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ABSTRACT 

The onset of convection in a porous medium saturated by a dielectric nanofluid with vertical AC electric field 
is investigated. The flux of volume fraction of a nanoparticle with the effect of thermophoresis is taken to be 
zero on the boundaries and the eigenvalue problem is solved using the Galerkin method. The model used for 
nanofluid incorporates the combined effect of Brownian diffusion, thermophoresis and electrophoresis, while 
for porous medium Darcy model is employed. The results show that increase in the AC electric Rayleigh-
Darcy number, the Lewis number, the modified diffusivity ratio and the concentration Rayleigh-Darcy 
number are to hasten the onset of convection. The size of convection cells does not depend on nanofluid 
parameters, but decreases with increasing the AC electric Rayleigh-Darcy number. The non-existence of 
oscillatory convection is also obtained. 

Keywords: Porous medium; Nanofluids; Electrohydrodynamic instability; Brownian motion and 

thermophoresis.  

NOMENCLATURE 

a dimensionless wave number 

ca critical wave number  

c specific heat
d diameter of nanoparticles 

BD Brownian diffusion coefficient 

TD thermophoretic diffusion coefficient 

E


root mean square value of the electric 
field 

ef


force of electrical origin 

g


acceleration due to gravity 

K permeability of the porous medium  

mk effective thermal conductivity  

eL Lewis number 

AN modified diffusivity ratio 

BN modified specific heat increment  

p  pressure 

v


 Darcy velocity 

DR thermal Rayleigh-Darcy number 

,D cR critical thermal Rayleigh-Darcy 

number 

eR AC electric Rayleigh-Darcy number 

t time 

T  temperature 

 , ,x y z  space co-ordinates

  coefficient of thermal expansion 

  viscosity  

  density of the nanofluid 

0 reference density of nanofluid 

e  charge density 

p density of nanoparticles  

 c  heat capacity 

 mc effective heat capacity  

  porosity of the porous medium 

  dielectric constant
   volume fraction  of the nanoparticles   

0  reference scale for the nanoparticle 

fraction  
  root mean square value of the electric 

potential 
  thermal expansion coefficient of 

dielectric constant 
2
P horizontal Laplacian operator 

2  Laplacian operator 

Superscripts 
'  perturbed quantities 

Subscripts 
p particle 
b basic state 
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0 lower boundary 
1 upper boundary 

 

 
 

1. INTRODUCTION 

The term ‘nanofluid’ first coined by Choi (1995) 
refers to liquid dispersions of submicron solid 
particles or nanoparticles, whose characteristic 
dimension is of order of tens or hundreds of 
nanometers. Nanoparticles used in nanofluid are 
typically made of oxide ceramics (Al2O3, CuO), 
metal carbides (SiC) or metals (Al, Cu) and base 
fluids are water, oil, bio-fluids, polymer 
solutions, other common fluids. The presence of 
the nanoparticles in the fluid increased the 
effective thermal conductivity of the fluid and 
consequently enhanced the heat transfer 
characteristics. The enhanced thermal properties 
of nanofluids make them potentially useful in 
many energetical systems where improved heat 
transfer or efficient heat dissipation is required 
such as cooling of micro-electronic components, 
cooling of nuclear systems, radiators  and 
automatic transmissions etc. There are some 
review papers that show applications and detail 
characteristic feature of nanofluids (Wang, 2007; 
Wong and Leon, 2010; Saidur, 2011). A 
nanofluid modelling was made by Buongiorno 
(2006) by considering the effects of Brownian 
diffusion and thermophoresis. This model was 
applied to study the onset of convection in a 
nanofluid layer by Tzou (2008a,b) Nield and 
Kuznetsov (2009, 2013, 2014), Umavathi et al. 
(2015), Shivakumara et al. (2015), Agrawal et al. 
(2014), Rana and Agrawal (2015), Yadav et al. 
(2013a,b, 2014a, 2015a,b, 2016a,b,c,d,e) and 
Sheikholeslami et al. (2013, 2015a,b). 

