cavity is presented by Sun et al. 
(2010).   

The coupling of transient double diffusive 
convection with radiation is investigated 
numerically in a square cavity filled with a mixture 
of N2 and CO2 by Ibrahim and Lemonnier (2009). 
Their numerical results show that gas radiation 
modifies the structure of the velocity and thermal 
fields and accelerates the convergence to steady 
state in aiding case, while it favors the generation of 
instabilities and delays the arrival to a stable 
solution in opposing one. Their problem 
formulation is based on a low Mach number 
approximation. The authors analyzed the influence 
of density variation on transient solutions for pure 
thermal or pure solutal convection as well as for 
thermosolutal convection in the special case where 
the thermal and solutal buoyancy forces are equal in 
intensity either for aiding or for opposing cases. 

Li et al (2010) studied the transition to chaos in 
double-diffusive Marangoni convection in a 
rectangular cavity with horizontal temperature and 
concentration gradients. They found that the 
supercritical solution branch takes a quasi-
periodicity and phase locking route to chaos while 

the subcritical branch follows the Ruelle–Takens–
Newhouse scenario. 

A few of studies are interested in the 3D double 
diffusive natural convection. Bergeon and 
Knobloch (2002) studied bifurcations in the double 
diffusive convection in three dimensional cavity 
subjected to horizontal temperature and 
concentration gradients. They have proven that in 
certain conditions, the flow is unstable and the rate 
is periodic. In fact, the mechanism responsible for 
these oscillations is identified and the oscillations 
turned up to be an indirect consequence of the 
presence of a bifurcation to the longitudinal 
structures of the three dimensional flow which do 
not exists in a two dimensional formulation. 

Sezai and Mohamad (2000) have demonstrated that, 
in case of a cube-shaped cavity, the structure of the 
flow of the thermosolutale natural convection, in 
the opposite case for values of buoyancy number 
superior to the unit, is purely three dimensional for 
certain values of the used parameters such as the 
buoyancy forces, the thermal Rayleigh and the 
Lewis numbers. They have noticed a variety of 
bifurcations and the formation of complex flow 
configurations.  

More recently, the transient thermosolutal 
convection in a cubical enclosure having finite 
thickness walls filled with air, submitted to 
temperature and concentration gradients, is studied 
numerically by Kuznetsov et al. (2011). They 
analyzed the effect of Rayleigh number and the 
conductivity ratio on heat and mass transfer. 

In the same way, the effect of the magnetic field on 
thermal convection within rectangular cavity has 
been studied by many authors. In fact, Oreper and 
Szekely (1983) have demonstrated that the presence 
of a magnetic field is an important factor 
determining the quality of the crystal. Ozoe and 
Okada (1989) investigated numerically three-
dimensional buoyancy convection in a differentially 
heated cubical cavity with three different 
orientations of magnetic field along the axes. These 
authors have found that the magnetic field damps 
the flow most effectively when the magnetic field is 
imposed perpendicular to the heated vertical wall. It 
is the least effective when the magnetic field is 
horizontal and parallel to the heated vertical wall. 
Chamkha and Al-Naser (2002) studied the 
hydromagnetic double-diffusive convection in a 
rectangular enclosure with opposing temperature 
and concentration gradients. 

They observed an oscillation in the flow in the 
absence of the magnetic field for a range of 
buoyancy ratio values. Also the heat and mass 
transfer mechanisms and the flow characteristics 
inside the enclosure depended strongly on the 
intensity of the magnetic field. In addition the effect 
of the magnetic field was found to reduce the heat 
transfer and fluid circulation within the enclosure. 

When studying double-diffusive convection during 
alloyed semiconductor crystal growth in strong 
axial and transverse magnetic fields, Farrel and Ma 
(2004) mentioned that magnetic field must be 
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strong enough to eliminate flow oscillations but 
which moderately damped the melt motion in order 
to achieve both lateral and axial compositional 
uniformity in the crystal. 

Sarris and al (2005) found that, in the presence of a 
magnetic field, the flow as well as the rate of heat 
and mass transfer is considerably affected. Borjini 
et al (2006) studied the effect of radiative heat 
transfer on the hydro-magnetic double-diffusive 
convection in two-dimensional rectangular 
enclosure for fixed Prandtl, Rayleigh, and Lewis 
numbers, Pr = 13.6, Ra = 105, Le = 2. Uniform 
temperatures and concentrations are imposed along 
the vertical walls while the horizontal walls are 
assumed to be adiabatic and impermeable to mass 
transfer. They proved that when progressively 
varying the optical thickness, multiple solutions are 
obtained which are steady or oscillatory accordingly 
to the initial conditions.  

