
Journal of Applied Fluid Mechanics, Vol. 9, No. 4, pp. 2037-2051, 2016. 
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI:  10.18869/acadpub.jafm.68.235.24134

Diffusion-Thermo and Thermal Radiation of an Optically 
Thick Gray Gas in Presence of Magnetic Field and 

Porous Medium 

B. C. Sarkar1, R. N. Jana1 and S. Das2†

1Department of Applied Mathematics, Vidyasagar University, Midnapore 721 102, India 
2Department of Mathematics, University of Gour Banga, Malda 732 103, India 

†Corresponding Author Email: tutusanasd@yahoo.co.in 

(Received October 7, 2014; accepted September 15, 2015) 

ABSTRACT 

Diffusion-thermo and thermal radiation effects on an unsteady magnetohydrodynamic (MHD) free convective 
flow past a moving infinite vertical plate with the variable temperature and concentration in the presence of 
transverse applied magnetic field embedded in a porous medium have been analyzed. The flow is governed 
due to the impulsive as well as accelerated motion of the plate. The governing equations have been solved by 
employing the Laplace transform technique. The influences of the pertinent parameters on the velocity field, 
temperature distribution, concentration of the fluid, shear stress, rate of heat and mass transfers at the plate 
have been presented either graphically or in tabular form. 

Keywords: Magnetohydrodynamic (MHD) flow; Impulsive and accelerated motion; Radiation; Diffusion 
porous medium.  

1. INTRODUCTION

The chemical reaction rate depends on the 
concentration of the species itself. In many 
chemical engineering processes, there is the 
chemical reaction between a foreign mass and the 
fluid. These processes take place in many industrial 
applications such as food processing, manufacturing 
of ceramics and polymer production. The 
applications of hydromagnetic incompressible 
viscous flow in science and engineering involving 
heat and mass transfer under the influence of 
chemical reaction are of great importance to many 
areas of science and engineering. The study of 
MHD flow with heat and mass transfer plays an 
important role in biological Sciences. Effects of 
various parameters on human body can be studied 
and appropriate suggestions can be given to the 
persons working in hazardous areas having 
noticeable effects of magnetism and heat variation. 
Convective heat transfer in porous media has been a 
subject of great interest for the last few decades. 
This interest was motivated by numerous thermal 
engineering applications in various disciplines, such 
as geophysical, thermal and insulation engineering, 
the modeling of packed sphere beds, chemical 
catalytic reactors, the cooling of electronic systems, 
grain storage, devices fiber and granular insulation, 
missiles, combustion and furnace design, petroleum 
reservoirs, coal combustors, ground water pollution 
and filtration processes. Fourier's law describes the 

relation between energy flux and temperature 
gradient and Fick's law determines the relation 
between mass flux and concentration gradient. The 
energy flux caused by a composition gradient is 
called the Dufour or diffusion-thermo effect. This 
effect is found to be of order of considerable 
magnitude such that it cannot be neglected. 

Gupta et al. (1979) have studied the free convective 
effects on the flow past an accelerated vertical plate 
in an incompressible dissipative fluid. Jana and 
Datta (1982) have investigated an unsteady free 
convective flow past a moving vertical plate. Free 
convective flow past an exponentially accelerated 
vertical plate has been described by Singh and 
Kumar (1984) and Hossain and Shayo (1986). 
MHD thermal-diffusion effects on free convective 
mass transfer flow over an infinitely long vertical 
moving plate have been studied by Kafoussias 
(1992). Hossain and Takhar (1996) have 
investigated the radiation effect on mixed 
convective flow past an infinitely long vertical plate 
with an uniform surface temperature. Das et al. 
(1996) and Raptis and Perdikis (1999) have 
presented the radiative free convective flow past an 
infinitely long moving vertical plate. 
Muthucumaraswamy and Vijayalakshmi (2005) 
have described the radiation effects on the flow past 
an impulsively started vertical plate with variable 
temperature and mass flux. Alam and Rahman 
(2006) have discussed Dufour and Soret effects on 
mixed convection flow past a vertical porous flat 
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plate with variable suction. Alam et al. (2006a), 
(2006b) have studied the Dufour and Soret effects 
on MHD free convection and mass transfer flow 
past a vertical porous plate in a porous medium. 
They have discussed both the steady and unsteady 
cases. Diffusion-thermo and thermal-diffusion 
effects on free convective heat and mass transfer 
flow in a porous medium with time dependent 
temperature and concentration have been 
investigated by Alam et al. (2007). Manna et al. 
(2007) have studied an unsteady viscous flow past a 
flat plate in a rotating system. Thermal radiation 
effect on a transient MHD flow with mass transfer 
past an impulsively started vertical plate has been 
described by Alam and Sarmah  (2009). Rajesh and 
Varma  (2009) have presented the radiation and 
mass transfer effects on an MHD free convective 
flow past an exponentially accelerated vertical plate 
with variable temperature. Muthucumaraswamy et 
al. (2009) have studied an unsteady flow past an 
accelerated infinitely long vertical plate with 
variable temperature and uniform mass diffusion. 
Muthucumaraswamy et al. (2009) have also 
discussed the heat and mass transfer on the flow 
past an accelerated vertical plate with variable mass 
diffusion. Jha and Ajibade  (2009) have investigated 
the diffusion-thermo effects on free convective heat 
and mass transfer flow in a vertical channel with 
symmetric boundary conditions. The combined 
effects of heat and mass transfer by mixed 
convective MHD flow past a porous plate with 
chemical reaction in the presence of heat source 
have been described by Ahamed and Zueco  (2010). 
Rajesh and Varma (2010) have investigated the 
radiation effects on an MHD flow through a porous 
medium with variable temperature or variable mass 
diffusion. Makinde (2010) has discussed an MHD 
heat and mass transfer over a moving vertical plate 
with a convective surface boundary condition. The 
effects of thermal radiation on an MHD free 
convective flow past an infinitely long vertical 
porous plate have been studied by 
Seethamahalakshmi et al. (2011). Vijaya and 
Verma (2011) have described the radiation effects 
on an MHD flow past an impulsively started 
exponentially accelerated vertical plate with 
variable temperature. Radiation and Darcy effects 
on an unsteady MHD heat and mass transfer flow of 
a chemically reacting fluid past an impulsively 
started vertical plate have been investigated by 
Suneetha and Bhaskar (2011). Effects of radiation 
and heat transfer on the flow past an exponentially 
accelerated vertical plate have been studied by 
Mandal et al. (2011). Das et al. (2011) have 
presented the radiation effect on natural convection 
past a vertical plate embedded in porous medium 
with ramped wall temperature. Makinde (2011) has 
studied an MHD mixed-convection interaction with 
thermal radiation and chemical reaction past a 
vertical porous plate embedded in a porous 
medium. Pattnaik et al. (2012) have described the 
radiation and mass transfer effects on an MHD free 
convective flow through porous medium past an 
exponentially accelerated vertical plate with 
variable temperature. Radiation effects on an MHD 
flow past an impulsively started vertical plate with 
variable heat and mass transfer have been 

