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ABSTRACT

This paper presents numerical study of an oval-sail, a bluff-body equipped with a grid all along the
span. Suction based flow control is applied to this body that is developed for wind assisted ship
propulsion. First, a choice of numerical turbulence model is discussed through results of an oval-sail
without suction. Three turbulence models are applied: the Ri j SSG, the Ri j EBRSM and the v2 f
model. Then, computations are performed for the oval-sail fitted with suction grid. These last simu-
lations are carried out with the low-Reynolds-number Ri j EBRSM turbulence model. The influence
of the grid geometry on the oval-sail aerodynamic performances is highlighted. All simulations are
carried out for the sail set at zero incidence. The Reynolds number based on the free stream velocity
and the profile chord is Re = 5105. Results are compared to available experimental data.
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NOMENCLATURE

c chord
CD drag coefficient
CDS drag coefficient of the sail with suction
CL lift coefficient
CLS lift coefficient of the sail with suction
CP pressure coefficient
CQ suction coefficient
Cµcyl momentum coefficient
D cylinder diameter
f vortex shedding frequency
Fx X component of the fluid force
Fy Y component of the fluid force
Go Gortler number
I turbulence intensity
k∞ free stream turbulence
L span of the sail
Lre f reference lenght
ls slot width
n slot number
N cell number
Ncyl cell number at the cylinder surface

Nz cell number in the spanwise direction
p pressure at the sail surface
p∞ pressure in the free stream
Re Reynolds number
r11 streamwise Reynolds stress component
r12 shear stress component
r22 transverse Reynolds stress component
St Strouhal number
t time
t∗ adimensional time
u velocity
Uasp suction velocity
U∞ free stream velocity

∆t time step
∆t∗ adimensional time step
θ angle width of the suction grid
θcyl suction location on the cylinder surface
µ laminar dynamic viscosity coefficient
µt turbulent dynamic viscosity coefficient
ρ fluid density
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1. INTRODUCTION

In recent years, there has been a renewed inter-
est in wind assisted ship propulsion. Therefore,
flow control systems are applied to improve the
aerodynamic performances of the profiles used
for that purpose. Depending on the target appli-
cation, there are different techniques to control
the boundary layer, passive or active (Muddada
and Patnaik 2010), based on blowing or suction
(Favier and Kourta 2006), (Huang et al. 2004),
(Viswanath et al. 2000) or on synthetic jets (M.
Amitay and A. Glezer 2002). Flow control of
the wake behind circular cylinder has been ex-
tensively investigated to reduce vortex shedding
and thereby flow-induced vibrations. For that
purpose, Bao and Tao (2013) used passive dual
plates attached at the rear surface of a cylinder,
Lim and Lee (2004) installed O-rings as surface
protrusions along the span of a circular cylin-
der or more recently, Reddy et al. (2013) ap-
plied two small counter-rotating control cylin-
ders in the vicinity of a main circular cylinder.
In aeronautics, the issues are to delete or delay
the separation of the boundary layer in order to
enhance the aerodynamic profile performances
(by reducing the drag and improving lift force)
and to reduce noise (Favier and Kourta 2006).
When the control is applied in the automotive
industry, similar intended effects are expected
(Boccaletti et al. 2009). In wind turbines, aero-
dynamic control is mainly used to keep rota-
tional speed and power output of the turbines
within a certain range. Then usually, active con-
trol based on blade pitch variation or passive
control based on dynamic stall are used. In Bai
et al. (2011), two types of flow control for wind
turbine airfoils, blade airfoil with flow deflector
and blade tip with vortex diffusers, were pro-
posed to increase lift, reduce drag, lower noise,
avoid separation at a high angle of attack and
delay stall.

In devices developed for ship propulsion, the in-
tended effect is to reduce drag and improve the
lift force. Among the developed devices used
in wind assisted ship propulsion, some of them
were based on Magnus effect as for the rotor-
driven catamaran developed at the University of
Flensburg (Germany) or the cargo ship of EN-
ERCON (Ireland). A review of Magnus effect
research and development in aeronautics can be
found in Jost Seifert (2012). Other wind as-
sisted ship propulsion devices were based on
suction control as in the Alcyone turbo-sail
of Malavard (1984). The latter showed that
the turbo-sail lift coefficient could attain val-
ues larger than 8.0 at high incidence. These re-
sults were obtained by calculations based on po-

(a)

(b)

Fig. 1. Scheme of the oval-sail.

tential flow theory and wind tunnel experiment.
The influence of the angle of attack and that of
the suction flow rate were studied. However,
except the work presented by this author, to the
authors knowledge, there are no extensive study
(numerical or experimental) applied on such
body. Moreover, in Malavard (1984), the shape
of the turbo-sail and the geometry of the grid
intake are not precisely defined. Furthermore
this turbo-sail is equipped with a spoiler which
causes complex flows in the wake. Therefore,
accurate predictions of the fluid flow are needed
if one intend to utilize such device. This is the
aim of the present study where numerical simu-
lations of the flow around an an oval-sail are car-
ried out. The oval-sail section is similar to the
Alcyone turbo-sail, with a thickness of 66 %.
This bluff body is equipped with a flap at the
trailing edge and with an intake grid on the up-
per surface, all along the span. The oval-sail is
hollow, the interior being cylindrical (Fig. 1).
Boundary layer suction control is applied, air
suction being carried out continuously at the cir-
cular base.