Double-diffusive convective flow in an inclined 
rectangular enclosure with heat generation is 
studied numerically by Mohamed A. Teamah et al. 
(2008) and (2012).  In addition, a uniform magnetic 
field is applied in a horizontal direction. The 
numerical results are reported for the effect of 
thermal Rayleigh number, heat generation or 
absorption coefficient and the Hartmann number on 
the contours of streamline, temperature, and 
concentration as well as the dimensionless density.  

Maatki et al. (2013) studied the effect of the 
magnetic field on the three dimensional double 
diffusive convection in cubic cavity filled with a 
binary mixture. In one hand, they found that when 
the flow is thermally dominated, the increasing of 
the intensity of the magnetic field causes a 
monotonic reduction of intensities of the main and 
three dimensional transverse flows. In the other 
hand, when the flow is solutally dominated an 
intensification of three dimensional flow with 
multi-cells structure of secondary flow is observed 
at Ha = 30. 

The phenomenon of irreversibility expressed by the 
entropy generation is of great interest in the design 
of any thermodynamic system. The research works 
available on the analysis of entropy generation in 
double diffusive convection is still very low. 
Besides, the entropy generation in the double 
diffusion convection in enclosed cavities subjected 
to a magnetic field has not received much attention. 

The generation of entropy in double-diffusive 
convection with an inclined cavity is numerically 
investigated by Magherbi et al. (2006). They 
showed that a moderate number of Lewis, the 
entropy generation increases with the Grashof 
number and the ratio of thermal buoyancy. The 
local irreversibility due to heat and mass transfer 
are almost identical and are located in the bottom 
heated and top cooled wall portions of the 
enclosure. The angle of inclination of the cavity has 
a significant effect on the entropy production for a 
thermal Grashof number equal to 104. In this case, 
the irreversibility increases to a maximum value for 
an angle equal to 45 °, then decreases and 
approaches the value of unity for the tilt angle of 

180 °. Entropy generation of double-diffusive 
convection in the presence of rotation is studied by 
Sheng Chen (2011). They found that only fast 
rotation has significant influence on entropy 
generation distribution. Moreover, the share of 
irreversibility due to concentration diffusion 
increases quickly with N and it becomes the main 
contributor to entropy generation since N > 0.6. In 
another work, Sheng Chen and Rui (2011) studied 
the entropy generation of turbulent double-diffusive 
natural convection in a rectangle cavity. The 
authors examined the effects of thermal Rayleigh 
number, ratio of buoyancy forces and aspect ratio 
on entropy generation of turbulent double-diffusive 
natural convection. They concluded that the total 
entropy generation number increases with Ra, and 
the relative total entropy generation rates are nearly 
insensitive to Ra when Ra=109. They found also 
that the relative total entropy generation rate due to 
diffusive and thermal irreversibilities both are 
monotonic decreasing functions against aspect ratio 
while that due to viscous irreversibility is a 
monotonic increasing function with aspect ratio.  

The influence of an oriented magnetic field on 
entropy generation in natural convection flow for 
air and liquid gallium is numerically studied by 
Eljery et al. (2010), they showed that transient 
entropy generation exhibits oscillatory behavior for 
air when a thermal Grashof number equal to 104 at 
small values of Hartmann number. 

From the previous review, the problem of steady, 
laminar, hydromagnetic, entropy generation, 
double-diffusive natural convection flow inside a 
cubic enclosure was not explained. Because this 
situation is of fundamental interest and because it 
can have various possible applications such as 
crystal growth, geothermal reservoirs, nuclear fuel 
debris removal and solidification of metal alloys, it 
is of special interest to consider it in the present 
work. The top and bottom walls of the enclosure are 
assumed adiabatic and impermeable to mass 
transfer while the vertical walls are maintained at 
constant temperature and concentration. The 
magnetic Reynolds number is assumed small so that 
the induced magnetic field will be negligible. The 
originality of the present work is to highlight the 
influence of magnetic field on the three dimensional 
double diffusive convection as well as on the 
entropy generation in a cube-shaped cavity filled 
with a binary mixture (aqueous solution). 