Electroconvection in a dielectric fluid saturated 
porous medium in the presence of an electric 
field is of particular importance in view of its 
possibility of reduction of fluid viscosity in 
enhancing petroleum production and a control 
of heat and mass transfer in high voltage 
devices by electric field (Moreno et al., 1996). 
Rudraiah and Gayathri (2009) have investigated 
the effect of thermal modulation and vertical 
electric field on the electroconvection in a 
horizontal dielectric fluid saturated densely 
packed porous layer and they have also 
discussed the importance of ETC in porous 
media. El-Sayed et al. (2011) have analyzed the 
nonlinear stability analysis of wave propagation 
in two superposed dielectric fluids saturated-
porous media in the presence of vertical electric 
field producing surface charges. The onset of 
ETC in a rotating Brinkman porous layer has 
been investigated by Shivakumara et al. (2011). 
An extensive review on this topic has been by 
Nield and Bejan (2013). Very recently, Awasthi 
et al. (2014) analyzed the viscous potential flow 
analysis of Electro-hydrodynamic Rayleigh-
Taylor instability. They observed that upper 
fluid fraction and electric field both have 
stabilizing effect on the stability of the 

considered system while dielectric constant ratio 
plays dual role on the stability of the system. 

Under the situations, the study of electric field on 
the onset of dielectric nanofluid convection in a 
porous medium seems to be significance in 
enhancing petroleum production and in electrical 
equipment such as distribution transformers, 
regulating transformers and shunt reactors 
(Asadzadeh et al., 2012), and has not been given 
any attention in the literature. Therefore, the 
purpose of the research treated here is to examine 
theoretically the effect of a vertical AC electric 
field on the criterion for the onset of convection 
in a nanofluid saturated horizontal layer of porous 
medium.  

2. PROBLEM FORMULATION 

We consider an infinite horizontal layer of 
incompressible dielectric nanofluid-saturated 
porous layer of thickness d , heated from below. 

A Cartesian co-ordinate system  , ,x y z  is 

chosen in which z axis is taken at right angle to 
the boundaries. The nanofluid is confined 
between two parallel plates 0z  and z d , 
where the temperatures at the lower and upper 
boundaries are taken to be 0T  and 1T , 

respectively, 0T  being greater than 1T . 

Nanofluid layer is subjected to a uniform 
vertical AC electric field applied across the 
layer; lower surface is grounded and upper 
surface is kept at an alternating potential whose 
root mean square is 1 . For simplicity, Darcy’s 

law is assumed to hold and the Oberbeck--
Boussinesq approximation is employed. 
Homogeneity and local thermal equilibrium in 
the porous medium is assumed. According to 
the works of Nield and Kuznetsov (2009) and 
Shivakumara et al. (2011), the governing 
equations under this model are: 

0  v


,                                                           (1) 

 

  
0

1

0 1

      1 ,

p

e

p
K

T T

   



     

   

v

g f




                 (2) 

      2

1
            ,

mm p

T
B

c c T k T c
t

D
D T T T

T

   



       
  

       
   

v


     (3) 

  2 2

1

1
. ,T

B
D

D T
t T

 


 
       

v
                (4) 

where  , ,u v wv


is the Darcy velocity, t  is the 

time,   is the porosity of the porous medium, 
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K is the permeability of the porous medium,  is 

the nanoparticles volume fraction, p  is the 

pressure, T  is the temperature, BD is the 

Brownian diffusion coefficient, TD is the 

thermophoresis diffusion coefficient, g  is the 

gravitational acceleration, p is the density of the 

particle  c is the heat capacity of nanofluid, 

 mc is the effective heat capacity, mk  is the 

effective thermal conductivity, p is the density 

of nanoparticles, 0,   and   are the density, 

viscosity and thermal volumetric expansion 

coefficient of nanofluid, respectively and ef


  is 

the force of electrical origin which can be 
expressed by Landau and Lifshitz (1960) for 
incompressible nanofluid as 

 1
.