The work presented here focuses on the flow
control and the grid intake geometry on the
aerodynamic performances of the oval-sail. It
is noteworthy that this is not a closed-loop con-
trol investigation. This study is conducted in an
open-loop manner where the parameters remain
fixed regardless of changes in the state of the
flow.

The paper is organized as follows: The numer-
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ical approach with details of turbulence mod-
els are depicted in section 2.. In section 3.,
the results obtained for a circular cylindre are
presented as a model validation test. Then in
section 4., lift and drag coefficients, the mean
flow topology and vortex shedding frequency
obtained for the oval sail without suction with
three turbulence models are compared. The
influence of the grid intake geometry on the
aerodynamic perfomance of the oval-sail is dis-
cussed in section 5.. Calculated lift and drag
coefficients are compared to available data.

2. NUMERICAL APPROACH

The numerical simulations of the flow around
the body are based on the solution of the un-
steady Reynolds averaged Navier-Stokes equa-
tions. As limited data are available in the litera-
ture, three turbulence models are compared: the
k−ε/v′2 f (or v2 f ) model as developed by Lau-
rence et al. (2004), the Reynolds Stress Model
of Speziale et al. (1991) or Ri j SSG model and
the Elliptic-Blending Reynolds Stress Model or
Ri j EBRSM of Manceau and Hanjalic (2002).
These models are selected for the following rea-
sons: According to Basara et al. (1997), the Ri j
SSG model improves significantly the predic-
tions of steady and unsteady flows compared to
the k− ε model and the flow field is reasonably
well calculated. Thus it provides reasonable re-
sults for a wide range of applications as recir-
culating flows or vortex shedding calculations,
so it would be suitable for the flow computa-
tions around the oval sail. However, the Ri j SSG
model is a high-Reynolds-numbers turbulence
model. Therefore for better resolution of near
wall effects, the Ri j EBRSM, a low-Reynolds-
number model based on Reynolds stress trans-
port equations, is also used. The v2 f model
is a low-Reynolds numbers eddy viscosity tur-
bulence model where near wall treatments are
similar to the Ri j EBRSM model. When using
the v2 f model one solves less equations than
with Ri j models but the former as the EBRSM
are recent models. The Ri j SSG model is than
used as reference model. The three turbulence
model equations as implemented in the CFD
code (code saturne version 2.3) are describe in
the next section.

2.1 Turbulence Models

The v2 f model It is a low-Reynolds-number
turbulence model that uses an elliptic relaxation
approach which accounts for the wall blocking
effects on the Reynolds stresses. This model is
based on three transport equations for k, the tur-
bulent kinetic energy, ε, the turbulent dissipa-

tion, v′2, the normal component of the Reynolds
stress tensor and on an elliptic equation for f ,
the source term of v′2. Far from the wall, it is
assumed that the turbulence is isotropic and the
standard k− ε equations are then applied. Dif-
ferent versions of the v2 f model have been de-
veloped since it was introduced by Durbin. The
model used in this work was proposed by Lau-
rence et al. (2004). It is based on a change
of variables from v′2 to φ = v′2/k that lead to
a boundary value problem with homogeneous
boundary conditions, fixed-sign source terms
and a modified equation for f being f to im-
prove the model robustness. The equations of
this model write as:
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where P = 1/2Pkk represents the turbulent en-
ergy production. L and τ are the turbulent lenght
and time scale respectively defined as:

L =CL max
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k3/2

ε
,Cη
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]
(5)
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The model constants are summarized in Table 1
and the term Cε1 is given by the following rela-
tion:

Cε1 =C0
ε1

[
1+a1

√
1
φ

]
(7)
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Table 1 Constants used for the vvv222 fff model
a1 C1 C2 CL Cτ

0.05 1.4 0.3 0.25 6
Cη C0

ε1 Cε2 Cµ σk
110. 1.4 1.85 0.22 1.00

The Ri j SSG model This model is quadrat-
ically non linear in the anisotropy tensor
(Speziale et al. 1991). It uses a Reynolds
stress approach that improve the pressure-rate-
of strain in the Reynolds stress equations by
taking into account the non-linear return to
isotropy. The transport equation for ri j writes
as:

∂ri j

∂t
+uk

∂ri j

∂xk
= Dν

i j +DT
i j +ϕi j +Pi j + εi j (8)

where Dν
i j and DT

i j are the viscous and turbulent
diffusion term respectively, Pi j the production
term, εi j the dissipation term and ϕi j is the pres-
sure redistribution term:
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where bi j is the anisotropic Reynolds tensor
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ri j

k
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Si j and Ωi j are mean stress and rotational tensor,
respectively:
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The production and dissipation terms of the ri j
equation write as:
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The ε equation of this model is:
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Cε1 is given by the relation:

Cε1 =C0
ε1

[
1+a1

ε
k

]
(11)

The constants of this model are summarized in
Table 2.

Table 2 Constants used for the Ri j SSG
model

C1 C∗
1 C2 C3 C∗

3
1.7 -1.05 0.9 0.8 0.65
C4 C5 Cε C0

ε1
Cε2

0.625 0.20 0.18 1.44 1.83

The EBRSM model This model adds a
blending parameter between the near wall re-
gion and the homogeneous one to the pressure
and dissipation terms. In the transport equation
for ri j, the pressure redistribution term, ϕi j, and
the dissipation term, εi j, are modified as follow:

ϕi j = (1−α3)ϕw
i j +α3ϕh

i j (12)

εi j = (1−α3)εw
i j +α3εh

i j (13)

where the indices w and h designate the near
wall and homogeneous term respectively. The
blending parameter α is obtained from the solu-
tion of an elliptic equation:

α−L2∇2α = 1 (14)

The near wall terms are described by the follow-
ing equations:

εw
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k
ε (15)

ϕw
i j =
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k

(
rikn jnk + r jknlnk −

1
2

rklnknl (nin j −δi j)

)
(16)

where n is the unit wall-normal vector:

n =
∇α
∥∇α∥

(17)

The expressions of εh
i j and φh

i j are based on the
Ri j SSG model:

εh
i j =

2
3

εδi j (18)
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The ε equation of this model is:
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where Cε1 is defined by the following equation:

Cε1 =C0
ε1

[
1+a1

(
1−α3) P

ε

]
(21)

The other terms have the same definition as
above however the model constants are differ-
ent (see Table. 3).