2.  MATHEMATICAL 

FORMULATION AND 

NUMERICAL METHOD 

Theconsidered system is presented in Fig. 1. A 
binary mixture (aqueous solution) is contained in a 
differentially heated cubic enclosure. Different 
concentrations are imposed at the left and right 
vertical walls, and no-heat and mass fluxes are 
imposed on the remaining walls with no slip 
boundary conditions for all velocity components. 
The direction of gravity is along the y-axis. An 
external magnetic field is applied within the X-
direction. The fluid in this enclosure receives both 
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the buoyancy force resulting from heat and mass 
transfer through side walls and the Lorentz force 
resulting from the interaction between the fluid 
motion and the external magnetic field. The flow is 
assumed to be laminar and the binary fluid is 
considered Newtonian and incompressible. The 
physical properties of the fluid are supposed to be 
constant and the Boussinesq approximation is 
adopted. The Soret and Dufour effects are assumed 
to be negligible and the magnetic Reynolds number 
is considerably weak that the induced magnetic 
field is insignificant. 

 

 
Fig. 1. Physical model and coordinated system. 

 

The dimensionless variables used in this work are: 
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For numerical method we resorted to vorticity 
vector potential formalism in a three dimensional 
configuration (Ozoe and Okada al (1989)). The 
potential vector and the vorticity are defined 

respectively by:  

u
 

                                                             (1) 

u  
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                                                             (2) 

The dimemsionless equations of conservation 
describing the transfer phenomena within the cavity 
are written in the form: 
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Equations (3)-(8) represent respectively the balance 
laws of mass, linear momentum, thermal energy, 
concentration, Ohms laws and the balance laws of 
electric charge. 

The dimensionless parameters figuring in these 
equations are: 

e
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They represent respectively: Hartmann number, 
buoyancy ratio, Rayleigh number, Prandtl number 
and Lewis number.  

The temperature and concentration boundaries 
conditions are given by: 

 T 0, y, z 1 ,  C 0, y, z 1 ,  T 1, y, z 0 , 

 C 1, y, z 1 , T C
0

n n

 
 

 
on other walls        (10) 

The boundaries conditions regarding vorticity and 
potential vector of velocity are: 
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The boundaries conditions related to velocity, 
electric potential and current density on the inner 
surface are: 

1 2 3u u u 0   ; 0
n





; j.n 0
 

                  (12) 

Thermal and diffusive gradient between the active 
walls of the cavity in addition to magnetic field 
effect causes entropy generation in the system. The 
local entropy generation in a three-dimensional 
flow is given by (Magherbi 2006): 
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Where Co and To are respectively the references 
concentration and temperature. 

The dimensionless local entropy generation can be 
written as: 
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In the present work, the dimensionless 
irreversibility ratios are fixed respectively at

4

 1  4 10    , 
 2 0.5  , 2

 3 10  (Magherbi 

et al.  2006). 

Total dimensionless entropy generation is obtained 
by a numerical integration of dimensionless local 
entropy generation through the entire volume of the 
cavity: 

 tot s S th S fr S dif S th dif S mag

tot th fr dif th dif mag

S N .d N N N N N d

S S S S S S

     
 



       

    

 

(21) 

The local Nusselt and Sherwood numbers, have the 
following expressions: 

x 0.1

T
Nu

x 





;    

x 0.1

C
Sh

x 





                             (22) 

The Nusselt and Sherwood average numbers on 
the walls have the following expressions:  

1 1

0 0
Nu Nu. y. z   

1 1

0 0
Sh Sh. y. z            (23) 

The control volume finite method is used to 
discretize equations (1)-(8). The power law scheme 
for treating convective terms and the fully implicit 
procedure to discretize the temporal derivatives are 
retained. The grid is uniform in all directions with 
additional nodes on boundaries. The successive 
relaxation iterating scheme is used to solve the 
resulting non-linear algebraic equations. More 
information on the numerical method is in the work 
of Borjini et al. (2005). 

The solution is considered acceptable when the 
following convergence criterion is satisfied for each 
step of time:  

k k 11,2,3
i i k k 1 k k 1 5

k
i i

max
max T T max C C 10

max



  
 

    


 (25) 

3. GRID CONSIDERATION AND 

VALIDATION 

The results presented in Table.1 show that the grid 
of (51x51x51) satisfies the grid independence. The 
time step is chosen to be 10-4. The convergence 
criterion is to reduce the maximum mass residual of 
the grid control volume below 10-5. 