2e e    f E E E
   

                           

(5)

                                                                                 

 

Here E


 is the root mean square value of the 
electric field, e  is the charge density and   is 

the dielectric constant. The first term on the right 
hand side is the Coulomb force due to a free 
charge and the second term depends on the 
gradient of . If an AC electric field is applied at 
a frequency much higher than the reciprocal of 
the electrical relaxation time, the free charge does 
not have time to accumulate. Moreover, the 
electrical relaxation times of most dielectric 
liquids appear to be sufficiently long to prevent 
the buildup of free charge at standard power line 
frequencies. At the same time, dielectric loss at 
these frequencies is so low that it makes no 
significant contribution to the temperature field. 
Under the circumstances, only the force induced 
by non-uniformity of the dielectric constant is 
considered. Furthermore, since the second term in 

the above equation depends on  E E
 

 rather than 

E


 and the variation of E


 is very rapid, the root 

mean square value of E


 can be assumed as the 
effective value. In other words, we can treat the 
AC electric field as the DC electric field whose 
strength is equal to the root mean square value of 
the AC electric field. Assuming the free charge 
density is negligibly small, the relevant Maxwell 
equations are (Roberts, 1969): 

0,  E


                                (6) 

  0.   E


                                                (7) 

 In view of Eq. (6), E


 can be expressed as  

, E


                                                        (8) 

where  is the root mean square value of the 

electric potential.  

The dielectric constant is assumed to be a linear 
function of temperature in the form  

 0 11 0,T T                                      (9) 

where γ(>0) is the thermal expansion coefficient 
of dielectric constant and is assumed to be small.  

In previous studies of convective instability 
problems for nanofluids, the volumetric fraction 
of nanoparticles was prescribed at the boundaries. 
But it is  observed  that  this  type of  boundary  
condition  on volume  fraction  of  nanoparticles  
is  physically  not  realistic  because in practice 
controlling the nanoparticle volume fraction on 
the boundaries may be difficult. Thus it is 
advisable to replace the boundary conditions by a 
set that are more realistic physically. In this 
paper, we assume that the temperature is constant 
and nanoparticles flux including the effect of 
thermophoresis is zero on the boundaries. This 
boundary condition on the nanoparticle volume 
fraction is made possible by accounting for the 
contributions of the effect of thermophoresis to 
the nanoparticle flux. In this respect this model is 
more realistic physically than previous. Thus the 
boundary conditions are: 

0
1

0,  ,  0T
B

d D dT
w T T D

dz T dz


    ,0z at  

(10a) 

1
1

0,  ,  0T
B

d D dT
w T T D

dz T dz


    .z d at 

(10b)  

3. BASIC STATE 

The basic state is given as: 

0,v
  ,bT T z   ,bp p z   ,b z    

 z ,b    z ,b   bE E z .          (11)
  

The solution of the basic state is: 

0 - ,b
T

T T z
d


 0

1
,T

b
B

D T
z

D T d
 

 
   

 
 

0 ˆ
1b

E
E

T z d


 
k , 

  0 ˆlog 1b
E d T

z
T d




      
k , 

0
ˆ1b

T
z

d

    
 

k ,
 

where subscript b  denote the steady state, 

 0 1T T T    and 
 
1

0 log 1

T d
E

T

 



 

 
 is the 

root mean square value of the electric field at 
0z  . 

4. PERTURBATION EQUATIONS  

Let the initial basic state as described by equation 
be slightly perturbed so that the perturbed state is 
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given by: 

,v v ( ) ,bp p z p   ( ) ,bT T z T  

( ) ,b z    ,b   ,b  E E E
  

 

b    ,                                                   (12)  

where the prime denote the perturbed quantities. 
On substituting the Eq. (12) into the Eqs. (1)–
(10), linearizing by neglecting the products of 
primed quantities, eliminating the pressure term 
from the momentum equation by operating curl 
twice and retaining the vertical component and  
converting the resulting equations to non-
dimensional form by introducing the following 
dimensionless variables: 

 ( , , ) , , ,x y z x y z d       

 ( , , ) , , ,mu v w u v w d        

   2 ,mt t d     1- ,T T T T    

 0 0,       0E Td     , where 

0  is a reference scale for the nanoparticle 

fraction and ( ),m mk c  ( ) ( )mc c   , 

we obtain the linear stability equations (dropping 
the dashes ('') for simplicity) in non dimensional 
form as: 

 
 2 2 2 2- - ,D H n H e Hw R T R R T

z

          
(13) 

2 B
A

e

T N T
T N

t L z z
w

           
 

           (14) 

2 21 1A A

e e

N N
w T

t L L

 
 


    


      (15) 

2 .
T

z
 

 


                                               (16) 

In the above equations the following non-

dimensional parameters are given as: 

 

m
e

B
L

D


 is the Lewis number, 

0  D
m

g TKd
R

 



  is the thermal Rayleigh-

Darcy number, 
 0 0p

n
m

gKd
R

  




  is the 

nanoparticle Rayleigh-Darcy number, 

 22 2
0  e

m

E T K
R




 
  is the AC electric 

Rayleigh-Darcy number, 
1 0

 T
A

B

D T
N

D T 


 is the 

modified diffusivity ratio,
 
 

0
   p

B

c
N

c

 



  is the 

modified particle-density increment. 