Table 3 Constants used for the RRRi j EBRSM
C1 C∗

1 C2 C3 C∗
3 C4

1.7 0.9 0. 0.80 0.65 0.625
C5 a1 CL Cτ Cη

0.20 0.10 0.122 6.0 80

2.2 Solved Equations

It is assumed that local velocities and Mach
numbers are low so that compressibility effects
are neglected. The generic formulation of the
transport equation writes as:

∂ρψ
∂t

+div((ρ⃗v)ψ) =div
(

Γ ⃗gradψ
)
+Pψ +Dψ

+S (22)

where: ψ = {1,u,v,w,k,ε,φorri j}. When ψ is
one of the time averaged velocity components,
Pψ = − ⃗grad p, Dψ = 0 and S = 0. For turbu-
lence equations (ψ= k,ε,φ or ri j), Pψ is the pro-
duction term, Dψ is the destruction term and S
is the source term.

2.3 Boundary Conditions

Inlet conditions are specified at West bound-
ary of the computational domain having de-
fined the free stream velocity, U∞ and turbu-
lence quantities, the free stream turbulence en-
ergy, k∞ and the dissipation rate of turbulence,
ε∞. The latter are defined as k∞ = 1.5U2

∞ I2

and ε∞ = 10Cµ k3/2
∞ /(κLre f ) where I is the tur-

bulence intensity, Lre f is the reference chord
length (Lre f = c), Cµ and κ are constants (Cµ =

0.9 and κ = 0.42). Outflow condition is de-
fined at East boundary by setting the gradient of
all variables according to the direction of flow
to zero. The no-slip boundary condition is im-
posed at the oval-sail surface. A symmetry con-
dition is applied on the other boundaries.

2.4 Algorithm and Schemes

The equations are solved by the finite volume
method with a fractional time step integration,
similar to SIMPLEC algorithm. Variables are
collocated at the cell centers. Rhie and Chow
interpolation is then used to stabilize pressure
oscillations (Archambeau et al. 2004). An it-
erative reconstruction scheme is used to calcu-
late the gradients at the interfaces so that the
consistence of the diffusive and the convective
fluxes are improved and the order of the nu-
merical scheme for the regions where meshes
are non-orthogonal increases (Chaabane et al.
2014). To avoid numerical diffusion, a sec-
ond order UPWIND scheme is applied for the
spatial discretization of momentum equations.
The convection terms of the turbulent transport
equations are discretizd with a first order up-
wind scheme (it was reported by Hirsch and
Tartinville (2009) that the comparison of sec-
ond order discretisations with first order did not
show any significant difference in the results).
A first order implicit time integration scheme is
used.

All computations are performed with a time step
∆t = 10−3 s. Initial conditions are set to the free
stream velocity and turbulence values.

2.5 Relevant Parameters

Fluid forces are calculated by integrating along
the sail surface the pressure and viscosity ef-
fects. The lift and drag coefficients are then de-
fined as:

CL =
Fy

0.5ρU2
∞ Lc

(23)

CD =
Fx

0.5ρU2
∞ Lc

(24)

where L is the sail span and Fy and Fx are the
fluid forces exerted on the body, respectively, in
the normal and stream-wise directions. Time-
averaged coefficients are computed for a period
beginning when periodic vortex shedding oc-
curred.

The vortex shedding frequency f obtained from
FFT analysis of the lift coefficient time sig-
nal is described by the corresponding non-
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dimensional Strouhal number:

St =
f c
U∞

(25)

The pressure distribution at the oval-sail surface
is describe by the pressure coefficient:

CP =
p− p∞

1/2ρU2
∞

(26)

where p is the pressure at the sail surface and
p∞ is the freestream pressure.

In all results discussed here, the magnitude of
velocity is normalized by U∞, the vorticity is
presented as dimensionless ω∗ = ωc/U∞, the
time t is in the non-dimensional form t∗ =
U∞ t/c and iso-contours are depicted on a plane
located at mid-span of the sail (z = L/2).

3. MODEL VALIDATION

Computational grid and turbulence model vali-
dations are performed for a circular cylinder, the
turbulence being represented by the Ri j EBRSM
model. These simulations are carried out for an
isolated cylinder and for a cylinder with suction
control. The Reynolds number based on the free
stream velocity and the cylinder diameter (D) is
Re = 105. The obtained results are compared
to experimental data reported by Fournier et al.
(2005).

Computational grid The cylinder is set at
the center of an H-domain which extends on
a distance equivalent to 5D upstream and 30D
downstream. South and North domain bound-
aries are located within ±12.5D. The cylinder
span is 4D. To check the convergence of the so-
lution and ensure grid-independency of the re-
sults, three grid resolutions are considered. The
relevant details of every mesh are summarized
in the Table 4 where Ncyl and Nz indicate the
number of cells at the cylinder surface and span
respectively and N is the total number of cells.
The meshes are not uniform, small cells were
built near the cylinder wall so that the dimen-
sionless height is y+ ≈ 1.

