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ABSTRACT 

In this paper the problem of unsteady nanofluid flow over a stretching sheet subject to couple stress effects is 
presented. Most previous studies have assumed that the nanoparticle volume fraction at the boundary surface 
may be actively controlled. However, a realistic boundary condition for the nanoparticle volume fraction 
model is that the nanoparticle flux at the boundary be set to zero. This paper differs from previous studies in 
that we assume there is no active control of the nanoparticle volume fraction at boundary. The spectral 
relaxation method has been used to solve the governing equations, moreover the results were further 
confirmed by using the quasi-linearization method. The qualitative and quantitative effects of the 
dimensionless parameters in the problem such as the couple stress parameter, the Prandtl number, the 
Brownian motion parameter, the thermophoresis parameter, the Lewis number on the fluid behavior are 
determined. 

Keywords: Nanofluid; Couple stress; Stretching surface; Vanishing nanoparticle flux; Spectral relaxation 
method. 

NOMENCLATURE ܾ& ܿare positive constants with dimensions timeିଵ DB  Brownian diffusion coefficient DT  thermophoresis diffusion coefficient f dimensionless velocity g acceleration due to gravity i time index during navigation L scale 
Le Lewis number N number of grid points NB Brownian motion parameter NT thermophoresis parameter p fluid pressure 
Pr Prandtl number 
S unsteadiness parameter 
t time   T fluid temperature T୵ temperature at the stretching surface Tஶ ambient fluid temperature T୰ୣ୤ reference temperature u & ݒ velocity components (along xand y ) Q୶ couple stress parameter 

α୫ effective thermal diffusivityη similarity variableθ Dimensionless temperatureݒ = ఓఘ kinematic viscosity of the fluid ݒ′ = చఘ couple stress viscosity ߫ couple stress viscosity coefficientߩ fluid density vߤ fluid viscosity(ρc)୤ effective heat capacity of the fluid (ρc)୮ effective heat capacity of the 
nanoparticle material τ parameter defined by (ρc)୤/(ρc)୮ ϕ Dimensionless nanoparticles
volume  ϕ෡ nanoparticle volume concentration ϕ෡ஶ ambient nanoparticle volume 
fraction ω Gauss-Lobatto pointsܷ stretching velocityV = V(u, v)  fluid velocity x & ݕ          Cartesian coordinates 
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1. INTRODUCTION 

In the past few years, convective heat and mass 
transfer in nanofluids has become a topic of major 
interest. The thermal conductivity of a fluid plays 
an important role in the heat transfer between the 
fluid medium and a solid surface. Conventional heat 
transfer fluids including oil, water and ethylene 
glycol, etc., are poor heat transfer fluids due to low 
thermal conductivities. Nanofluids are engineered 
by suspending metallic nanoparticles with sizes 
below $100nm$ in traditional heat transfer fluids. 
Heat transfer enhancement using nanofluids in 
convective boundary-layer flow over a vertical 
plate, stretching sheet and moving surfaces has been 
studied by numerous authors, and are discussed in 
the review papers Buongiorno (2006), Oztop  and 
Abu-Nada (2008), Daungthongsuk and Wongwises 
(2007, Nield and Kuznetsov (2009), Kuznetsov and 
Nield (2010a), Kuznetsov and Nield (2010b), 
Ahmad and Pop (2010), Khan and Pop (2010), 
Bachok, Ishak, and Pop (2010)andRashidi et al. 
(2014). 
 