In non- dimensional form, the boundary 

conditions become: 

0,  A
T

w T N
z z z

   
   
  

 at z=0 and z=1. (17) 

5. NORMAL MODES ANALYSIS 

Analyzing the disturbances into the normal modes 
and assuming that the perturbed quantities are of 
the form:  

     

 
,  ,  ,  ( ), ( ), ,

                         exp x y

w T W z z z z

ik x ik y nt

        

  
, 

 (18)  

where xk and  yk   are wave numbers in x  and 

y  directions, respectively, while n  is the growth 
rate of disturbances. 

On using Eq. (18), into Eqs. (13)-(16), we have: 

 2 2 2 2 2 0,D n eD a W R a R a R a
z

        
  (19) 

2 2 0A B B

e e

N N N
W D a n D D

L L

 
       
 

 

(20) 

   2 2 2 21
0,A A

e e

N n N
W D a D a

L L 
 

       
 

                                                                         (21) 

 2 2 0D a D     ,                                (22) 

where d
D

dz
  and 

2 2
x ya k k   is the 

resultant dimensionless wave number. The 
boundary conditions in view of normal mode 
analysis are: 

0,  0 at 0,1.AW D D N D z         
 (23)  

The growth rate n  is in general a complex 
quantity such that r in i   , the system with 

0r   is always stable, while for 0r   it will 

become unstable. For neutral stability, the real 
part of   is zero. Hence, we now write in i , 

where i  is real and is a dimensionless 

frequency. 

The Galerkin weighted residuals method is used 
to obtain an analytical solution to the system of 
Eqs. (19)-(22). Accordingly, the base functions. 

,  ,  W   and   are taken in the following way: 

1

,
N

p p
P

W A W


   
1

,
N

p p
P

B


    
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1

,
N

p p
P

C


    
1

,
N

p p
P

D


                (24) 

where 
sin , sin , cos ,p p p A pW p z N p z p z       

 (satisfying the boundary conditions), ,pA  pB , 

pC  and pD are unknown coefficients, 

and 1,2,3,..., .p N  On using above expression 

for ,  ,  W    and    into Eqs. (19)-(22) and 
multiplying the resulting  first equation by 

pW second equation by p , third equations by 

p  and fourth equation by p  and integrating 

in the limits from zero to unity,  we obtained a 
system of 4N linear algebraic equations in the 
4N unknowns ,pA ,pB pC and ,pD

1,2,3,...,p N . For the existence of non trivial 
solution, the determinant of coefficients matrix 
must vanish, which gives the characteristic 
equation for the system, with the thermal 
Rayleigh- Darcy number DR  as the eigenvalue 

of the characteristic equation. For a first 
approximation, we take 1N  ; this produces the 
result 

 

 

 

2 22

22 2

-
,   ,      ,      

2 2 2 2

1
,       ,              0,                  0

2 2

,      ,     , 0
2 2 2

-
0,              ,                      0,                 

2

D e eA n

i

A i eA A

e e

a R R a RJ a N R

J i

N i L JN N J

L L





 
 





 

 
0.

-

2

J

      (25)    

Here  2 2J a   . Generally when we employ 

a single-term Galerkin approximation in this 
situation we get a value overestimate by about 
3%. But in this case, the single-term Galerkin 
approximation gives the exact result. We note 
that the parameter BN does not appear to first 

order of approximation because of an orthogonal 
property of the first-order trial functions and their 
first derivatives. This approximation is valid 
because the terms containing BN involves as a 

function of B eN L and the value of B eN L is 

too small of order 2 510 10  , pointing to the 
zero contribution of the nanoparticle flux in the 
thermal energy conversation. 