Table 4 Characteristic of the cylinder grids
Ncyl Nz N

Mesh1 256×15 15 1052190
Mesh2 512×15 15 1720110
Mesh3 512×30 30 3440220

Model validation is performed for the cylinder
without control and with suction control. Suc-
tion is applied on a small surface of a width

ls = 1.4◦ located at θcyl = 90◦ on the upper
surface of the cylinder. As in Fournier et al.
(2005), a momentum coefficient is defined as
Cµcyl = (2ls/D) (Uasp/U∞)

2 where Uasp is the
suction velocity. Computations with suction
control are carried out for Cµcyl = 0.3% and
Cµcyl = 1.0%. Experimental values of the drag
coefficients are 1.24 for the cylinder without
control. For the cylinder with suction control,
CD = 1.03 and 1.00 when Cµcyl = 0.3% and 1%,
respectively.

Non dimensional vortex shedding frequency is
calculated from FFT analysis of the time accu-
rate lift curves. For the cylinder without suction,
one dominant frequency is found and the related
Strouhal number is St = 0.22.

The computed mean drag coefficients for the
cylinder without suction are 1.30, 1.17 and 1.18
when computations are performed with Mesh 1,
Mesh 2 and Mesh 3 respectively. As for the
cylinder with suction, the obtained results with
the 3 computational grids are respectively, 1.13,
1.13 and 1.06 for Cµcyl = 0.3% and 1.18, 1.05
and 0.96 for Cµ,cyl = 1%.

These values are in good agreement with exper-
imental data when computations are performed
with the Mesh3. However when comparing the
results obtained with Mesh2 and Mesh3, one
can notice that increasing the number of cells
on the span does not improve significantly the
computed values for the cylinder without con-
trol.

Since the flow around the cylinder is well pre-
dicted, this numerical model is considered able
to simulate the flow around the oval-sail. In the
following, two computational grids are used:
the first one, similar to Mesh2 is used for the
computation of the flow around the oval-sail
without suction. Grids of type Mesh3 are ap-
plied for the oval-sail with suction.

4. THE OVAL-SAIL WITHOUT SUC-
TION

These calculations are performed ignoring the
fluid area inside the body, without suction and
grille. The governing equations are solved for a
Reynolds number based on the free stream ve-
locity and the profile chord Re = 5105. All re-
sults are discussed for the oval-sail set at a fixed
angle of attack α = 0◦.

4.1 Computational Grid

As previously for the circular cylinder, the oval-
sail is set at the center of an H-domain which
extends on a distance equivalent to 5c upstream
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and 30c downstream. South and North domain
boundaries are located within about ±12.5c.
The oval-sail span is 4c. Two computational
grids of about 3106 cells are built, the first one
is applied to computations with Ri j SSG, the
high-Reynolds-number turbulence model and
the second grid is applied to computations with
both low-Reynolds-number turbulence models
(v2 f and Ri j EBRSM models). Both grids are
hybrid type i.e. composed of hexahedral and
tetrahedral cells) and generated by block. To
ensure accuracy of the solution, highly distorted
meshes are avoided. The meshes are not uni-
form, small cells were built near the oval-sail
walls with smooth changes in contigous cell
size and shape. In the boundary layer region
the cells are hexahedral. It should be noticed
that both grids are similar but the height of the
first cell raw around the oval-sail walls is re-
duced for the low-Reynolds-number turbulence
grid. Thereby the dimensionless height y+ ≈ 1
for v2 f and Ri j EBRSM computational grid and
y+ ≈ 20 to 180 for Ri j SSG computational grid.

4.2 Lift and Drag Force

The time evolution of the lift and drag forces
are depicted in the Fig. 2. as function of the
dimensionless time t∗ =U∞ t/c. For the sake of
clarity, only a period equivalent to ∆t∗ = 200 is
shown. All curves indicate the unsteady charac-
ter of the flow. The results obtained with v2 f
model show that lift curve oscillates periodi-
cally with a signal apparent to a sinusoid and
that the drag force oscillates at a frequency that
is approximately twice the lift force frequency.
The Strouhal number highlighted by FFT anal-
ysis of the v2 f lift curve is about 0.322. The
lift curves obtained with both Ri j models show
more than one oscillation period. However, FFT
analysis bring out one dominant frequency cor-
responding to the Strouhal numbers 0.345 for
the Ri j EBRSM model and 0.375 for the Ri j
SSG model (Fig. 3). Loess smooth filter ap-
plied to the lift and drag curves indicate that the
secondary oscillations of both Ri j models have
similar periods τ1 ≈ 62 and τ2 ≈ 40 (see Fig. 2).

Mean values of lift and drag coefficients are
summarized in the Table 5. It is found that
lift coefficient obtained using both v2 f and Ri j
EBRSM models are in good agreement with
3D experimental data of Malavard whereas the
CL value computed by the Ri j SSG model is
rather close to Malavard’s 2D data. These re-
sults could suggest that 3D effects are not well
modeled by the Ri j SSG model. However it
is obvious that the difference between CL val-
ues computed with high- and low-Reynolds-

(a) CL

(b) CD

Fig. 2. Temporal variations of drag and lift
coefficients for the oval-sail without suction.