The couple stress fluid model is one of numerous 
viscoelastic models that have been proposed to 
describe the characteristics and Behavior of non-
Newtonian fluids. The constitutive equations of 
these fluids are often very complex involving a 
large number of parameters. The couple stress fluid 
model is the simplest generalization of the classical 
theory of fluids which allows for polar effects such 
as couple stresses and body couples in the fluid 
medium. The theory of couple stress fluids was 
introduced in Stokes (1966) to explain the 
rheological behaviour of various complex non-
Newtonian fluids with body stresses and body 
couples which cannot be treated by the classical 
theory of continuum mechanics. Due to the 
rotational interaction of particles, the force-stress 
tensor is not symmetric and the flow behaviour of 
such fluids is not similar to Newtonian fluids. 
Couple stress fluids have applications in 
engineering and chemical industries. The peristaltic 
transport of a couple stress fluid in an asymmetric 
channel with an induced magnetic field has been 
considered by Nadeem and Akram (2011). An 
analysis of the effects of couple stresses on the 
blood flow through a thin artery with a mild 
stenosis was carried out by Sinha and Singh (1984). 
Malashetty, Pop, Kollur, and Sidram (2012) 
investigated double diffusive convection in a couple 
stress fluid saturated porous layer with Soret 
effects. Hayat et al. (2013) observed that the 
velocity and the boundary layer thickness decrease 
with the couple stress fluid parameter in his study of 
melting heat transfer in the boundary layer flow of a 
couple stress fluid. Khan, Mahmood, and Ara 
(2013) found the approximate solution of the couple 
stress fluid between expanding and contracting 
walls. An analysis has been provided for three-
dimensional magnetohydrodynamic flow of couple 
stress fluid with Newtonian heating by Ramzan, 
Farooq, Alsaedi, and Hayat (2013). Murthy and 
Nagaraju (2009) considered the flow of a couple 
stress fluid generated by a circular cylinder 

subjected to longitudinal and torsional oscillations, 
and the time dependence of the run up flow of a 
couple stress fluid between rigid parallel plates is 
examined by Devakar and Iyengar (2010) in which 
the flow was induced by a constant pressure 
gradient which is suddenly withdrawn and the 
parallel plates  set to move instantaneously with 
different velocities in the direction of the applied 
pressure gradient.    In this work we study the 
unsteady nanofluid flow over a stretching sheet in 
the presence of couple stress effects. To the best of 
our knowledge, most published work in the field of 
nanofluid, employed boundary conditions on the 
nanoparticle volume fraction analogous to those on 
the temperature thereby assuming that the 
nanoparticle volume fraction could be actively 
controlled at the boundary. A recent series of papers 
by Kuznetsov and Nield (2014), Nield and 
Kuznetsov (2014a), Nield and Kuznetsov (2014b), 
Nield and Kuznetsov (2014c) have suggested that a 
more realistic boundary condition is that the 
nanoparticle volume fraction flux at the boundary 
be set to zero. These boundary conditions have not 
been used on previous studies on couple stress 
fluids. 

2. MATHEMATICAL 
FORMULATION  

Consider the problem of two-dimensional flow of 
unsteady incompressible nanofluid over a stretching 
sheet subject to couple stress effect see Fig. (1). 
 

Fig. 1. Schematic diagram for the 
problem. 

 
The continuous sheet isplaced at ݕ = 0 and moves 
parallel to the ݔ − ܷ ,with velocity  ݏ݅ݔܽ = 1ݔܾ − ݐܿ                                                                    (1) 

where ܾ and ܿ are constants and ݐ represents time. 
The boundary layer temperature and nanoparticle 
volume concentration areܶ and ߶෠ respectively. The 
ambient fluid temperature and nanoparticle volume 
fraction are ஶܶand ߶෠ஶrespectively. At the surface, 
both the nanofluid and the sheet arekept at a 
constant temperature ௪ܶ where ௪ܶ ൐ ஶܶis for 
aheated stretching surface and ௪ܶ ൏ ஶܶcorresponds 
to acooled surface.The boundary layer equations 
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governing the flow of an incompressible couple 
stress fluid are (see Hayat et al. (2013)) ݀݅ݒ ܸ = ߩ  (2)                                                                     ,0 ݐܦܸܦ = ݌∇− − ∇)ߤ × ∇ × V)             −߫(∇ × ∇ × ∇ × ∇ × ܸ)                         (3) 

The continuity, momentum, energy and 
nanoparticles fraction equations for the nanofluid 
can be expressed as, ப୳ப୶ + ப୴ப୷ = 0                                                                    (4) 

