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ABSTRACT 

Total Variation Diminishing (TVD) schemes are low dissipative and high resolution schemes but bounded by 
stability criterion CFL<1 for explicit formulation. Stability criteria for explicit formulation limits time 
stepping and thus increase computational cost (computational time, machine cost). Research in the field of 
large time step (LTS) scheme is an active field for last three decades. In present work, Zhan Sen Qian’s 
modified form of Harten LTS TVD scheme is studied and used to solve one dimensional benchmark test 
cases. SOD and LAX cases of shock tube problem are solved to understand the behavior of modified large 
time step scheme in regions of discontinuities and strong shock waves.  The numerical results are found to be 
in good agreement with analytical results, except slight oscillations near contact discontinuity for larger 
values of K. Results also reveal that the discrepancy between numerical and analytical results near expansion 
fan, contact discontinuity and shock grows for larger values of K. Increase in discrepancy is due to the 
increase in truncation error. Truncation error strongly depends on step size and step size increases as CFL (or 
K) increases. In present work, the correction into the numerical formulation of characteristic transformation is
discussed and the inverse characteristic transformations are performed using local right eigen vector in each
cell interface location. This idea of extending Harten’s large time step method for hyperbolic conservation
laws proved to be very useful as the results shows that the modified scheme is a high resolution low
dissipative and efficient scheme for 1D test cases.

Keywords: TVD scheme; Shock tube problem; Explicit scheme; Efficient scheme; 1D Euler equation. 

NOMENCLATURE 

A inviscid flux Jacobi matrix 
a eigen values  

c local speed of sound 

cl constant 

E total Energy 

F physical flux 

f numerical flux

g flux correction 
ğ lmiter function 
i space index

K CFL restriction parameter 
n time index 

p pressure 

Q vector of unknown conservative variable 

R right eigen vector matrix 

R-1 left eigen vector matrix 

u velocity in x-direction 

α characteristic variable 

ε small positive parameter 

γ ratio of specific heat 

ρ density 

1. INTRODUCTION

Computational fluid dynamics (CFD) is a 
technology that enables to study the dynamics of 
things that flow (Anderson, 1995)(John C. 
Tannehill, 1997). CFD as a computational 

technology is eminently suited to develop the 
concept of numerical test rig (Anderson J. D., 
2002)(Mukkarum Husain C.-H. L., 2012). 
Computation of fluid flows containing expansion 
fan, contact discontinuity and shock waves is a 
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challenging task due to the presence of complex 
physics (B.Laney, 1998)(T. Schwartzkop, 2002).  

Classical shock-capturing methods provide accurate 
results only for smooth or weak shock flows, and 
are not robust enough for strong shock wave 
calculations (Lax, 1970's)(A. Harten, 1976). 
Oscillation and stability problems are major 
concern for classical shock capturing methods 
across the discontinuities and for strong shock 
waves. To resolve stability problem linear 
numerical dissipation or artificial viscosity is added 
into classical shock-capturing methods (H. C. Yee, 
1989) (H. C. Yee, 1987) (H. C. Yee, 1988). But in 
flow where discontinuities and strong shock waves 
are present this methodology alone will not promise 
to compute a physically accurate solution. Some 
examples of classical shock capturing methods are 
Mac Cormack scheme, Lax–Wendroff scheme, and 
Beam-Warming scheme (John C. Tannehill, 
1997)(B.Laney, 1998)(Malalasekra, 2007) 
(Boulahia .A, 2014).In 1983, Harten (Harten A. , 
1983) introduced the concept of Total Variation 
Diminishing (TVD) scheme. TVD schemes are 
monotonicity preserving schemes and therefore, it 
must not create local extrema and the value of an 
existing local minimum must be non-decreasing and 
that of a local maximum must be non-increasing. 
Numerical dissipation terms in TVD methods are 
nonlinear (H. C. Yee, 1987). The quantity varies 
from one grid point to another and usually consists 
of automatic feedback mechanisms to control the 
amount of numerical dissipation. While TVD 
formulations are very reliable, versatile, and quite 
accurate, it is bounded by stability criterion CFL<1 
for explicit formulation. 