The numerical code is validated against the results 
of Sezai and Mohamed (2000), (Fig. 2). It is noted 
the concordance between the results. 
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Fig. 2. Comparison between the present results 
and those of Sezai and Mohamed (2000)(Ra = 

105, Pr=10 and Le=10). 
 

The validation of the code has been done also by 
means of the Benchmark solution of the work of 
Chamkha and Al-Naser (2002)who studied the 
double diffusive convection in a rectangular cavity 
in the presence of a magnetic field for Ra = 105, 
Pr=1, Le = 2 and N = 1. Table 1 shows the values of 
the average Nusselt and Sherwood numbers 
obtained when the magnetic field is oriented toward 
x-direction, for different values of Ha. The 
difference, between the two results is less than 
1.5%.All the values shown in this table are 
converted according to the dimensionless form of 
Chamkha and Al-Naser. (2002). 

4. RESULTS AND DISCUSSION 

4.1 Effect of Buoyancy Ratio on Flow 
Structure, Iso-Temperatures and Iso-
Concentrations in Absence of Magnetic 
Field 

Fig.3 shows some particles trajectories for different 
buoyancy ratio (N). When N=-0.5, the flow 
structure is characterized by one central vortex 
turning in the clockwise direction. The flow 
structure is thermally dominated. By increasing N, 
the intensity of the solutal volume forces increases. 
When N=-2, it is noted that the flow structure is 
characterized by one central vortex turning counter 
clockwise. Beside, two other vortex turning 
clockwise and situated on the top and bottom of the 
cavity. It is also noted that the flow structure is 
characterized by a spiraling form. 
 

 
Fig. 3. Some particles trajectories (a: N=-0.5, b: 

N=-2 and c: N=-10). 

 

The intensity of the thermal and solutal volume 
forces becomes competitive. In fact, the flow 
structure is composed by one solutal vortex situated 
in the core region of the cavity and two thermal 
vortex in the top and bottom of the cavity. 

By increasing the buoyancy ratio to -10, the flow 
structure becomes solutal dominated and 
characterized by one vortex with two inner cells 
turning counter clockwise. 

Fig.4 shows the effect of buoyancy ratio on the 
isothermals surfaces. For low value of buoyancy 
ratio (N=-0.5), the isothermals surfaces are 
stratified in vertical direction except near the 
insulated wall of the cavity and appear a horizontal 
surfaces in the core region of the cavity. In addition, 
the thermal gradient is high near the bottom of the 
hot wall and the top of the cold wall. The three 
dimensional aspect of the iso-temperature is 
observed also by the distortion in z direction. When 
N=-2, the flow structure is reversed and the iso-
temperature becomes verticals and parallels. The 
thermal gradient, near the bottom of the hot wall 
and the top of the cold wall, decreases. The three 
dimensional aspect of the iso-temperatures is 
attenuated. When the flow structure is dominated by 
the solutal volume forces (N=-10), the isothermals 
surfaces becomes tilted and parallels. The thermal 
gradient becomes higher near the top of the hot wall 
and the bottom of the cold wall.  
 

 
Fig. 4. Iso-temperatures for different buoyancy 

ratio (a: N=-0.5, b: N=-2 and c: N=-10). 
 

Fig.5 illustrates the effect of buoyancy ratio on 
the iso-concentrations surfaces. For low value of 
buoyancy ratio (N=-0.5), as thermal buoyancy is 
much larger than solutal buoyancy, each the 
liquid in upper or lower layer penetrated into 
another layer along hot and cold wall, 
respectively. Consequently the liquid of low 
concentration exists near the top of the hot wall. 
The solutal gradient is high near the bottom of 
the high concentration wall and the top of the low 
concentration wall. The three dimensional aspect 
of the iso-cocentrations is also observed by the 
distortion in z direction. When N=-2, the flow 
structure is reversed and the iso-concentration 
becomes titled and parallels. The three 
dimensional aspect of the iso-concentrations is 
attenuated. For high value of buoyancy ratio (N=-
10), solutal buoyancy becomes much larger than 
thermal buoyancy. The iso-concentrations 
surfaces are stratified in vertical direction and 
appear a horizontal surface in the core region of 
the enclosure. The solutal gradient becomes 
higher near the top of the high concentration wall 
and the bottom of the low concentration wall. 