ப୳ப୲ + u ப୳ப୶ + v ப୳ப୶ = ν பమ୳ப୷మ  −  ν′ பర୳ப୷ర ,      (5) 

பTப୲ + u பTப୶ + v பTப୷ = α୫ பమTப୷మ  + τ ൤DB பம෡୷ பTப୷ +DTTಮ ቀபTப୷ቁଶ൨,                                                (6) ∂ϕ෡∂t + u ∂ϕ෡∂x + v ∂ϕ෡∂y = DB ∂ଶϕ෡∂yଶ + DTTஶ ∂ଶT∂yଶ , 
equations (4)-(7) are subject to the boundary 
conditions 

(7) v = 0, u = U, T = Tୱ,  DB பம෡ப୷ + DTTಮ பTப୷ = 0   on y =0                                                                             (8) u → 0, T → Tஶ, ϕ෡ → ϕ෡ஶ , as y → ∞                     (9) 

For two-dimensional flow, it is convenient to 
introduce the stream functionψ(x, y, t)and the 
following similarity transformationsψ(x, y, t) =ට ୠ୴ଵିୡ୲ xf(η), 
ߟ   = ට ௕௩(ଵି௖௧)   ,ݕ 

,ݔ)ܶ ,ݕ (ݐ = ஶܶ + ௥ܶ௘௙ ቂ௕௫మଶఔ ቃ (1 − ,ݔ)෠߶ ,(ߟ)ߠయమି(ݐܿ ,ݕ (ݐ = ߶෠ஶ + ௥௘௙ܥ ቂ௕௫మଶఔ ቃ (1 −  ,(ߟ)߶యమି(ݐܿ
Equations (5)-(7) can now be presented in the form ݂ᇱᇱᇱ − ݂ܳ(ହ) + ݂݂ᇱᇱ − ݂′ଶ − ܵ ൬݂ᇱ + 12 ൰′′݂ߟ = 0, 

ᇱᇱߠ (10) + ݎܲ ቂ݂ߠᇱ − 2݂ᇱߠ − ௌଶ ߠ3) + ᇱ)ቃߠߟ + ௕ܰ߶ᇱߠᇱ +௧ܰߠ′ଶ=0,                                                              (11) ߶ᇱᇱ + ݁ܮ ൤݂߶ᇱ − 2݂ᇱ − 2ܵ (3߶ + ൨(߶ߟ + ௧ܰ௕ܰ ′′ߠ = 0, 
(12) 

with boundary conditions  ݂ = 0, ݂ᇱ = ߠ  = 1, ௕ܰ߶ᇱ + ௧ܰ ߠ′ = 0,            (13) ݂ᇱ → 0, ߠ → 0, ߶ → ߟ ݏܽ 0 → ∞,              (14) 

where the couple stress parameterܳ, the 
dimensionless measure of unsteadiness ܵ, the 
Prandtl number ܲݎ, the Brownian motion parameter 

௕ܰ, the thermophoresis parameter ௧ܰ and the Lewis 
number  ݁ܮ are defined as ܳ௫ = ௩ᇲ௎௩మ௫ , ܵ = ௖௕ , ௧ܰ = ఛ஽೅(்ೢ ି ಮ்)ಮ்ఈ೘ ,, 

௕ܰ = ஻߶෠௥௘௙ܦ߬ ቂ௕௫మଶ௩ ቃߙ௠ (1 − ݎܲ   ,యమି(ݐܿ =  ఔఈ೘ , ݁ܮ = ఔ஽ಳ,    

3- NUMERICAL SOLUTION 

In this section, we apply the spectral relaxation 
method (SRM) to solve the nonlinear ODEs (10) - 
(12) along with boundary conditions (13)-(14). For 
the implementation of the spectral collocation 
method, it is convenient to reduce the order of 
equation (10) from five to four. To this end, we 
set݂ᇱ = ݃, so that equation (10) becomes −ܳ݃ᇱᇱᇱᇱ + ݃ᇱᇱ + ൬f + 12 ൰ߟ ݃ᇱ −  ܵ݃ = ݃ଶ,  ݃(0) = 1, g(∞) = 0,                                         (15) ݂ᇱ = ݃, f(0) = 0,                                                (16) 