Stability criteria for explicit formulation limits time 
stepping and thus increase computational cost. 
Research in the field of large time step (LTS) 
scheme is an active field for last three decades. In 
1986, Harten proposed a large-time-step (LTS) 
TVD scheme (Harten, 1986) which is stable for 
values of CFL >1. Computation of scalar problems 
depicts that Harten’s LTS scheme is a high 
resolution and efficient scheme. However, 
computation of hyperbolic conservation laws show 
some spurious oscillations in the vicinities of 
discontinuities when CFL > 1 (ZhanSen Qian C. L., 
2011)(ZhanSen Qian C.-H. L., 2012) (Huang 
Huang, C.L., 2013).  

Zhan Sen Qian studied Harten LTS scheme and 
noticed that these spurious oscillations which are 
not present in the computation of scalar problems 
are due to the numerical formulation of the 
characteristic transformation used by Harten for 
extending the method for hyperbolic conservation 
laws. He proposed to perform the inverse 
characteristic transformations by using the local 
right eigenvector matrix at each cell interface 
location to overcome these spurious oscillations. 
His results for shock tube problem depict that the 
oscillations are eliminated without increasing the 
entropy fixing parameter. Shock tube is one of the 
few 1D problem for which analytical solution is 
possible and hence it is often used as a test case for 
validation of numerical schemes(ZhanSen Qian C. 

L., 2011)(ZhanSen Qian C.-H. L., 2012)(SOD, 
1978)(Mukkarum Husain C.-H. L., 
2009)(Mukkarum Husain C.-H. L., 2009). 

In present work, Zhan Sen Qian’s modified form of 
Harten LTS TVD scheme is studied and applied to 
solve one dimensional benchmark test cases. SOD 
and LAX cases of shock tube problem are solved to 
understand the behavior of modified large time step 
scheme in regions of discontinuities and strong 
shock waves.  It is observed that the inverse 
characteristic transformations by using the local 
right eigenvector matrix in each cell interface 
location results a high resolution low dissipation 
and remarkably efficient scheme. 

2. SHOCK TUBE PROBLEM 

The shock tube problem consists of a tube of fluid 
that is initially at rest. A central diaphragm in the 
tube separates two states of the fluid. The fluid to 
the left has a higher pressure and energy as 
compared with the fluid on the right. The analytical 
solution to this problem is known. It consists of a 
shock wave moving to the right, a contact 
discontinuity moving to the right with the speed of 
the fluid and a rarefaction moving to the left. A 
shock wave inside a shock tube may be generated 
by a small burst or through the buildup of high 
pressures which cause diaphragm(s) to burst and a 
shock wave to propagate down the shock tube 
(compressed-gas driven).Boundary conditions used 
in present computation for SOD and LAX test cases 
are described in Table 1.The size of computational 
domain is 0 ≤ x ≤ 2 and number of grids are 1000. 

Table 1 Description of 1D Test Cases 

 SOD LAX 

PR 0.1 0.571 

ρR 0.125 0.5 

VR 0.0 0.0 

PL 1.0 3.528 

ρL 1.0 0.445 

VL 0.0 0.698 
 

3. GOVERNING EQUATIONS 

In this paper 1D transient Euler equation in a 
conservation form is used: பQப୲ + பFப୶ = 0                                                                   (1) பQப୲ + A பQப୶ = 0                                                               (2) 

where 

Q = ൥ ρρuρE൩     ;    F = ൥ ρuρuଶ + p(ρE + p)u൩                              (3) 
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A
= ∂F∂Q ێێۏ

ۍێ 0 1 0(γ − 3) uଶ2 (3 − γ) (γ − 1)(γ − 1)uଷ − γuE − 32 (γ − 1)uଶ + γE γu ۑۑے
ېۑ
 

                                                   (4) 