In the following, we will dedicate our work to study 
the effect of magnetic field on the flow structure 
and the generation of entropy in the case where the 
ratio of buoyancy is equal to -2. 
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Fig. 5. Iso-concentrations for different buoyancy 

ratio (a: N=-0.5, b: N=-2 and c: N=-10). 
 

4.2 Effect of Magnetic Field on Flow 
Structure, Isotemperatures and Iso-
Concentrations  

Fig 6-a demonstrates that the resulting flow 
structure is made up, of with two inner vortexes 
situated in the central region of the cavity, caused 
by solutal compositional forces, and two thermal 
vortexes, turning clockwise, situated in the upper 
and lower parts of the cavity. By applying a 
moderate magnetic field there is a disappearance of 
the thermal vortex situated in the bottom corner 
near the hot side. However, the intensification of 
the three-dimensional aspect is mainly observed on 
fig 6-e where the projection the velocity vector on 
the x=0.5 plan is characterized by the existence of 
eight symmetric secondary cells turning in opposite 
directions.  
 

 
Fig. 6. Projection of flow lines on the mid X-Y 

plane (top), and the mid Y-Z plane (bottom) for 
Ra=105 and N= -2. 

 

For higher Ha number values (Ha=70), (fig 6-c) the 
thermal vortexes become very small and the solutal 
vortex, occupies the central region of the cavity. In 
this case, the flow becomes conducted mainly by 
solutal volume forces. By analyzing fig 6-f, it is 
noted that the flow in the Z-direction is reduced. In 
fact, there is a disappearance of the secondary cells, 
thus a reduction in the three-dimensional aspect of 
the flow. 

Fig.7 represents the iso-surfaces of concentration 
and of temperature for different Ha. By analyzing 
this figure, it is noted that for Ha=0, the iso-surfaces 
of temperature are transversally distorted in the 
central region of the cavity. The intensification of 
the magnetic field induces a decrease of these 
distortions (fig. 7-b) and and a reduction of the 
temperature gradient near the active walls. By 

further increasing Ha to 70, reduce the 3Deffect and 
iso-surfaces of temperature become quasi-vertical 
(fig 7-c). On fig. 7-a’, a vertical stratification of 
concentration is noted. The solutal gradient is 
higher near the active walls. The increase of the 
Hartmann number (Ha=40) shows a decrease in the 
level of solutal gradient near the active sides and a 
remarkable transversal distortions (fig. 7-b’). For 
Ha =70, the 3d effects are reduced (fig. 7-c’). 

 

 
Fig. 7. Iso-surfaces of temperature (on the top) 
and concentration (on the bottom) for N=-2, 

(a,a’) : Ha=0 ; (b,b’) : Ha=40 and (c,c’) Ha=70. 

 
4.3 Effect of Hartmann Number (Ha) on the 
Local Nusselt and Sherwood Numbers  

Figs. 8 and 9 are plotted to explore the effect of 
Hartmann number (Ha) on the distribution local 
Nusselt and Sherwood numbers over the hot wall. 
The following parameters are kept constant N=-2, 
Ra=105 and 0≤Ha ≤70. As shown in Fig. 8, the local 
Nusselt number has maximum values at the cavity 
top and its value decreases moving downwards. It is 
shown on Fig. 5-b that the temperature gradient is 
maximal at the cavity top and it decreases moving 
downwards reaching the minimum at the cavity 
bottom. This is noticed for all values of Hartmann 
number. 

In addition, Fig. 8 shows that the local Nusselt 
number decreases as Hartmann number (Ha) 
increases. For the same position on the hot wall the 
local Nusselt number decreases as Ha increases. 
This occurs due to the magnetic damping effect that 
suppresses the overall heat transfer in the enclosure. 
Subsequently, the highest value for the local 
Nusselt number is at Ha =0 and the lowest value is 
at Ha=70.  

Furthermore, Fig. 9 shows similar contributions for 
the effect of Hartmann number (Ha) on the local 
Sherwood number. The main difference is that the 
local Sherwood number generally has higher values 
than the local Nusselt number. Again, the highest 
value for the local Sherwood number is at Ha =0 
and the lowest value is at Ha=70. 

We observe also that the 3D aspect of the local 
Nusselt number and the local Sherwood number is 
more pronounced at the cavity bottom. 
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Fig. 8. The local Nusselt number for different 

Hartmann number (a: Ha=0, b: Ha=20, c: 
Ha=40 and d: Ha=70). 