The spectral relaxation method algorithm (see 
Motsa, Dlamini, and Khumalo (2012), Motsa and 
Makukula (2013), Motsa, Dlamini, and Khumalo 
(2013)) first decouples the system of equations (10) 
- (12).  From the decoupled equations an iteration 
scheme is developed by evaluating linear terms in 
the current iteration level which is denoted by the 
subscript ݎ + 1 and nonlinear terms in the previous 
iteration level denoted by the subscriptݎ. Applying 
the SRM to (11) - (12) and (15) - (16) gives the 
following linearordinary differential equations; −ܳ݃௥ାଵᇱᇱᇱᇱ + ݃௥ାଵᇱᇱ + ቀ ௥݂ + ଵଶ ቁߟ ݃௥ାଵᇱ −  ܵ݃௥ାଵ = ݃௥ଶ,  

                   (17) 

௥݂ାଵᇱ = ݃௥ାଵ, ௥݂ାଵ(0) = ௥ାଵᇱᇱߠ (18)                                  ,0 + ݎܲ ቀ ௥݂ାଵ − ଵଶ ߟܵ + ௕ܰ߶௥ᇱ ቁ ௥ାଵᇱߠ ݎܲ− ቀ2݃௥ାଵ + ଷଶ ܵቁ ௥ାଵߠ = − ௧ܰߠ′௥ଶ,                         (19) ߶௥ାଵᇱᇱ + ݁ܮ ቀ ௥݂ାଵ − ଵଶ ቁߟܵ ߶௥ାଵᇱ − ݁ܮ ቀ2݃௥ାଵ +ଷଶ ܵቁ ߶௥ାଵ = − ே೟ே್ ௥ᇱᇱ,                                            (20) ݃௥ାଵ(0)ߠ = ௥ାଵ(0)ߠ   ,1 = 1,   ௕ܰ߶௥ାଵᇱ (0) +                       ௧ܰߠ௥ାଵᇱ (0) = 0,                                (21) ݃௥ାଵ(∞) = 0, (∞)௥ାଵߠ = 0, ߶௥ାଵ(∞) = 0.    (22)  

Starting from given initial approximations ଴݂,  ݃଴,ߠ଴  ܽ݊݀ ߶଴, the iteration schemes (17) - 20) can be 
solved iteratively using a spectral collocation 
method. In applying the spectral collocation 
method, we find the unknown function at the 
collocation points by requiring that equations (17) -
(20) be satisfied exactly at these points. A 
convenient set of collocation points are the Gauss-
Lobatto points defined by 

௝߱ = cos గೕே ,      j = 0, 1, … , N                              (23) 
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For  convenience, in numerical computations, the 
semi-infinite domain is approximated by the 
truncated domain ሾ0,  ሿ and using thelinearܮ
transformation ߟ = ߱)ܮ + 1) 2⁄ , we convert ሾ0,  ሿܮ
intothe interval ሾ−1,1ሿ in which the spectral method 
can be used,where ܮ =  ஶis a finite numberߟ 
selected to be largeenough to represent the behavior 
of the flow properties when ߟis very large. The 
derivative are defined as ௗ௙ௗఎ = ∑ ௝௞݂(߱௞)ே௞ୀ଴ܦ = ,݂ܦ  ݆ = 0, 1, … , ܰ       (24) 