Equation (1) in numerical flux form can be written 
as: u୧୬ାଵ = u୧୬ − λ ൬f୧ାభమ୬ − f୧ିభమ୬ ൰                                      (5) 

where   λ = ∆௫∆௧  

Harten used the scheme of (LeVeque, 1982) 
(LeVeque, 1982) (M. Morales-Hernandez, 2012) 
and proposed large time step TVD scheme (Harten, 
1986) which is second order accurate using (2K +3) points explicit discretization for hyperbolic 
conservation laws increasing the CFL restriction 
uptoK.The numerical flux for LTS TVD is given 
by: 

f୧ାభమ = 12 [F୧ାଵ + F୧] + 12λ ෍ R୧ାభమ୩୫
୩ୀଵ ൫g୧ାଵ୩ + g୧୩൯

− 1λ ෍ R୧ାభమ୩ ൥ ෍ C୪൫v୩Kିଵ
୪ୀିKାଵ

୫
୩ୀଵ+ β୩൯୧ା୪ାభమ  α୧ା୪ାభమ୩ ൩ 

                                                                        (6) 

here; 

 g୧୩ = s ∙ max ൤0, min ൬σ୧ାభమ୩ ฬα୧ାభమ୩ ฬ , s ∙ σ୧ିభమ୩ α୧ିభమ୩ ൰൨                                                                     (7) 

s = sgn ൬α୧ାభమ୩ ൰                                                          (8) γ୧ାభమ୩ = ∆୧ାభమg୩/α୧ାభమ୩                                             (9) v୧ାభమ୩ = λa୧ାభమ୩                                                      (10) 

σ(v) = Kଶ ൜Q ቀ୴Kቁ ቂ1 + Kିଵଶ Q ቀ୴Kቁቃ − Kାଵଶ ቀ୴Kቁଶൠ    (11) 

where σ(v)  ≥ 0 for |v| ≤  ܭ

C±୩(v) = ൞c୩൫μ∓(v)൯,    1 ≤ k ≤ K − 1
Kଶ Q ቀ୴Kቁ ,                        k = 0              (12) 

μ±(v) = ଵଶ ቂQ ቀ୴Kቁ ± ୴Kቃ                                       (13) 

Q(v) = ൝ଵଶ ቀ୴మக + εቁ |v| < |v||v| ߝ ≥ ε                                      (14) 

R = ቎ 1 1 1u u + c u − c୳మଶ ୳మଶ + uc + ୡమ(ஓିଵ) ୳మଶ − uc + ୡమ(ஓିଵ)቏      (15) 

Rିଵ
=

ێێۏ
ێێێ
ۍ 1 − (γ − 1)uଶ2cଶ (γ − 1) ucଶ − (γ − 1)cଶ− u2c + (γ − 1)uଶ4cଶ 12c − (γ − 1)u2cଶ (γ − 1)2cଶu2c + (γ − 1)uଶ4cଶ − 12c − (γ − 1)u2cଶ (γ − 1)2cଶ ۑۑے

ۑۑۑ
ې
 

(16) 
Harten large time step (LTS) TVD scheme proved 
to be high resolution second order accurate weak 
solution for hyperbolic conservation laws for larger 
values of CFL. Qian (ZhanSen Qian C. L., 2011) 
(ZhanSen Qian C.-H. L., 2012) pointed out that 
Harten’s LTS TVD produce considerable error and 
oscillation especially in the vicinity of contact 
discontinuity and shock for large CFL (CFL>1). 
This deficiency was improved by Qian using 
inverse characteristic transformation with local right 
eigenvector matrix. The numerical flux is then 
given by 

f୧ାభమ = 12 [F୧ାଵ + F୧] + 12λ ෍ R୧ାభమ୩୫
୩ୀଵ ൫g୧ାଵ୩ + g୧୩൯ − 

1λ ෍ [෍ R୧ା୪ାభమ୩୫
୩ୀଵ C୪൫v୩ + β୩൯୧ା୪ାభమ   α୧ା୪ାభమ୩Kିଵ

୪ୀିKାଵ ]   
 (17) 

 

Table 2: Cl(x) at different K 

K Cଵ Cଶ Cଷ 

2 xଶ   

3 xଶ(3 − x) xଷ  

4 xଶ(6 − 4x + xଶ) 2xଷ(2 − x) xସ 

 