 

 

 
Fig. 9. The local Sherwood number for different 

Hartmann number (a: Ha=0, b: Ha=20, c: 
Ha=40 and d: Ha=70). 

 

4.4 Effect of Hartmann Number (Ha) on the 
Average Nusselt and Sherwood Numbers 

Fig. 10plots the effect of Hartmann on the average 
Nusselt and Sherwood numbers. The figure shows 
that the magnetic field effect is to suppress the heat 
and mass transfer within the cavity by decreasing 
the average Nusselt number and Sherwood 
numbers. This decrease is more pronounced for Sh. 
In fact, there is a declination of 30% compared to 
the case without magnetic field.  

4.5 Effect of Magnetic Field on the Entropy 
Generation  

Fig. 11 presents the local entropy generation due to 
the thermal gradient in case of solutal dominated 
regimes. For Ha=0 and 20, a region along the 
diagonal that connecting the top corner of the hot 

wall and the bottom corner of the cold wall shows 
high heat transfer irreversibility due to high 
temperature gradient in that region. In the other 
region of the cavity, the thermal entropy generation 
is negligible. By increasing Hartmann number to 
Ha=70, there is a decrease of the temperature 
gradient and of the magnitude of the local thermal 
entropy. The irreversibility contours become 
concentrated in the top corner of hot wall and in the 
bottom corner of the cold wall. The weak central 
entropy generation is linked to vertical 
compositional stratification. 

 

Fig. 10. Average Nusselt and Sherwood numbers 
according to Ha, for Ra=105 and N=-2. 

 

 
Fig. 11. Isotherm lines (top) and Local entropy 
generation due to thermal irreversibility 

thSN 
 

(bottom) on the X-Y plane for different Ha, 
Ra=105 and N = -2. 

 

Fig. 12 shows that, for Ha= 0, the concentration 
gradient is higher near the top of highly 
concentrated wall and the bottom of poorly 
concentrated wall. Corresponding distribution on 
the local entropy generation due to mass transfer 
depicts that the entropy generation is higher in these 
regions. For Ha=20 and 70, some irreversibility is 
created far from the active walls due to increase of 
concentration gradient on z-directionin that region. 

By analyzing fig.13, it is noted that the local 
entropy generation due to viscous effect occurs 
along the walls with the magnitudes of 11.69. The 
frictional irreversibility due to fluid flow is found to 
be lower compared to the case of thermal 
dominated flow. When Ha=20, a significant values 
of

S frN 
are found in the interior region of the cavity. 

By increasing Hartmann number, it is observed that 
the magnitude of the frictional irreversibility 
becomes low compared to the case of Ha=0. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 



C. Maatki et al. / JAFM, Vol. 9, No. 4, pp. 1915-1925, 2016.  
 

1923 

 

 
Fig. 12. Concentration lines (top) and local 

entropy generation due to concentration gradient 
irreversibility S -difN (bottom) on the X-Y plane 

for different Ha,Ra = 105 and N = -2. 

 

 

 
Fig. 13. Local entropy generation due to viscous 
effects irreversibility S-frN on the X-Y plane for 

different Ha, Ra = 105 and N = -2. 

 
Fig.13-b presents the irreversibility due to the 
magnetic field. For Ha=20, the distribution of the 
local entropy generation due to magnetic field 
depicts that the entropy generation is higher at the 
upper portion of the hot wall and the down portion 
of the cold wall. The irreversibility due to magnetic 
field is also found to be produced in the core region 
of the cavity. For strongly damped flow, the local 
entropy generation due to magnetic field is higher 
near the cold wall than the hot one. In order to 
explain more this result, the fig.14-ais plotted, 
which shows the y-component of the Lorentz forces 
in the middle x-y plan. This force opposes the flow 
near the actives walls. For strongly damped flow, 
the magnitude of the Lorentz forces is the lowest 
near the cold wall. Therefore the attenuation of the 
flow velocity is lower near the cold wall compared 
to the hot wall. By consequence, the intensity of 
electric current density is higher near the cold wall 

compared to the hot one; which induces a great 
irreversibility in this region. 

 

 
Fig. 14. Y-component of Lorentz forces (top) and 
Local entropy generation due to magnetic field 

irreversibility 
S-magN  (bottom) on the X-Y plane 

for different Ha, Ra=105 and N = -2. 