(a) v2 f (b) Ri j EBRSM (c) Ri j SSG

Fig. 3. FFT analysis of the lift curves.

number turbulence models reflects the sensitiv-
ity of turbulence modeling to wall pressure pre-
diction. The boundary layer is well resolved
by both low-Reynolds-number turbulence mod-
els whereas when using high-Reynolds-number
turbulence model, boundary layer flow is not ac-
curately predicted in particular when evaluating
pressure forces. As regards to the drag coeffi-
cient, values computed by all turbulence mod-
els are close to Malavard’s 2D data (3D data
are not available). Then for areas away from
the wall as the wake, the flow is well resolved
thereby the drag force is better predicted. As
bluff bodies aerodynamic drag is dominated by
pressure drag, for a better understanding of the
flow physics around the oval-sail, the influence
of the spoiler on the oval-sail characteristics is
analysed in the next section.

4.3 Influence of the Spoiler on the Oval-sail
Characteristics

To analyse the influence of the spoiler on the
wake, the flow around an oval-sail without

2015



O. Guerri et al. / JAFM, Vol. 9, No. 4, pp. 2009-2023, 2016.

spoiler, called hereafter ellipsoid, is investi-
gated. These computations are carried out us-
ing the Ri j EBRSM turbulence model. The
Reynolds number based on the free stream ve-
locity and the ellipsoid chord is Re = 5105 and
the computational grid is similar to that used
for the previous computations with both low-
Reynolds-number turbulence models.

Streamwise velocity profiles u/U∞ as a function
of y/c are depicted in the Fig. 4. at two stream-
wise locations in the very near wake, x/c = 1
and 2 (Fig. 4(a) and Fig. 4(b)) and further
downstream the body at streamwise locations
x/c = 5 and 6.67 (Fig. 4(c) and Fig. 4(d)). The
Fig. 4(e) shows the variation of u/U∞ as a func-
tion of x/c on the wake centerline y/c = 0.0. It
is seen that in the rear aft body (Fig. 4(a)), the
velocity profile of the sail without spoiler ex-
hibits a V pattern whereas the near wake veloc-
ity profile of the sail with spoiler is altered from
a V shape to zigzag pattern denoting reverse
flow on the lower surface. Moreover, it appears
that the effect of spoiler increases with an in-
crease in the spanwise distance. At x/c = 2,
the velocity profiles of the oval sail with spoiler
are close to the ellipsoid profiles and symmet-
rical to the wake centerline (Fig. 4(b)) while
further downstream, a larger deviation of the u
velocity with respect to the ellipsoid is observed
(Fig. 4(c) and Fig. 4(d)). The velocity profiles
are altered by the spoiler and asymetrically dis-
tributed on the lower side. Then the streamwise
velocity profiles of the oval sail with spoiler
characterize an expanding wake whereas for the
ellipsoid, the vortices path appears to be less
important. The simulation results of the oval
sail with spoiler predict a curve shifted slightly
downward as compared to the profile of the el-
lipsoid. The vortices path growth in the wake of
the oval-sail with increasing distance until about
x/c = 9 where the wake flow begin to stabilize
(Fig. 4(e)).

Figure 4 shows that the flow around the oval sail
with spoiler is characterized by a larger region
of separated flow. As the free shear layer devel-
opment determines the pressure rise, then as a
direct consequence, large value of the drag co-
efficient is found. Indeed, the computed mean
drag coefficient of the ellipsoid is about 0.376
and unlike the oval-sail with spoiler, the mean
lift coefficient is zero. This is due to the symet-
ric geometry of the ellipsoid. When comparing
with the drag force of an oval-sail with spoiler,
it is found that the spoiler causes an increase
of the drag coefficient. The larger drag coeffi-
cient of the oval-sail with spoiler is also due to
stronger vorticity structure formed in the body

(a) x/c = 1 (b) x/c = 2

(c) x/c = 5 (d) x/c = 6.67

(e) y/c = 0

Fig. 4. Profiles of the streamwise velocity in
the wake of the oval-sail.

wake. So the effect of the spoiler on the flow
structure could be assimilated to that of a split-
ter plate fixed to a circular cylinder. Indeed, it
was reported by Bao and Tao (2013), that the
secondary vortex formed at the trailing edge of
the splitter plate is in the same direction with the
main vortex shed from the cylinder, they inter-
act to form a new, stronger vorticity structure,
which would increases drag force. This is also
observed for the oval-sail with spoiler.

These results show the influence of the spoiler
on the flowfield and lift and drag force of the
oval-sail. Further numerical investigations on
the effect of the spoiler position are ongoing.

Table 5 Forces coefficients of the sail without
suction

SSG v2 f EBRSM Exp.
2D 3D

CL 2.509 1.771 1.768 2.1 1.9
CD 0.669 0.683 0.724 0.7 -
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4.4 Flow Patterns

Iso-contours of velocity The velocity con-
tours depicted in Fig. 5(a) to Fig. 5(f) at se-
lected times show that similar flow patterns are
found with all turbulence models. Flow sepa-
ration is visible on the upper face of the sail,
a recirculation zone is seen around the spoiler
and vortices are shed in the wake. The mech-
anism of vortex shedding is similar to that of
a circular cylinder: flow separation on the up-
per side of the oval-sail feeds a clockwise vor-
tex structure shed in the wake whereas counter-
clockwise vortex structure are shed on the lower
side.