investigated by Rajput and Kumar (2012). Jana et 
al. (2012) have discussed the radiation effects on an 
unsteady MHD free convective flow past an 
exponentially accelerated vertical plate with viscous 
and Joule dissipations on taking into account. 
Makinde (2012) has analysed a chemically reacting 
hydromagnetic unsteady flow of a radiating fluid 
past a vertical plate with constant heat flux. Soret 
and radiation effects on transient MHD free 
convection from an impulsively started infinite 
vertical plate have been investigated by Ahmed 
(2012). Kishore et al. (2013) have studied the 
effects of radiation and chemical reaction on an 
unsteady MHD free convective flow of a viscous 
fluid past an exponentially accelerated vertical 
plate. Diffusion-thermo and radiation effects on an 
unsteady MHD flow past an impulsively started 
infinitely long vertical plate embedded in porous 
medium with variable temperature and mass 
diffusion have been investigated by Prakash et al. 
(2013). Chandrakala and Bhaskar (2014) have 
studied the radiation effects on an MHD flow past 
an impulsively started infinite vertical plate with 
mass diffusion. Diffusion-thermo and thermal-
diffusion effects on MHD visco-elastic fluid flow 
past a vertical plate have been analysed by Yasmin 
et al. (2014). Recently, Ibrahim et al. (2015). have 
investigated the radiation and mass transfer effects 
on MHD oscillatory flow in a channel filled with 
porous medium in the presence of chemical 
reaction. 

The aim of the present paper is to study the 
combined effects of diffusion-thermo and thermal 
radiation on an unsteady MHD free convective flow 
of a viscous incompressible electrically conducting 
fluid past a moving vertical plate embedded in  
porous medium with variable temperature and 
concentration. It is considered that the fluid to be 
optically thick instead of optically thin in this 
problem. Rosseland diffusion approximation is used 
to describe the radiative heat flux in the energy 
equation. The dimensionless governing equations 
are solved by using the Laplace transform 
technique. The solutions are in terms of 
exponential, error function and complementary 
error function form. The effects of pertinent 
parameters on the fluid velocity, temperature and 
mass concentration  are discussed with the help of 
graphs and tables. 

2. FORMULATION OF THE PROBLEM 
AND ITS SOLUTION 

Consider an unsteady MHD free convective flow of 
a viscous incompressible electrically conducting 
radiating fluid past an infinitely long vertical plate 
with variable temperature and mass diffusion 
embedded in a porous medium. The chemical 
reaction is taking place in the flow. The convection 
current is induced due to both the temperature and 
concentration differences. Choose a cartesian co-
ordinates system with the x - axis is taken along the 
plate in the vertically upward direction and the y - 
axis is normal to the plate in the fluid [See Fig.1]. 
Initially, at time t 0 , both the plate and the fluid 
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are assumed to be at the same temperature T  with 

concentration level C . At time t > 0 , the plate at 

y = 0  starts to move in its own plane with a 

velocity 0U (t) , the temperature of the plate and the 

concentration level are raised to  
0

t
T T T

tw    

and  
0

t
C C C

tw    respectively, wT  being the 

temperature of the plate, wC  the concentration of 

the fluid near the plate and 0t  being a constant. A 

uniform transverse magnetic field of strength 0B  is 

imposed perpendicular to the plate. The fluid 
considered here is a gray, absorbing/emitting 
radiation, but a non-scattering medium. It is 
assumed that a radiative heat flux rq  is applied in 

the normal direction to the plate. In the governing 
equations, the temperature is influenced by 
concentration leading to diffusion-thermo (Dufour) 
effect on the heat and mass transfer. The Dufour 
effect is described by a second-order concentration 
derivative with respect to the transverse co-ordinate 
in the energy conservation equation. As the plate is 
infinitely long, the velocity, temperature and 
concentration distributions are functions of y  and 

t  only.  
 