4. RESULTS AND DISCUSSION 

The development of efficient high resolution low 
dissipative numerical schemes has been receiving 
more and more interest for last three decades (H. C. 
Yee, 1989)(H. C. Yee, 1987) (H. C. Yee, 1988) 
(Harten A. , 1983) (Shu). Present work is also 
focused on recently developed large time step high 
resolution low dissipative scheme. Modification of 
Harten large time step total variation diminishing 
(MHLTS-TVD) scheme proposed by Qian is 
studied for its merits and shortcomings. SOD and 
LAX shock tube problems are solved for validation. 
Shock tube is one of the few 1D problems for which 
analytical solution is possible to obtain and hence it 
is often used as a test case for validation of 
numerical schemes(SOD, 1978) (Mukkarum Husain 
C.-H. L., 2009). Simulation are carried out on 
Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz, 4 
GB RAM. 
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Fig. 1. Comparison of pressure profile for SOD 

case, K=1, CFL=0.9. 

 

Fig 1-12 describes the numerical results computed 
for pressure, density and Mach number profiles 
along with analytical results for SOD case taking K = 1, 2, 3 and 4 for 0.9, 1.8, 2.8, and 3.8 values 
of CFL, respectively. Numerical results depicts 
that shock wave is resolved better than contact 
discontinuity. Reason behind this result is the 
basic difference between these two waves. For 
shock wave characteristic lines are convergent 
while for contact discontinuity they are parallel to 
each other, and therefore the dissipation near to 
the shock wave is controlled up to a small extent 
in the time marching steps irrespective of the 
numerical dissipation as compared to contact 
discontinuity. The numerical results are in good 
agreement with analytical results, except slight 
oscillations near contact discontinuity for large 
values of K. 

Similarly, Fig 13-24 shows the numerical results 
computed for pressure, density and Mach number 
along with analytical results for LAX case taking K = 1, 2, 3 and 4 for 0.9, 1.8, 2.8, and 3.8 values of 
CFL, respectively. Same behavior is found as 
discussed above. 

 

Table 3 K, No. of Iteration, and Simulation Time 
for SOD 

K 
No. of 

Iteration 
Simulation 
Time (sec) 

Simulation Time 
per Iteration(sec) 

1 609 0.3432022 0.0005635504 

2 305 0.1872012 0.0006137744 

3 197 0.156001 0.0007918832 

4 146 0.1248008 0.0008548 

 

Table 3 and 4 shows the time required, number of 
iterations, and simulation time per iteration of 
SOD and LAX test cases. Significance of using 
large time step scheme is evident in both cases. 
Although, time for one step is increased as K 
increases due to the addition of more terms in the 
calculation of numerical flux but total number of 
iterations is correspondingly decreased with 

increase in K due to the increase in CFL, which 
play dominant role to decrease total simulation 
time. Therefore, scheme becomes more and more 
efficient as K increases. 

 

Table 4 K, No. of Iteration, and Simulation Time 
for LAX 

K 
No. of 

Iteration 
Simulation 
Time (sec) 

Simulation 
Time per 

Iteration(sec) 

1 578 0.3276021 0.0005667856 

2 290 0.1872012 0.0006455214 

3 187 0.1404009 0.000750807 

4 138 0.1248008 0.0009043536 

 

Fig. 2. Comparison of density profile for SOD 
case, K=1, CFL=0.9. 

 

 
Fig. 3. Comparison of Mach number profile for 

SOD case, K=1, CFL=0.9. 

 
Fig 25, 26 and 27 depicts the comparison of 
numerical and analytical results of density profile 
near expansion fan, contact discontinuity and 
shock respectively for the test case of SOD. 
Results reveal that the discrepancy between 
numerical and analytical results near expansion 
fan, contact discontinuity and shock grows for 
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larger values of K. Increase in discrepancy is due 
to the increase in truncation error. Truncation 
error strongly depends on step size. Since step size 
increase as CFL (or K) increase therefore 
truncation error also increases. Similar behavior is 
observed in comparison of numerical and 
analytical results of pressure profile and Mach 
number profile. 

 

Fig. 4. Comparison of pressure profile for SOD 
case, K=2, CFL=1.8. 

 

 

Fig. 5. Comparison of density profile for SOD 
case, K=2, CFL=1.8. 

 

 
Fig. 6. Comparison of Mach number profile for 

SOD case, K=2, CFL=1.8. 

 

 
Fig. 7. Comparison of pressure profile for SOD 

case, K=3, CFL=2.8. 