In Fig. 2(a), points A, B, C, D, E and F show
selected times t∗ corresponding to the contours
depicted in Fig. 5:

• Time represented by point A corresponds
to maximal value of the lift coefficient on
the Ri j SSG lift curve. At that time, a
clockwise vortex is shed from the upper
surface (Fig. 5 (a)). The time B corre-
sponds to minimal value of the Ri j SSG lift
coefficient where counter-clockwise vor-
tex is shed from the lower surface (Fig.
5(b)). One can notice that the point B is
located on the downward part of the sec-
ondary oscillation SSG lift curve.

• Figures 5(b), 5(c) and 5(d) represent the
flow patterns at times corresponding to
minimal values of the lift coefficient on
both Ri j lift curves. In spite of this,
the three velocity contours are not simi-
lar. This difference is attributed to the lo-
cation of the points B, C and D on the loess
smoothing lift curves (Fig. 2). The point C
is located on the upward part of the loess
smoothing lift curve whereas point D is
located on the downward part of this sec-
ondary oscillation curve. Figure 5(c) cor-
responding to time represented by point C
shows that the vortex shed by the spoiler
are stronger to the flow separation of the
upper surface so that the interaction with
the upper shear layer creates small spin-
ning vortices.

• Times represented by points E and F cor-
respond to the flow patterns at two oppo-
site positions on the v2 f lift curve where
clockwise vortex is shed from the upper
surface (time E, Fig. 5 (e)) and interact
with a counter clokwise vortex shed from
the lower surface (time F , Fig. 5 (f)).

(a) Ri j SSG (b) Ri j SSG

(c) Ri j EBRSM (d) Ri j EBRSM

(e) v2 f (f) v2 f

Fig. 5. Contours of velocity magnitude in the
vicinity of the oval-sail at two selected times.

Vorticity The contours of vorticity are de-
picted in Fig. 6. at selected times corresponding
to points B, D and F . These figures exhibit one
pair of rotating vortices with non-symmetrical
pattern. Oscillations of the detached bound-
ary layer at the upper surface of the body (not
shown here) have been observed. The contours
of vorticity magnitude obtained with both Ri j
turbulence models (Fig. 6(a) and Fig. 6(c)) in-
dicate that in the mechanism of vortex shedding,
both lower and upper vortices interact to create
von Karman streets. The vortex paths are larger
in the downward part and have two oscillation
periods. For a short time, the vortices path is
larger than the body thickness.

As for the vorticity contours of v2 f turbulence
model (Fig. 6(e)), it seems that the vortices
are shed alternatively from upper and lower sur-
faces without a strong interaction. One oscilla-
tion frequency corresponding to the vortex de-
tachment is observed. The vortices growth with
path amplitude larger than the body thickness in
the downstream wake. Both Fig. 6(e) and Fig.
6(f) show that close to the oval-sail, the wake
structure appears to be asymmetric, the asym-
metry of the flow patterns being driven by the
spoiler. Similar wake horseshoes-shape and re-
circulation lengths are found by both Ri j models
while the wake recirculation lenght for the v2 f
seems smaller.

Figures 6(b), 6(d) and 6(f) show the alternates
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(a) Ri j SSG (b) Ri j SSG

(c) Ri j EBRSM (d) Ri j EBRSM

(e) v2 f (f) v2 f

Fig. 6. From left to right, contours of
vorticity magnitude and vorticity zzz in the
vicinity of the oval-sail at selected times.

eddies with positive and negative z-directed
(span-wise) vorticity.

Figures 5 and 6 show that two vortices of un-
equal size and opposite sign are shed alterna-
tively from both sides of the sail with spoiler.
The shedding vortices mechanism produces as
follow: The flow is accelerated along the sail
upper surface and then separation occurs. On
the lower surface, the spoiler deviates the flow
and creates a clearly visible reversed flow zone
which provides the fluid mass for the lower
vortex creation. These figures show that simi-
lar flow patterns are predicted by all turbulence
models. However, vortex shedding frequencies
are different.

Turbulence quantities The contours of
Reynolds stress tensor components obtained
by both Ri j models are similar (see Fig. 7).
However, the transverse Reynolds stress values
of the Ri j SSG are slightly larger than the Ri j
EBRSM model. By contrast, the streamwise
Reynolds stress and Reynolds shear stress are
lower.

As for the ratio µt/µ, values computed by Ri j
SSG are slightly larger than that of Ri j EBRSM.
Even larger values are calculted by v2 f model
(Fig. 8).

(a) Ri j SSG (b) Ri j EBRSM

(c) Ri j SSG (d) Ri j EBRSM

(e) Ri j SSG (f) Ri j EBRSM

Fig. 7. From top to down, contours of
rrr11///UUU222

∞∞∞, rrr22///UUU222
∞∞∞ and rrr12///UUU222

∞∞∞ in the vicinity
of the oval-sail at selected times

corresponding to points BBB and DDD for RRRi j SSG
and RRRi j EBRSM.

(a) Ri j SSG

(b) Ri j EBRSM

(c) v2 f

Fig. 8. Contours of µµµttt///µµµ in the vicinity of the
oval-sail at times corresponding to points BBB,
DDD and FFF for RRRi j SSG, RRRi j EBRSM and vvv222 fff

model respectively.
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4.5 Comments

Several uncertainties can affect numerical sim-
ulations based on linear eddy-viscosity hypoth-
esis as the presence of high curvature or stagna-
tion point anomaly: (i) According to Leschziner
(2001), model based on linear eddy-viscosity
hypothesis perform well in relatively simple
strain but often do badly in the presence of
high curvature. (ii) It was reported that two-
equations models predict an anomalous large
growth of turbulent kinetic energy in stagna-
tions flows and even when the stagnation region
is not of interest per se, this spurious behavior
can upset the rest of flow computations (Durbin
1996). Then, the v2 f model is not fully satis-
factory because it still uses the eddy viscosity
hypothesis (Manceau and Hanjalic 2002).