  
Fig. 1. Geometry of the problem. 

 
Ohm's law is  

J = E q × B ,   
   

                                               (1) 

where J


is the current density vector, 

x y zE (E ,E ,E )


the electric field vector, 

q (u,0,0)


the fluid velocity vector and B


the the 
magnetic field vector. It is assumed that induced 
magnetic field produced by the fluid motion is 
negligible in comparison with the applied one so 

that we consider magnetic field 0(0, ,0)B B


. This 

assumption is justified, since the magnetic Reynolds 
number is very small for metallic liquids and 
partially ionized fluids (Cramer and Pai, 1973). The 
conservation of electric current 

J =0

 yields yj = constant where 

x y zJ ( j , j , j ).


This constant is zero since yj = 0  at 

the plate which is electrically non-conducting. 
Hence, yj = 0  everywhere in the flow. As the 

induced magnetic field is neglected, Maxwell's 

equation 
B

E =
t


 




 becomes E =0

 
 which 

gives xE
0

y





 and zE

0.
y





 This implies that 

xE constant  and zE constant  everywhere in 

the flow.  

In view of the above assumption, Eq. (1) yields 

x xj = E ,                                                             (2) 

y yj = E 0  ,                                                        (3) 

z z 0j = (E u B ).                                                    (4) 

As, y   xj 0 , zj 0 , since the magnetic 

field is uniform at infinity. Using these conditions, 
equations (2)-(4) give x y zE E E 0    everywhere 

in the flow. Hence from (2) and (4) we have  

xj =0 ,                                                                   (5) 

z 0j = B u.                                                           (6) 

With above assumptions the magnetic body force 

J × B
 

 reduces simply to 2
0B u. .  

On the use of (5) and (6), by employing Boussinesq 
approximation, making use of the standard 
boundary layer approximations and eliminating 
pressure the momentum, energy and mass 
concentration equations  in the presence of 
magnetic field and thermal radiation can be 
expressed as  

2

2

u u
= g (T T ) g (C C )

t y
   

 

 
   

 
 

2
0B

u u,
k

 
                                                         (7) 

2 2
r m T

p 2 2
s

T T q D K C
c = k ,

t y y C y

    
 

   
              (8) 

2

r2

C C
= D k (C C ),

t y 

 
 

 
                                   (9) 

where u  is the velocity in the x -direction, T  the 
temperature of the fluid, C  the concentration in the 
fluid, D  the mass diffusivity, mD  the coefficient 

of mass diffusivity, t  the time, g  the acceleration 
due to gravity,   the kinematic viscosity,   the 

fluid density,   the thermal expansion coefficient, 

   the concentration expansion coefficient, pc  the 

specific heat at constant pressure, sC  the 

concentration susceptibility, k  the thermal 
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conductivity, k  the permeability of the porous 
medium, TK  the thermal diffusion ratio, rk  the 

reaction rate constant and rq  the radiative heat flux. 

For small velocities, the heat due to viscous 
dissipation is neglected in energy Eq. (8). 

In many transport process in nature, flow is driven 
by density differences caused by temperature 
gradient, chemical composition (concentration) 
gradient and material composition. It is therefore 
important to study flow induced by concentration 
differences independently or simultaneously with 
temperature differences. The energy flux caused by 
the composition gradient is called the Dufour effect 
(diffusion-thermo). If, on other hand, mass fluxes 
are created by temperature gradients, it is called the 
Soret effect (thermal-diffusion). These effects are 
generally of a small order of magnitude. The Soret 
and Dufour effects have been found to be of 
importance as the Soret effect is utilized for isotope 
separation and, in a mixture of gases of light 
molecular (H 2 , He) and medium molecular weight 

(N 2 , air), the Dufour effect was found to be of an 

order of magnitude such that it cannot be neglected. 
The concentration of the species at the plate surface 
is higher than the solubility of species in the fluid 
far away from the plate i.e. free stream 
concentration. 

The initial and boundary conditions are  

t 0 : u = 0, T = T , C = C for all y 0,    

 0 w
0

t
t > 0 : u = U (t), T = T T T ,

t    

 w
0

t
C = C C C at y = 0

t                            (10) 

t > 0 : u 0, T T , C C as y .      