where ܰ + 1is the number of collocation points, ܦ = ܦ2 ⁄ ܮ ܨ  ݀݊ܽ =  ሾ݂(߱଴),݂(߱ଵ), … , ݂(߱ே)ሿ்is the vector of unknown 
functions at the collocation points. Applying the 
Chebyshevspectral collocation method to the 
system (17) - (20) we obtain the following matrix 
equations ܣଵ,௥݃௥ାଵ = ܴଵ,௥,   ݃௥ାଵ(߱ே) = 1, ݃௥ାଵ(߱଴) = ܦ 0 ௥݂ାଵ = ݃௥ାଵ,   ௥݂ାଵ(߱ே) = ௥ାଵߠଶ,௥ܣ ,0 = ܴଶ,௥,   ߠ௥ାଵ(߱ே) = ௥ାଵ(߱଴)ߠ,1 = ଷ,௥߶௥ାଵܣ ,0 = ܴଷ,௥, ௕ܰ߶௥ାଵ(߱ே) + ௧ܰ߶௥ାଵ(߱ே) ߶௥ାଵ(߱଴) = 0, 
where  ܣଵ,௥ = ସܦܳ− + ଶܦ + ݀݅ܽ݃ ቂ ௥݂ − ଵଶ ቃߟܵ ܦ ,ܫܵ− ܴଵ,௥ = ݃௥ଶ                                                       (25) ܣଶ,௥ = ଶܦ + ݃ܽ݅݀  ݎܲ ቂ ௥݂ାଵ − ଵଶ ߟܵ + ௕ܰ߶௥ᇱ ቃ ܦ −        ቂ2 ௥݂ାଵ + ଷଶ ܵቃ ,ܫ ܴଶ,௥ = − ௧ܰߠ′௥ଶ                        (26) ܣଷ,௥ = ଶܦ + ݃ܽ݅݀  ݁ܮ ቂ ௥݂ାଵ − ଵଶ ቃߟܵ ܦ − ቂ2 ௥݂ାଵ + ଷଶ ܵቃ ,ܫ ܴଷ,௥ = − ே೟ே್   ௥ᇱᇱ                        (27)ߠ

Here ܫis an (ܰ + 1) × (ܰ + 1)diagonal matrix 
and ݀݅ܽ݃ ሾሿdenotes a diagonal matrix.  Starting 
from stable initial approximations ଴݂,  ݃଴,ߠ଴  ܽ݊݀ ߶଴ whichsatisfy the boundary conditions of 
governing equations: 

଴݂ = ቀఎమ଺ − 1ቁ ݁ିఎ                                              (28) ݃଴ = ቀ1 + ఎଷ − ఎమ଺ ቁ ݁ିఎ                                       (29) ߠ଴ = ݁ିఎ,   ߶଴ =  − ே೟ே್ ݁ିఎ                                (30) 

4- RESULTS AND DISCUSSION 

To obtain clear insights into the physics of the 
problem of unsteady nanofluid flow over a 
stretching sheet with couple stresses, the set of 
ordinary differential equations (10) – (12) were 
solved using the spectral relaxation method. We 
determined through numerical experimentation 
that ߟஶ = 20with grid pointsܰ = 100, gave 
sufficient accuracy for the spectral 
relaxationmethod. The effects of the fluid 
parameters such as the thermophoresis 
parameter ௧ܰ, the Brownian motion ௕ܰ  on 
thevelocity, temperature and nanoparticle profiles 

have beendetermined. 
Table 1 Effects of ࡿ, :૙ = ࢚ࡺ  when (૙) ′′ࢌ on ࡽ ૞, ࢈ࡺ =  ૙: ૞, ࢘ࡼ =  ૚૙ and ࢋࡸ =  ૚૙. 

SRM                                QLM 
S              Q                Ord 7             Ord 8 

 
0.2  0.1   0.8310757  0.8310757  0.8310757 
0.4  0.1   0.8640531  0.8640531  0.8640532 
0.6  0.1   0.8959227  0.8959227  0.8959227 
0.8  0.1   0.9263125  0.9263125  0.9263125 
1.0  0.1   0.9551785  0.9551785  0.9551785 
1.2  0.1   0.9825941  0.9825941  0.9825941 
1.4  0.1   1.0086687  1.0086687  1.0086687 
1.6  0.1   1.0335168  1.0335168  1.0335168 
1.8  0.1   1.0572473  1.0572473  1.0572473 
2.0  0.1   1.0799590  1.0799590  1.0799590 