 

 
Fig. 8. Comparison of density profile for SOD 

case, K=3, CFL=2.8. 

 

 
Fig. 9. Comparison of Mach number profile for 

SOD case, K=3, CFL=2.8. 

 

 
Fig. 10. Comparison of pressure profile for SOD 

case, K=4, CFL=3.8. 
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Fig. 11. Comparison of density profile for SOD 

case, K=4, CFL=3.8. 

 

 
Fig. 12. Comparison of Mach number profile for 

SOD case, K=4, CFL=3.8. 

 

 
Fig. 13. Comparison of pressure profile for LAX 

case, K=1, CFL=0.9. 

 

 
Fig. 14. Comparison of density profile for LAX 

case, K=1, CFL=0.9. 

 
Fig. 15. Comparison of Mach number profile for 

LAX case, K=1, CFL=0.9. 

 

 
Fig. 16. Comparison of pressure profile for LAX 

case, K=2, CFL=1.8. 

 

 
Fig. 17. Comparison of density profile for LAX 

case, K=2, CFL=1.8. 

 

 
Fig. 18. Comparison of Mach number profile for 

LAX case, K=2, CFL=1.8. 
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Fig. 19. Comparison of pressure profile for LAX 

case, K=3, CFL=2.8. 

 

 
Fig. 20. Comparison of density profile for LAX 

case, K=3, CFL=2.8. 

 

 
Fig. 21. Comparison of Mach number profile for 

LAX case, K=3, CFL=2.8. 

 

 
Fig. 22. Comparison of pressure profile for LAX 

case, K=4, CFL=3.8. 

Fig. 23. Comparison of density profile for LAX 
case, K=4, CFL=3.8. 

 

 
Fig. 24. Comparison of Mach number profile for 

LAX case, K=4, CFL=3.8. 

 

 
Fig. 25. Density profile near expansion fan, SOD. 

 

 
Fig. 26. Density profile near contact 

discontinuity, SOD. 
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In case of SOD, as shown in figures 1-12 the region 
of expansion fan is0.4 ≤ x ≤ 1, expansion wave 
exponentially decreased the pressure from 1 to 0.3 
and the density from 1 to 0.4 while Mach number is 
exponentially increased from 0 to 0.95 for 
increasing values of x-location.The pressure across 
the contact wave is constant while density and 
Mach number is changed and contact discontinuity 
is occurred at x = 1.5. Shock is captured at 1.8 <x < 1.9 where Mach number is reduced to zero 
again. 

In case of LAX, as shown in figures 13-24, the 
region of expansion fan is0.2 ≤ x ≤ 0.6, expansion 
wave exponentially decreased the pressure from 3.5 
to 1.95 and the density from 0.5 to 0.325 while 
Mach number is increased from 0 to 0.425for 
increasing values of x-location.The pressure across 
the contact wave is constant while density and 
Mach number is changed and contact discontinuity 
is occurred at x = 1.3. Shock is captured at 1.5 ݔ> < 1.6 where Mach number is reduced to zero. 

 

 
Fig. 27. Density profile near shock, SOD. 

3. CONCLUSION 

Computational Fluid Dynamics (CFD) as a 
computational technology is appropriate to develop 
the concept of numerical wind tunnel. But, it is still 
recommended to study and understand the behavior 
of a scheme before using for engineering design and 
analysis or as a research tool.  

Stability criteria (CFL <=1) for explicit formulation 
limits time stepping and thus increase 
computational cost. Large time step schemes are 
efficient and considerably reduce computational 
time. It gives researcher a chance to try more 
possibilities during design and optimization face 
within stipulated time frame. 
In present work, Zhan Sen Qian’s modified form of 
Harten LTS scheme is studied and used to solve one 
dimensional benchmark test cases. The numerical 
results for LAX and SOD test cases are computed 
and found in good agreement with analytical result, 
except slight oscillations for larger values of K. 

It is concluded that the correction into the numerical 
formulation of the characteristic transformation, for 

extending the Harten large time step method for 
hyperbolic conservation laws, by the inverse 
characteristic transformations using the local right 
eigenvector matrix in each cell interface location 
results a high resolution low dissipation and 
efficient scheme for one dimensional cases. 
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