The radiative heat flux can be found from 
Rosseland approximation (Siegel and Howell 
(2002)) and its formula is derived from the 
diffusion concept of radiative heat transfer in the 
following way  

4

r
R

4 T
q = ,

3k y

  



                                                 (11) 

where    is the Stefan-Boltzman constant and Rk  

the Rosseland mean absorption coefficient of the 
medium. It should be noted that by using the 
Rosseland approximation the present analysis is 
limited to optically thick fluids. It is assumed that 
the fluid is an optically thick (photon mean free 
path is very small) gray gas (which emits and 
absorbs but does not scatter thermal radiation). In 
an optically thick medium the radiation penetration 
length is small compare to the characteristic length. 
The photon mean path is the average distance 
travelled by a moving photon between successive 
collisions which modify its direction or energy or 
other particle properties. If the temperature 
difference within the flow is sufficiently small, then 
the Eq. (11) can be linearized by expanding 4T  into 

the Taylor series about T  as follows:  

4 4 3 2 2= 3 ( ) 6 ( )T T T T T T T T                  (12) 

from which neglecting higher order terms to give  

4 3 4= 4 3 .T T T T                                                   (13) 

In view of (5) and (7), Eq. (2) becomes  

2 3 2

2 2
R

T T 16 T T
=

y 3k ypc k
t




  


  

2

2
s

D K C
.

C y
m T 




    

              (14) 

Introducing non-dimensional variables  

0
0 12

0 0 0

= , = , = , = ,
yu t u

t u
t u u

 


 

0 0( ) = ( ), = , = ,
w w

T T C C
U t u f

T T C C
   

 

 
 

      (15) 

Eqs. (7), (14) and (9) become  

2
21 1 1

12
= Gr Gc M ,

Da

u u u
u 

 
 

   
 

              (16) 

2 2

2 2

1 4
= 1 Du ,

Pr 3R

  
  
        

                      (17) 

2

2
Sc = ,K

  
 
 


 

                                             (18) 

where 
2

2 0
2
0

M =
B

u

 


 is the magnetic parameter, 

3
R =

4
Rk k

T 


 the radiation parameter, Pr = pc

k


 

the  Prandtl number, 
3
0

( )
Gr = wg T T

u

 
 the 

thermal Grashof number, 
3
0

( )
Gc = wg C C

u

 


 the 

mass Grashof number, Sc =
D


 Schmidt number, 

2
0

2
Da =

u k





 the porosity parameter, 
2

2
0

= rk
K

Du


 the 

chemical reaction parameter and 

Du = m T w

s p w

D K C C

C c T T







 the Dufour number. In Eq. 

(17), the non-zero value of Dufour number 
physically represents that the temperature 
distribution is affected by concentration gradient. 
For Du = 0 , Eq. (17) reduces to the classical 
energy equation obeying Fourier’s law of heat 
conduction. 

The initial and boundary conditions for 1u ,   and 

  are  

10 : = 0, = 0, = 0 for all 0,t u       

1> 0 : = ( ), = , = at = 0,t u f                  (19) 
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 1> 0 : 0, 0, 0 as .t u        

On the use of the Laplace transformation, Eqs. (16) 
- (18) become  

2
2 1

1 2

1
M = Gr Gc ,

Da

d u
s u

d
 


     
 

            (20) 

2 2

2 2

1 4
= 1 Du ,

Pr 3R

d d
s

d d

 
 

   
 

                      (21) 

2

2
Sc = ,

d
s K

d

 


                                            (22) 

1 1

0 0

( , ) = ( , ) , ( , ) = ( , )s su s u e d s e d          
 

   a

nd 

The corresponding boundary conditions for 1u ,   

and   are  

1 2 2

1 1
= ( ), = , = at = 0,u f s

s s
    

1 0, 0, 0 as .u                          (24) 

Solutions of Eqs. (20)-(22) subject to the boundary 
conditions (24) are easily obtained and are given by 

S1
2

1
( , ) = ,

s a c
s e

s

   
                                      (25) 

 

 

2 2
2

Sc

Sc

2 2

Sc Sc

1 D Sc

Sc ( )

for Sc,
( , ) =

1 Du Sc Sc

for Sc,

s

s K s

s

s K s

u s K
e

s s s a

e e
s

s K
e

s K s

e e

 

  



 





 





  



  

    
  


  

  


     (26) 

 

1

1

1
2

3

S1

4
2

2

3

Sc1

2
4

1

( )

1 1
Gr

1 ( )

(Sc 1)( )Du Sc

Sc ( )

( 1)( )

Gc
for Sc 1,

(Sc 1)( )( , ) =

( )

s c

s c s

s c s c K

s c s

s c s K

s

f s e

e e
s s a

e e

s as K

s s a e e

s a

e e

s s au s

f s e



  

 

  

 













 

  

   

  

   

 

 
 

   
   

         


  

 

 1

1

1

Sc1
2

3

S1

4
2 Sc

3

Sc

2
4

Gr 1

Sc 1 ( )

Du Sc Sc

Gc
for = Sc 1

Sc 1 ( )

c s c s

s c s c K

s c s

s c s K

e e
s s a

e e

s as K

K s e e

s a

e e

s s a

 

 

 

 



  

   

  

   





















    
    
   
  
     


   
                                                                             (27) 

 where  

2
1 1

3R Pr 1
= , = M , = ,
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K c c K
a a a

 


  
               (28) 

The inverse Laplace transforms of Eqs. (25) - (27) 
give the solutions for the concentration, temperature 
and velocity field distributions as  

1 1( , ) = ( Sc, , ),F a                                          (29) 
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                                                                             (30) 
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                                                                             (31) 

where 

6 1

1 1

( , , ) for impulsive motion of the plate
=

( , , )for accelerated motion of the plateia

F c
b

F c

 
 





 

and 1 14b b  and 1 6F F  are given in  APPENDIX 

A. 