 
0.2  0.1   0.8310757  0.8310757  0.8310757 
0.2  0.2   0.7746540  0.7746540  0.7746540 
0.2  0.3   0.7393373  0.7393373  0.7393375 
0.2  0.4   0.7135600  0.7135600  0.7135601 
0.2  0.5   0.6932968  0.6932968  0.6932969 
0.2  0.6   0.6766463  0.6766463  0.6766463 
0.2  0.7   0.6625540  0.6625539  0.6625540 
0.2  0.8   0.6503734  0.6503734  0.6503734 
0.2  0.9   0.6396800  0.6396800  0.6396800 
0.2  1.0   0.6301808  0.6301809  0.6301809 

 
Table 2.Effects of ࡿ, ,ࡽ  (૙) ′ࣂ− on࢚ࡺ and࢈ࡺ

when࢘ࡼ =  ૚૙ and ࢋࡸ =  ૚૙. 

 
 
In order to have a sense of the accuracy and 
reliability of the spectral relaxation method, 
benchmark results were obtained. Tables (1) and (2) 
give a comparison between the results obtained 
using the spectral relaxation method and the quasi-
linearization technique.  The two sets of results are 
comparable up to six decimal places for all orders 
of the SRM from order five onwards. 

Table (1) shows the effects of the unsteadiness 
and couple stress parameters on the skin-friction 
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coefficient. It is evident that increasing ܵleads to 
an increase in the skin frictioncoefficient. On the 
other hand, increasing ܳleads to increases in skin 
friction coefficient. Table (2) shows the effects of ܵ, ܳ, ௧ܰ ܽ݊݀ ௕ܰon the Nusselt number. Here the 
Nusselt number increases as both the 
unsteadiness parameter and the couple stress 
parameter increase. We observe that increasing 
the thermophoresis parameter ௧ܰ increases the 
heat transfer coefficients increasewhile no effect 
occurs as the Brownian motion parameter 
increases. 
 

 
Fig. 2. Effect of the couple stress parameter ࡽand the unsteadiness parameter ࡿ on (ࣁ) ࢌ for ࢚ࡺ = ૙. ૞, = ࢈ࡺ  ૙. ૞, = ࢘ࡼ  ૚૙ and ࢋࡸ =  ૚૙. 

 
Figure 2 shows the effect of the couple stress 
parameterܳ and the unsteadiness parameter ܵ on 
velocity profilesrespectively within the boundary 
layer. We observe that, asexpected, strengthening 
the couple stress slows down the fluid motion due 
to an increasing drag force which is equivalent to an 
apparent decrease in the fluid viscosity. The 
velocity decreases with increasing ܳ until we obtain 
back flow in the range 2 ൑ ߟ ൑ 8.  We also observe 
that the unsteadiness parameters lows the motion of 
the fluid within the boundary layer. It is clear that 
the boundary layer thickness reduces with 
increasingܵ. 

Figure 3 shows the effect of the couple stress 
parameter ܳ on the temperature and mass volume 
fraction profiles respectively. Increasing ܳleads to 
an increase in the thicknessof both the thermal and 
mass volume fraction boundary layers, 
henceincreasing ܳreduces both the temperature 
and the mass volumefraction within the boundary 
layer. 

 

 

 
Fig. 3. Effect of the couple stress parameter ࡽon (ࣁ)ࣂ and ࣘ(ࣁ) for ࡿ =  ૙. ૛, ࢚ࡺ = ૙. ૞, ࢈ࡺ =૙, ૞, ࢘ࡼ = ૚૙ and ࢋࡸ =  ૚૙. 
 

 

 
Fig. 4. Effect of the unsteadiness parameter ࡿon (ࣁ)ࣂ and ࣘ(ࣁ)ࡽ = ૙. ૚, ࢚ࡺ =  ૙. ૜, ࢈ࡺ =૙. ૞, = ࢘ࡼ  ૚૙andࢋࡸ =  ૚૙. 