Furthermore, in a comparative study performed
by Billard et al. (2012), the superiority of
Ri j EBRSM model was revealed for solving
flows with 3D effects and recirculation areas.
It appears that so is in these simulations. In-
deed, it is noticed that flow patterns found by
both Ri j models are similar but mean values
of lift coefficients are different. Due to good
resolution of the boundary layer by both low-
Reynolds-number turbulence models, lift coef-
ficients calculated by Ri j EBRSM and v2 f mod-
els are close to experimental data. The Ri j SSG
model gives a correct prediction sufficiently far
from the wall, but does not reproduce the damp-
ing of the redistribution very close to it. In other
words, with this high-Reynolds-number turbu-
lence model, boundary layer flow is not accu-
rately predicted in particular when evaluating
pressure while the wake flow is well resolved
by both Ri j models.

As both boundary layer and wake areas are well
computed by Ri j EBRSM turbulence model, it
is applied for the following simulations of the
fluid flow around the oval-sail with suction.

5. THE SAIL WITH SUCTION

As mentioned previously, the oval-sail has to
be used as a wind assisted propulsion device.
Therefore, suction flow control is applied for
decreasing drag and increasing lift. The oval-
sail is equipped with a suction-grid located on
the upper side, all along the span, in areas where
the flow separates. Air suction is carried out at
the lower face of the body. The suction-grid is
defined by an angle width, θ and a number of
slots, n or the slot width, ls (Fig. 1). In practical
approach, the suction is imposed using a fan at
the lower face of the oval sail. In these numer-
ical simulations, suction is modeled imposing a

uniform flow rate Q at the circular bottom face
of the oval sail. The flow rate Q is calculated
according to the following suction coefficient :

CQ =
Q

U∞cL
(27)

where L is the sail span. In the following com-
putations, the suction coefficient has a fixed
value (CQ = 0.47). The changing parameters
are the angle θ and the number of slots n whose
values are summarized in the Table 5. It should
be noticed that other control parameters could
affect the aerodynamic performance of the sail
such as position of the spoiler, aspiration rate
(or CQ) and orientation of the sail to the inci-
dent wind. The parameters selected here are
a preliminary study. Further work is ongoing
where the influence of aspiration rate and an-
gle of incidence of the oval-sail are investigated.
In the present work, the aerodynamic lift and
drag forces, the topology of the mean flow in
the wake and the vortex shedding frequency are
thus analyzed as function of the suction-grid ge-
ometry, for a fixed value of the momentum co-
efficient. The governing equations are solved
for a Reynolds number based on the free stream
velocity and the profile chord Re = 5105.

5.1 Computational Grid

The computational domain used for the oval-
sail with suction is depicted in Fig. 9(a). The
meshes are modified to include the slots (see
Fig. 9(b)) then a specific grid of more than 7106

cells is built for each case. The height of the first
cell row y0 is defined so that the dimensionless
height y+ ≈ 1.

(a)

(b)

Fig. 9. Computational domain and mesh
around the slots in the case of the sail with

suction.

As previously for the oval-sail without suction,
velocity magnitude and vorticity are given in di-
mensionless form (normalized by U∞ and c/U∞,
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respectively) and all contours are depicted on
the plane z= L/2 located at mid-span of the sail.

Table 6 Suction grille parameters
case 24-8 36-8 48-5 48-8

θ 24◦ 36◦ 48◦ 48◦

n 8 8 5 8
ls 1.5◦ 2.25◦ 4.8◦ 3◦

5.2 Flow Patterns

Vorticity iso-contours around the oval-sail with
suction are represented in Fig. 10. and 11. It
is seen that the suction modifies the wake flow
topology. The massive turbulent separation on
the upper side of the body does not occur. Sep-
aration is laminar and delayed near the trail-
ing edge, on the spoiler. It appears that vortex
shedding on the upper side of the sail are at-
tenuated (case 24-8) or suppressed by suction
whereas the vortex shedding on the other side is
not influenced. In both figures, it is seen that the
vortex shedding suppression effect is improved
when the grid expansion increases. Then as it is
verified in next section, the point of separation
is delayed to the trailing edge when θ increases.

Both figures show the remaining vortices gener-
ated by the spoiler and internal vortices attached
to the cylindrical wall. In analogy to the work
presented by Kourta (2004), the internal vor-
tices are associated to parietal vortices related to
a pure hydrodynamical instability. Indeed, from
the internal cylindrical part of the sail, suction
can be seen as flow injection through the slots.
These internal vortices are interpreted as the
Gortler vortices that may occur in concave-wall
boundary layers due to centrifugal instability
(Wadey 1992).The Gortler instability is charac-
terized by a Gortler number Go =

√
ReLre f /R

where Lre f is a reference lenght and R is the wall
curvature. In our case, Lre f = c and the resulting
Gortler number is large (Go = 1227). Accord-
ing to (Wadey 1992), at large Gortler number,
the mean flow is an order of magnitude smaller
to the disturbances it creates and the effect of
increasing the Gortler number is to force the
layer of activity away from the wall. These phe-
nomenon are observed in the contours of inter-
nal vortices and seem influenced by the larger
of slots ls.