2.1  Solution for Pure Convection 

In the absence of thermal radiation, i.e. if pure 
convection prevails (corresponds to R  ), it is 
observed that = Pr  and the solutions for the 
temperature and velocity given by (30) and (31) are 
valid for all values of Pr 1  and Sc 1 . But the 
solution for velocity given by (31) is not valid for 
Pr = 1  or/and Sc = 1 . Since the Prandtl number is a 
measure of the relative importance of the viscosity 
and thermal conductivity of the fluid, the case 
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Pr = 1  corresponds to those fluids whose 
momentum and thermal boundary layer thicknesses 
are of the same order of magnitude. Therefore, in 
the absence of thermal radiation effects the solution 
for the velocity field when Pr = 1  or/and Sc = 1  
has to be obtained separately from Eqs. (16)-(18) 
subject to the initial and boundary conditions (19) 
and is given 
by

15 3 4 16

1 1
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                                                                             (32) 

where 2 =
1 Sc

K
a


 

3. RESULTS AND DISCUSSION 

To gain a perspective of the physics of the flow 
regime, we have presented the non-dimensional 
fluid velocity, fluid temperature and concentration, 
shear stress, the rate of heat and  

mass transfers at the moving plate for several values 
of magnetic parameter 2M ,  Dufour number Du , 
thermal Grashof number Gr , mass Grashof number 
Gc , chemical reaction parameter K , porosity 
parameter Da , radiation parameter R , Prandtl 
number Pr , Schmidt number Sc  and time   either 
graphically  

by MATLAB software or in tabular form for both 
the impulsive as well as the accelerated motion of 
the plate. Here we restrict our discussion to the 
aiding of favourable case only. To be realistic, the 
values of Schmidt number Sc  are chosen for 
hydrogen (Sc = 0.22) , water vapour (Sc = 0.6) , 

ammonia (Sc = 0.78)  and Ethyl benzene 

(Sc = 2.01)  at temperature 025 C  and one 
atmospheric pressure. The values of thermal 
Grashof number Gr  and mass Grashof number Gc  
are taken to be both positive and negative, which 
correspond to the cooling and heating of the plate 
respectively. Attention is focused on positive values 
of the buoyancy parameters i.e. Grashof number 
Gr > 0  (which corresponds to the cooling problem) 
and mass Grashof number Gc > 0  (which indicates 
that the chemical species concentration in the free 
stream region is less than the concentration at the 
boundary surface). The cooling problem is often 
encountered in engineering applications. For 
example in the cooling of electronic components 
and nuclear reactors. We take R < 1  (which means 
thermal conduction exceeds thermal radiation), 
R > 1  (which means thermal radiation exceeds 

thermal conduction) and R = 1  (i.e. the 
contribution from both modes is equal) to get 
understand the effect of radiation on the 
temperature distribution and heat transfer rate at the 
plate. 

3.1  Effects of Parameters on the Velocity 
Profiles 

It is seen from Fig.2 that the fluid velocity 1u  

decreases for both the impulsive as well as 
accelerated motion of the plate with an increase in 
magnetic parameter 2M . It is due to the presence of 
magnetic field normal to the flow in an electrically 
conducting fluid introduces a Lorentz force which 
acts against the flow and hence tends to reduce the 
fluid velocity. Increasing Lorentzian drag not only 
decelerates the flow in the boundary layer, it also 
arrests the flow more dramatically nearer the 
moving plate i.e. inhibits velocity development 
across the boundary layer transverse to the plate. 
The regulatory influence of a transverse magnetic 
field is therefore clearly identified and this result 
agrees strongly with numerous other studies in 
magnetohydrodynamic boundary layer flows. It is 
observed from Fig.3 that the fluid velocity 1u  

increases for both the impulsive as well as 
accelerated motion of the plate with an increase in 
Dufour number Du . As the Dufour effect is more 
pronounced, the positive influence of concentration 
gradients on temperature field becomes higher so 
that the thermal boundary layer is enlarged which in 
tern increase the fluid velocity.  

 

 
Fig. 2. Velocity profiles for 2M  when Gr = 5 , 
Gc = 5 , Pr = 2 , Sc = 0.22 , Du = 0.03 , = 10K , 

Da = 1 , R = 10  and = 0.5 . 
 

It is seen from Fig.4 that the fluid velocity 1u  

increases for both the impulsive as well as 
accelerated motion of the plate with an increase in 
mass Grashof number Gc . The mass Grashof 
number Gc  defines the ratio of the species 
buoyancy force to the viscous hydrodynamic force. 
As expected, it is observed that there is a rise in the 
fluid velocity due to the enhancement of the species 
buoyancy force. It is observed from Fig.5 that the 
fluid velocity 1u  increases for both the impulsive as 

well as accelerated motion of the plate with an 
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increase in thermal Grashof number Gr . The 
thermal Grashof number Gr  signifies the relative 
effect of the thermal buoyancy force to the viscous 
hydrodynamic force in the boundary layer. The 
fluid velocity increases due to the enhancement of 
the thermal buoyancy force. Therefore in materials 
processing systems in order to damp the flow near 
the moving plate, lower buoyancy forces are 
required. It is seen from Fig.6 that the fluid velocity 

1u  decreases with an increase in chemical reaction 

parameter K  for both the impulsive as well as 
accelerated motion of the plate. The hydrodynamics 
boundary layer becomes thin as the chemical 
reaction parameter increases which will cause slow 
down the fluid velocity. 