The effect of the unsteadiness parameter ܵ on the 
temperature andmass volume fraction are shown 
in Figure 4. We observe thatas ܵincreases, the 
boundary layer velocity decreases causing 
adecrease in the heat and nanoparticle transfer 
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rates, hence the temperature and the nanoparticle 
inside boundary layer reduce. The influence of the 
thermophoresis parameter ௧ܰ on the temperature 
and nanoparticle profiles is given in Figure 5. Fast 
flowaway from the stretching surface exists due to 
the thermophoresis force generated by the 
temperature gradient. Therefore as ௧ܰincreases 
more a heated fluid travel away from the surface, 
hencethe temperature within the boundary layer 
increases. The fast flowfrom the stretching sheet 
carries with it nanoparticles leading to an increase 
in the mass volume fraction boundary layer 
thickness. 

 

 

 
Fig. 5. Effect of the thermophoresis parameter ࢚ࡺon (ࣁ)ࣂ and ࣘ(ࣁ)for ࡽ = ૙, ૚, ࡿ = ૙, ૛,࢈ࡺ = ૙. ૞, ࢘ࡼ = ૚૙ and ࢋࡸ = ૚૙. 

 

5. CONCLUSION 

In this paper we have studied the flow of an 
unsteady nanofluid subject to couple stress effects. 
Numerical solutions of the equations governing the 
flow were found using the spectral relaxation 
method (SRM). The validation of the numerical 
results was done via a careful comparison between 
the solutions obtained using 

The effect of the random motion of nanoparticles 
suspended in the fluid on the nanoparticle volume 
fraction is shown in Figure 6. It is evident that 
increasing ௕ܰ  leads to a decrease in the mass 
volume fraction. Moreover, Figure 6illustrates the 
effect of the Lewis number ݁ܮon the mass 
volumefraction within boundary layer. Increasing ݁ܮleads to a decreasein the nanoparticle volume 
fraction within the thermal boundarylayer, this, in 
turn, leads to a decrease in the mass volume 

fraction gradient at the sheet surface. 
 

 

 
Fig. 6. Effect of the Brownian motion parameter ࢈ࡺ and the Lewis ࢋࡸ ࢘ࢋ࢈࢓࢛࢔ onࣘ(ࣁ)forࡽ =૙. ૚, ࡿ = ૙. ૛, ࢚ࡺ = ૙. ૞ and ࢘ࡼ = ૚૙. 
 

 
Fig. 7. Effect of the Prandtl number ࢘ࡼ on(ࣁ)ࣂ 

andࣘ(ࣁ)forࡽ = ૙, ૚, ࡿ = ૙, ૛, ࢚ࡺ = ૙. ૞, ࢈ࡺ =૙. ૞and = ૚૙ . 
 

Figure 7 illustrates the variation of the temperature 
profile (ߟ)ߠ and mass volume fraction profile ߶(ߟ)for some values of Prandtl number ܲݎ. The 
results shows that increasing ܲݎreduces the 
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temperature profile, while the oppositeresults 
occurs when we vary the mass volume fraction with ܲݎ. 

The results in Figures 3 - 7 show that the 
nanoparticle volume fraction profiles starts from 
negative values and later become positive. This, as 
explained in Kuznetsov and Nield (2010b),is due to 
the fact the effect of thermophoresis is such that an 
elevation (above the ambient value of the surface 
temperature)results in a depression in the relative 
value of the nanoparticle fraction at the sheet. 

the spectral relaxation  and the quasi-linearization 
methods. We have presented the results graphically 
in order to illustrate the effects of various fluid 
parameters on the velocity, thermal and 
nanoparticle volume fraction profiles. The 
nanoparticle profiles are initially negative and 
become positive due to the effect of 
thermophoresis. The velocity is reduced by 
increasing the unsteadiness parameter. The 
temperature as well as the mass volume fraction 
decrease with an increase in the unsteadiness 
parameter. The stronger couple stress reduces the 
nanofluid velocity, as well as increasing the 
thickness of both the thermal and mass volume 
fraction boundary layers. The effect of the 
Brownian motion on the mass volume fraction 
within the boundary is much more significant rather 
than on the temperature. 
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