As for the near wake, one pair of vortices are
shed but they are no longer apparent. The wake
vortices are two vortex filaments downward di-
rected. The remaining vortices are due to flow
deviation caused by the spoiler and are related
to Kelvin-Helmotz instabilities (Kourta 2004).

(a) case 24-8 (b) case 36-8

(c) case 48-5 (d) case 48-8

Fig. 10. Iso-contours of the vorticity
magnitude in the wake of the oval-sail with

suction.

(a) case 24-8 (b) case 36-8

(c) case 48-5 (d) case 48-8

Fig. 11. Iso-contours of the vorticity Z in the
wake of the oval-sail with suction.

5.3 Pressure

In Fig. 12. are depicted time-averaged pres-
sure coefficient distributions at the surface of
the oval sail with suction (Fig. 12(a) and 12(b))
and for comparison at the surface of the oval
sail without suction (Fig. 12(c)). Pressure coef-
ficients are plotted as a function of x/c, where
x is the horizontal coordinate of the sail. The
location of the separation on the upper surface
of the oval sail are indicated in the Fig. 12(d).
Pressure surface distribution indicates that sep-
aration on the upper surface occurs at about
θ0 = 120◦ for the oval without suction. As for
the oval sail with suction, separation on the up-
per surface occurs at about θ1 = 135◦ for the
case 24-8 while for the 3 others cases, separa-
tion is located at about θ2 = 157◦.

5.4 Lift and drag forces

To quantify the drag reduction and lift improve-
ment, the mean lift and drag coefficients of the
controlled sail are normalized by their corre-
sponding values of the baseline case (without
suction control). Thus lift and drag coefficients
are given in Table 7 by the ratios CLS/CL and
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(a) case 24-8

(b) case 48-5

(c) without suction

(d)

Fig. 12. Pressure surface distribution on the
oval sail with suction ((a) and (b)), without

suction (c) and location of the flow
separation (d).

CDS/CD where CLS and CDS are lift and drag
coefficients of the sail with suction. In propul-
sive devices, the lift to drag ratio is an impor-
tant parameter in the design process as it deter-
mines the maximum power that can be reached.

(a) case 36-8

(b) case 48-5

Fig. 13. FFT of the lift coefficient for the
oval sail with suction.

Table 7 Lift and drag coefficients of the sail
with suction

case 24-8 36-8 48-5 48-8
CLS/CL 1.01 1.20 1.44 1.40
CDS/CD 0.42 0.41 0.37 0.36
CLS/CDS 5.85 7.07 9.44 9.54

St 0.051 0.052 0.057 0.056
τ∗ 19.6 19.0 17.6 17.8

Therefore CLS/CDS ratio values are also given in
the Table 7.

For all cases, it is found a high decrease of
the drag coefficient. As for the lift coefficient,
CLS/CL = 1.01 for case 24-8, thus the lift force
is not improved when the grid width is θ = 24◦.
When θ ≥ 36◦, the lift improvement reaches
more than 20%. Higher lift coefficient is get
for the widthest suction grille. As for the slots
number, a slight decrease of the lift and drag co-
efficients is observed when the number of slots
increases (i.e. when the slot width decreases).
As a consequence, the 8 slots grid have slightly
lower CLS/CDS ratio however this improvement
is not important. Thus one can just notice that
better overall performances are obtained with
the widest grid.

Furthermore, the mean lift coefficient computed
for the case 48-8 is closed to experimental data
of Malavard (1984). The latter found that the
lift coefficient of 66% thick section profile with
suction coefficient CQ = 0.05 was CLS = 2.6,
leading to the ratio CLS/CL = 1.37.

FFT analysis applied to the lift curves bring out
one dominant frequency for each case (see Fig.
13). It is seen that the value of the main peak
in the spectrum of lift is reduced compared to
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the oval-sail without suction of the Fig. 3. The
related non dimensional Strouhal number vary
from St = 0.051 for the case 24-8 to St = 0.057
for the case 48-5 (see Table 7). Thus the vortices
shedding frequency is highly reduced and it ap-
pears that the Strouhal number increases as the
lift coefficient. So it is noticed that the related
dimensionless period τ∗ is about one half the
secondary oscillation period that was observed
for the oval sail without suction. Therefore as it
was observed by Ye Jun Chen and Chuan Ping
Shao (2013), the unilateral shedding frequency
is nearly equal to the frequency of alternative
vortex shedding of the oval sail without suction.

6. CONCLUSION

Turbulent fluid flow computations have been
performed for an investigation of suction effect
on the aerodynamic performance of an oval-sail.
Three turbulence models were first applied for
the sail without suction: the v2 f , an eddy vis-
cosity model and two Reynolds stress models
(Ri j SSG and Ri j EBRSM models). Similar flow
patterns were obtained with all URANS mod-
els. Contours of velocity and vorticity around
the bluff body without suction exhibit highly
complex flow with Von Karman street vortices
in the wake. Expected mean lift and drag co-
efficients have been obtained with both low-
Reynolds-number turbulence model. As the
Ri j EBRSM was the most efficient turbulence
model for solving the flow field, it was applied
for the simulation of the flow around the oval-
sail with suction.

Then, the influence of the suction on the flow
field and profile performances is considered.
Due to centrifugal instability, Gortler vortices
are observed on the internal curved surface of
the sail. On the external upper surface of the
sail, separation is delayed. As expected, it is
found that the aerodynamic performances of the
sail are improved. Better lift to drag ratio is ob-
tained when the grid width and the slots num-
ber increase. Moreover, vortex shedding is sup-
pressed by the suction. It is thus expected that
vortex induced vibrations will not occur.
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