 

 
Fig. 3. Velocity profiles for Du  when Gr = 5 , 

Gc = 5 , Pr = 2 , Sc = 0.22 , 2M = 5 , = 10K , 
Da = 1 , R = 10  and = 0.5 . 

 

 
Fig. 4. Velocity profiles for Gc  when Gr = 5 , 

Du = 0.03 , Pr = 2 , Sc = 0.22 , 2M = 5 , = 10K , 
Da = 1 , R = 10  and = 0.5 . 

 

It is seen from Fig.7 that the fluid velocity 1u  

increases with an increase in porosity parameter 
Da  for both the impulsive as well as accelerated 
motion of the plate. For large porosity of the 
medium fluid gets more space to flow, as a 
consequence its velocity increases. Fig.8 shows that 
the fluid velocity 1u  decreases with an increase in 

Schmidt number Sc  for both the impulsive as well 
as accelerated motion of the plate. Schmidt number 
increases means the thickness of the concentration 
boundary layer decreases and this causes the 
velocity profile of the fluid decelerates. 
 

 Fig. 5. Velocity profiles for Gr  when Gc = 5 , 

Du = 0.03 , Pr = 2 , Sc = 0.22 , 2M = 5 , = 10K , 
Da = 1 , R = 10  and = 0.5 . 

 

 
Fig. 6. Velocity profiles for K  when Gc = 5 , 

Gr = 5 , Du = 0.03 , Sc = 0.22 , 2M = 5 , Pr = 2 , 
Da = 1 , R = 10  and = 0.5 . 

 

 
Fig. 7. Velocity profiles for Da  when Gc = 5 , 

Gr = 5 , Du = 0.03 , Sc = 0.22 , 2M = 5 , Pr = 2 , 
= 10K , R = 10  and = 0.5 . 
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It is seen from Fig.9 that the fluid velocity 1u  

increases with an increase in time   for both the 
impulsive as well as accelerated motion of the plate. 
This is due to increasing of buoyancy effects in the 
region as time progresses.The Figs.2-9 further 
establishes the fact that the fluid velocity decreases 
in a monotone fashion from the thin layer adjacent 
to the plate to zero asymptotically as   . It is 
worth mentioning from Figs.2-9 that the fluid 
velocity is slightly greater in the case of impulsive 
motion than that of accelerated motion of the plate. 

 

 
Fig. 8. Velocity profiles for Sc  when Gc = 5 , 

Gr = 5 , Du = 0.03 , R = 10 , 2M = 5 , Pr = 7 , 
= 10K , Da = 1  and = 0.5 . 

 

 
Fig. 9. Velocity profiles for time   when Gc = 5 , 

Gr = 5 , Du = 0.03 , R = 10 , 2M = 5 , Pr = 2 , 
= 10K , Da = 1  and Sc = 0.22 . 

 
3.2 Effects of Parameters on the Temperature 
and Concentration Profiles 
It is observed from Fig.10 that the fluid temperature 
  decreases with an increase in radiation parameter 
R . This result qualitatively agrees with 
expectations, since the radiation causes a faster 
dissipation of heat and consequently lowers the 
temperature. This can be mathematically explained 
as a decrease in radiation parameter R  for given k  
and T  means a decrease in Rosseland radiation 

absorption coefficient Rk . Since divergence of the 

radiative heat flux rq

y




 increases, 
Rk  decreases 

which in turn causes to increase the rate of radiative 

heat transfer at the plate and hence the fluid 
temperature decreases. This means the thermal 
boundary layer decreases and more uniform 
temperature distributes across the boundary layer. 
Further, it is seen from Fig.10 that the fluid 
temperature   decreases with an increase in 
Prandtl number Pr . The thermal conductivity of 
fluid decreases with an increase in Pr , resulting a 
decrease in thermal boundary layer thickness and 
the heat is able to diffuse away from the heated 
surface. Therefore, thermal diffusion has a tendency 
to reduce the fluid temperature. It is seen from 
Fig.11 that an increase in Dufour number Du  leads 
to rise in the fluid temperature  . The Dufour 
number is the ratio of concentration to temperature 
difference. Higher values of Dufour number Du  
imply a lower temperature difference, which results 
in an enhancement in the temperature profiles. As 
the Dufour number increases, concentration 
gradients therefore generally assist the flow and 
enhance thermal energy in the regime and also 
increase thermal boundary layer thickness. It is also 
observed from Fig.11 that an increase in chemical 
reaction parameter K  leads to rise in the fluid 
temperature distribution  . This can be attributed 
to internal heat generation in the fluid due to 
Arrhenius kinetics. It is observed from Fig.12 that 
both the temperature   and concentration   
increase as time   progresses. The chemical 
reaction reduces the local concentration, thus 
increasing its concentration gradient and its flux. As 
seen from the Fig.13, an increase in chemical 
reaction parameter K  causes a decrease in the 
concentration of the chemical species in the 
boundary layer. Further, Fig.13 shows that the 
concentration   decreases with an increase in 

Schmidt number Sc . Physically, it is true since 
increase of Sc  means decrease of molecular 
diffusivity which results in decreasing of 
concentration boundary layer. Hence, the 
concentration of species is higher for small values 
of Sc . The profiles have the common feature that 
the fluid temperature and concentration 
distributions decrease in a monotone fashion from 
the surface to a zero value far away in the free 
stream.  
 