 

By analyzing the fig.15, it is found that, in absence 
of magnetic field, the total irreversibility is 
concentrated near the actives walls. It is situated by 
portion in the top of hot wall and in the bottom of 
cold wall. For Ha=20, there is an appearance of the 
total irreversibility in the core region. For higher 
Hartmann number, the irreversibility disappears in 
the core region and becomes concentrated near the 
active walls. 
 

 
Fig. 15. Local entropy generation due to total 

irreversibility 
SN on the X-Y plane for different 

Ha, Ra=105 and N = -2. 
 

Fig.16 represents the variation of 
friS , 

thS , 
diffS , 

magS and
totS according to Hartmann number in case 

of solutal dominated regime. It is clear that
friS , 

thS
and 

diffS decrease according to Ha. The entropy 

generation due to viscous effect decrease by 70% 
going from Ha=20 to Ha=70. The total entropy 
generation increases by 50% moving from a H= 0 
to Ha =40. When the Hartmann number is greater 
than 30, the total entropy

totS follows a polynomial 

equation:  

2
totS 0.0026 Ha 0.19 Ha + 8.9  . 
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Fig. 16. Variation of entropy generation 

according to Ha, for Ra = 105 and N = -2. 

5. CONCLUSION 

In the present work, the three-dimensional 
mathematical model for natural double diffusive 
convection and entropy generation in a cubic 
enclosure under an external magnetic field was 
presented as well as the boundary conditions. The 
effect of magnetic field on entropy generation due 
to the thermo-solutal natural convection in a cubic 
enclosure was analyzed. Different behaviors of flow 
and entropy generation were observed when 
changing Ha. The main findings of the present 
investigation can be summarized as follows: 

 The three-dimensional aspect of the flow 
structure depends on the intensity of the 
magnetic field. When Ha is greater than 40, a 
reduction of 3D flow structure is observed. 

 The magnetic field reduces the heat transfer 
and fluid circulation within the enclosure due 
the retardation effect of the electromagnetic 
force. 

 The three-dimensional aspect of the 
distribution of the local Nusselt number and 
the local Sherwood number is more 
pronounced at the cavity bottom. 

 The local entropy generation is localized near 
the top of the hot wall with higher 
concentration and the bottom of the cold wall 
conversely to the case of thermal dominated. 

 The total entropy generation manifests a 
monotonic increasing behavior with Hartmann 
number.  

 Both thermal and solute horizontal 
stratifications cause weak balk entropy 
generation. However 3D concentration 
distribution, in presence of magnetic field, 
increases irreversibility in the core of the 
enclosure.  

REFERENCES 

Beghein, C., F. Haghighat and F. Allard (1992). 
Numerical study of double-diffusive natural 
convection in a square cavity. International 
Journal of Heat and Mass Transfer (35), 833-
846. 

Bergeon, A. and E. Knobloch (2002). Natural 
doubly diffusive convection in three-

dimensional enclosures. Physics of fluids (14), 
3233–3250. 

Borjini, M. N., H. B. Aissia, K. Halouani and B. 
Zeghmati (2006). Effect of optical properties 
on oscillatory  hydromagnetic double-diffusive 
convection within semitransparent fluid. 
International Journal of Heat and Mass 
Transfer (49), 3984-3996. 

Borjini, M. N., K. Lioua, N. Daouas and H. B. 
Aissia (2005). Hydromagnetic double-
diffusive laminar natural convection in a 
radiatively participating fluid. Numer. Heat 
Transfer part A (48), 483-506. 

Chamkha A. J. and H. Al-Naser (2002). 
Hydromagnetic double-diffuse convection in a 
rectangular enclosure with opposing 
temperature and concentration gradients. Int. J. 
Heat Mass Transfer (45), 2465-2483. 

Costa, V. A. F. (1997). Double-diffusive natural 
convection in a square enclosure with heat and 
mass diffusive walls. International Journal of 
Heat and Mass Transfer (40), 4061-4071. 

ElJery, A. E., N. Hidouri, M. Magherbi and A. B. 
Brahim (2010). Effect of an external oriented 
magnetic field on entropy generation in natural 
convection. Entropy (10),1391-417. 

Farrell, M. V. and N. Ma (2004). Macrosegregation 
during alloyed semiconductor crystal growth in 
strong axial and transverse magnetic fields. Int. 
J. Heat Mass Transfer (47), 3047-3055. 