 
Fig. 10. Temperature profiles for R  and Pr  

when Du = 0.03 , = 10K , = 0.5  and 
Sc = 0.22 . 
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Table 1 The rate of mass transfer 
=0

Sh =





 
  

 at the moving plate = 0  

 Sc  K  
  0.22 0.6 0.78 2.01 0.5 1 1.5 2 

0.2 
0.4 
0.6 
0.8 

0.66724 
1.29969 
1.93215 
2.56460 

0.72715 
1.35977 
1.99223 
2.62469 

0.75515 
1.38821 
2.02069 
2.65315 

0.93205 
1.57899 
2.21425 
2.84738 

0.27102 
0.42800 
0.57504 
0.71889 

0.30264 
0.50833 
0.70954 
0.90986 

0.33200 
0.57934 
0.82460 
1.06960 

0.35944 
0.64337 
0.92630 
1.20915 

 
 

  
Fig. 11. Temperature profiles for K  and Du  
when R = 10 , = 0.5 , Pr = 2  and Sc = 0.22 . 

 

  
Fig. 12. Temperature and concentration profiles 

Du = 0.03 ,  Pr = 2 , = 10K , R = 10  and 
Sc = 0.22 . 

 

 
Fig. 13. Concentration profiles for Sc  and K  

when = 0.5 . 

3.3  Effects of Parameters on the Rate of Mass 
Transfer 

The rate of mass transfer (Sherwood number) at the 
plate = 0  is given by  

1 1

=0

Sh = = Sc ( , ).G a


 


 
  

                         (33) 

Numerical results of the rate of mass transfer at the 
plate = 0  are presented in Table 1 for several 

values of Schmidt number Sc , chemical reaction 
parameter K  and time  . Table 1 shows that the 
rate of mass transfer increases with an increase in 
either Schmidt number Sc  or chemical reaction 
parameter K . The variations of Schmidt number 
Sc  as well as chemical reaction parameter K  
show that lesser the molecular diffusivity enhance 
the rate of mass transfer at the plate. With respect to 
time   it is noticed that the rate of mass transfer 
increases in progressing of time. The effect of 
increase in time span is to enhance the rate of mass 
transfer at the plate.  

3.4  Effects of Parameters on the Rate of Heat 
Transfer 

The rate of heat transfer at the plate = 0  is given 
by  

=0

Nu =





 
  
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                                                                             (34) 

Numerical results of the rate of heat transfer Nu  at 
the wall = 0  are presented in Table 2 for several 

values of Dufour number Du , chemical reaction 
parameter K , radiation parameter R  and time  . 
It is seen from Table 2 that the rate of heat transfer 
Nu  increases with an increase in either radiation 
parameter R  or time  . In conclusion, it is very 
obvious from our results that thermal radiation 
intensifies the convective flow. Further, the rate of 
heat transfer Nu  decreases with an increase in  
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Table 2 Rate of heat transfer 
=0

Nu =





 
  

 at the moving plate = 0  

 Du  K  R  

  0.01 0.05 0.1 0.5 1 1.5 0.5 1 1.5 

0.2 

0.4 

0.6 

0.8 

0.6646 

0.9351 

1.1403 

1.3116 

0.6420 

0.8837 

1.0574 

1.1955 

0.6137 

0.8195 

0.9537 

1.0503 

0.6662 

0.9410 

1.1511 

1.3276 

0.6654 

0.9388 

1.1472 

1.3218 

0.6646 

0.9367 

1.1435 

1.3164 

0.3658 

0.5121 

0.6145 

0.7713 

0.4573 

0.6390 

0.7747 

0.8868 

0.5076 

0.7085 

0.8583 

0.9814 

 

 

either Dufour number Du  or chemical reaction 
parameter K . The effect of increase in time span is 
to enhance the rate of heat transfer at the plate. The 
negative sign indicates that the heat flows from the 
plate to fluid. 

3.5   Effects of Parameters on the Shear 
Stress 

From the engineering point of view, the most 
important characteristic of the flow is the shear 
stress at the plate = 0  which is given by 

1

=0

=x

u
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                                                                             (35) 

where 

6 1

1 1

( , ) for impulsive motion of the plate,

=
( , ) for accelerated motion of the platei a

G c

m
G c










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and 1 14m m  and 1 6G G  are given in  APPENDIX 

A. 