Gobin, D. and R. Bennacer (1996). Cooperating 
thermosolutal convection in enclosures II. Heat 
transfer and flow structure. Int. J. Heat Mass 
Transfer (39), 2683-2697. 

Ibrahim, A. and D. Lemonnier (2009). Numerical 
study of coupled double-diffusive natural 
convection and radiation in a square cavity 
filled with A N2–CO2 mixture. International 
Communications in Heat and Mass Transfer 
(36), 197-202. 

Kuznetsov, G. V. and M. A. Sheremet (2011). A 
numerical simulation of double-diffusive 
conjugate natural convection in an enclosure. 
International Journal of Thermal Sciences 
1878-1876. 

Li, Y., Z. W. Chen and J. M. Zhan (2010). Double-
diffusive Marangoni convection in a 
rectangular cavity- Transition to chaos. 
International Journal of Heat and Mass 
Transfer (53), 5223-5231. 

Maatki, C., L. Kolsi, H. F. Oztop, A. Chamkha, M. 
N. Borjini, H. Ben Aissia and K. Al-Salem 
(2013). Effects of magnetic field on 3D double 
diffusive convection in a cubic cavity filled 
with a binary mixture. International 
Communications in Heat and Mass Transfer 
(46), 86-95. 

Magherbi, M., H. Abbassi, N. Hidouri and A. B. 
Brahim (2006). Second law analysis in 
convective heat and mass transfer. Entropy, 1-



C. Maatki et al. / JAFM, Vol. 9, No. 4, pp. 1915-1925, 2016.  
 

1925 

17. 

Makayssi, T., M. Lamsaadi, M. Naïmi, M. 
Hasnaoui, A. Raji and A. Bahlaou (2008). 
Natural double-diffusive convection in a 
shallow horizontal rectangular cavity 
uniformly heated and salted from the side and 
filled with non-Newtonian power-law fluids. 
Energy Conversion and Management (49), 
2016-2025. 

Mohamed, A. T (2008). Numerical simulation of 
double diffusive natural convection in 
rectangular enclosure in the presences of 
magnetic field and heat source. International 
Journal of Thermal Sciences (47), 237-248. 

Mohamed, A. T., F. E. Ahmed and Z. M. Enass 
(2012). Numerical simulation of double-
diffusive natural convective flow in an inclined 
rectangular enclosure in the presence of 
magnetic field and heat source. International 
Journal of Thermal Sciences (52), 161-175. 

Nithyadevi, N. and R. Yang (2009). Double 
diffusive natural convection in a partially 
heated enclosure with Soret and Dufour 
effects. International Journal of Heat and 
Fluid Flow (30), 902-910. 

Oreper, G. M. and J. Szekely (1983). The effect of 
an externally imposed magnetic field on 
buoyancy driven flow in a rectangular cavity. 
J. Cryst. Growth (64), 505-515. 

Ozoe, H. and K. Okada (1989). The effect of the 

direction of the external magnetic field on the 
three-dimensional natural convection in a 
cubical enclosure. Int. J. Heat Mass Transfer 
(32), 1939-1954. 

Sarris, I. E., S. C. Kakarantzas, A. P. Grecos and N. 
S. Vlachos (2005). MHD natural convection in 
a laterally and volumetrically heated square 
cavity. International Journal of Heat and Mass 
Transfer (48), 3443-3453. 

Sezai, I. and A. A. Mohamad (2000). Double 
diffusive convection in a cubic enclosure with 
opposing temperature and concentration 
gradients. Physics of Fluids (12), 2210-2223. 

Sheng, Ch. and R. Du (2011). Entropy generation of 
turbulent double-diffusive natural convection 
in a rectangle cavity. Energy (36), 1721-1734. 

Sheng, C. (2011). Entropy generation of double-
diffusive convection in the presence of 
rotation. Applied Mathematics and 
Computation (217), 8575-8597. 

Sun, H., G. Lauriat, D. L. Sun and W. Q. Tao 
(2010). Transient double-diffusive convection 
in an enclosure with large density variations. 
International Journal of Heat and Mass 
Transfer (53), 615-625. 

Trevisan, V. O. and A. Bejan (1992). Combined 
heat and mass transfer by natural convection in 
a vertical enclosure. International Journal of 
Heat and Mass Transfer 104-112. 

 

 