The shear stress characterizes the frictional drag at 
the solid surface. Numerical values of the non-
dimensional shear stress at the moving plate = 0  
are presented in Figs.14-17 for several values of 
magnetic parameter 2M , Dufour number Du , 
thermal Grashof number Gr  and mass Grashof 
number Gc  for both the impulsive as well as 
accelerated motion of the plate. Fig.14 shows that 
the magnitude of the shear stress x  at the plate 

increases with an increase in magnetic parameter 
2M  for both the impulsive as well as accelerated 

motion of the plate. This suggests that greater 
Lorentz force with increasing acceleration of the 
plate gives an additional momentum in the 
boundary layer. The shear stresses are negative for 

the large values of magnetic parameter 2M  which 
retard the flow in the boundary layer to such an 
extent that reversal of the flow is caused. This result 
is significant in the design of, for example, MHD 
generators since a critical magnetic flux density 
may be applied (i.e., magnetic parameter) to reverse 
the flow dynamics during operation. It is observed 
from Fig.15 that the magnitude of the shear stress 

x  at the plate decreases with an increase in 

Dufour number Du  for both the impulsive as well 
as accelerated motion of the plate. This suggests 
that presence of Dufour effect reduces the frictional 
drag at the plate. It is observed from Figs.16 and 17 
that the magnitude of the shear stress x  at the plate 

decreases with an increase in either thermal Grashof 
number Gr  or mass Grashof number Gc  for both 
the impulsive as well as accelerated motion of the 
plate. This means that the effects of buoyancy 
parameters also decelerate the frictional drag at the 
plate. We note that values become negative for very 
low values of either Gr  or Gc  since the magnetic 

impedance force 2 = 5M  will dominate and have a 
greater inhibiting influence with low buoyancy that 
is, flow reversal accompanies lower thermal 
buoyancy forces for higher permeability regimes. 
On careful observation, it is revealed from Figs.14-
17 that the shear stress near the plate is negative as 
time progresses. Thus, it may be concluded that 
time span plays an important role to modify the 
frictional drag due to shear stress at the plate. 

 

 
Fig. 14. Shear stress x  for 2M  when Gc = 5 , 

Gr = 5 , Pr = 2 , = 10K , R = 10 , Da = 1 , 
Du = 0.03  and Sc = 0.22 . 
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Fig. 15. Shear stress x  for Du  when Gc = 5 , 

Gr = 5 , Du = 0.03 , Pr = 2 , = 10K , R = 10 , 
Da = 1 , and Sc = 0.22 . 

 

 
Fig. 16. Shear stress x  for Gc  when Gr = 5 , 

R = 10 , 2 = 5M , Pr = 2 , = 10K , Da = 1 , 
Du = 0.03  and Sc = 0.22 . 

 

 
Fig. 17. Shear stress x  for Gr  when Gc = 5 , 

= 10R , 2 = 5M , Pr = 2 , = 10K , Da = 1 , 
Du = 0.03  and Sc = 0.22 . 

 
In the absence of thermal radiation, i.e. if pure 
convection prevails (corresponds to R  ), the 
solutions for the rate of heat transfer and shear 
stress at the plate given by (34) and (35) are valid 
for all values of Pr 1  and Sc 1 . But the solution 
for shear stress at the plate given by (35) is not valid 

for Pr = 1  or/and Sc = 1 . In the absence of thermal 
radiation effects the solution for the shear stress at 
the plate when Pr = 1  or/and Sc = 1  is given by 

1

=0

=x

u
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            

            
        

0 for Pr = 1, Sc 1


















                                                                             (36) 

where 2 =
1 Sc

K
a


. 

4. CONCLUSION 

The purpose of this study is to analyze the effects of 
diffusion-thermo and thermal radiation on an 
unsteady magnetohydrodynamic free convective 
boundary layer flow of a viscous incompressible 
electrically conducting fluid past a moving infinite 
vertical plate in the presence of a transverse 
uniform magnetic field. Rosseland diffusion 
approximation is used to describe the radiative heat 
flux in the energy equation. The expressions for the 
velocity and the temperature have been obtained in 
closed form with the help of the Laplace transform 
technique. The effects of the pertinent parameters 
on velocity, temperature and concentration profiles 
are presented graphically. The influences of the 
same parameters on the shear stress and rates of 
heat and mass transfer at the plate are also discussed 
in details. The most important concluding remarks 
can be summarized as follows: 

• Magnetic field has a retarding influence whereas 
porosity of the medium has an accelerating 
influence on the fluid velocity for both the 
impulsive as well as accelerated motion of the 
plate. 

• Either Dufour number or mass Grashof number or 
thermal Grashof number has an accelerating 
influence on the fluid velocity whereas they have 
a retarding influence on the absolute value of the 
shear stress at the plate for both cases  

of the impulsive as well as accelerated motion of 
the plate. 

• Thermal radiation has a retarding influence on the 
fluid temperature. 

• Increasing Dufour number heats the regime, i.e. 
boosts temperature. 

• Chemical reaction parameter has a retarding 
influence on the concentration distribution 
whereas it tends to enhance the rate of mass 
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transfer at the plate. 

• The fluid velocity, temperature and concentration 
distributions, the rates of heat and mass transfer 
increase as time progresses. 

• The growths of both the momentum and 
temperature boundary layer thicknesses are also 
shown to be elevated by Dufour effects. 
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2
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1
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
   

 
 

7

1
( ) = ,G 


  

where erf (.)  is the error function and erfc (.)   

the complementary error function. , ,y z are 

dummy variables. 
 

 

 