6. RESULTS AND DISCUSSION 

6.1   Stationary Convection 

First, consider the case of stationary convection, 
i.e. 0i  . Then, Eq. (25) gives the following 

expression for the thermal Rayleigh- Darcy 
number DR : 

 
 

22 2 2

2 2 2
1e e

D A n

a a R L
R N R

a a





  
    

  
 (26)  

It is clear from Eq. (26) that the thermal 
Rayleigh-Darcy number DR  decreases with 

increasing the AC electric Rayleigh-Darcy 
number and nanofluid parameters while increases 
with porosity parameter . 

To find the critical value of DR , Eq. (26) is 

differentiated with respect to 2a and equated to 

zero a polynomial in 2
ca , whose coefficients are 

functions of the physical parameters influencing 
the instability is obtained in the form 

       4 3 22 2 2 2 2 6 2 8
e2 R 2 0c c c ca a a a       

.     (27) 

The above equation is solved numerically for 

various values of eR and the minimum value of 
2

ca is obtained each time, hence the critical wave 

number is obtained. Using this in Eq. (26), the 
critical thermal Rayleigh-Darcy number ,D CR  

above which the convection sets in is determined. 

It is interesting to check Eqs. (26) and (27) for 
existing results in the literature under some 
limiting cases. In the absence of nanoparticle 
(i.e., 0nR  ), the Eq. (26) reduces to 

 
 

22 2 2

2 2 2
e

D

a a R
R

a a






 


               (28) 

and coincides with Roberts (1969). In the absence 
of electrical field ( 0eR  ), Eqs. (26) and (27) 

reduce to:   

 22 2

2

1 1
D A n e

e

a
R N R L

La





  
   

 
  

(29)  
and   

ca  .                                                         (30) 

Equations (29) and (30) coincide with that of 
Yadav and Lee (2015b) for a thermal equilibrium 
case with 0a DD T  .  

6.2   Oscillatory Convection 

With oscillatory onset 0i  , the real and 

imaginary parts of Eq. (25) yield: 

 

  

2 3 2 2 2

2
, 0,

e A n e e i

D Osc e A n

a JL N R J a R J L

a R R N R

     



   

   
   

(31)  
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Table 1 Critical thermal Rayleigh-Darcy number ,R D c  and critical wave number ca  for different 

values of eR and   1A N eS N R L    

eR  S  
,R D c                       ca  eR  S  

,R D c                     ca  

0 

0 
10 
20 
30 
40 
50 

39.4784                 3.14 
29.4784                  3.14 
19.4784                  3.14 
9.4784                    3.14 
-0.5216                   3.14 
-10 .5216                3.14 

60 

0 
10 
20 
30 
40 
50 

4.3756                    4.33 
-5.6244                  4.33 
-15.6244                  4.33 
-25.6244                  4.33 
-35.6244                  4.33 
-45.6244                  4.33 

20 

0 
10 
20 
30 
40 
50 

28.8549                  3.55 
18.8549                  3.55 
8.8549                   3.55 
-1.1451                  3.55 
-11.1451                 3.55 
-21.1451                 3.55 

80 

0 
10 
20 
30 
40 
50 

-9.0615                    4.66 
-19.0615                  4.66 
-29.0615                  4.66 
-39.0615                4.66 
-49.0615                  .66 
-59.0615                  4.66 

40 

0 
10 
20 
30 
40 
50 

17.0832                  3.96 
7.0832                    3.96 
-2.9168                  3.96 
-12.9168                 3.96 
-22.9168                 3.96 
-32.9168                 3.96 

100 

0 
10 
20 
30 
40 
50 

-23.0688                 4.95 
-33.0688                 4.95 
-43.0688                  4.95 
-53.0688                4.95 
-63.0688                  4.95 
-73.0688                 4.95 

  

 
  

 

2 2 2 2
,

3 0

e A n e e e D Osc e

e

a JL N R a L R a JL R R

J L

  



   

  
. 

     (32) 

Equations (31) and (32) give the following 
expressions for the thermal Rayleigh- Darcy 

number ,D OscR and the frequency of 

oscillation i : 

 
 

 2 22 2 2 22

, 2 22 2
e A n

D Osc
e

a aa R N R
R

a a La

  


 
   


  

(33) 

   22 2 22
2

2
A n e

i
e e

aa N R L

L L

   




   
   

 
 

. 

  (34) 

From Eq. (34), it is interesting to note that the 
vertical AC electric field does not influence the 
existence of oscillatory convection. Following 
Buongiorno (2006), Nield and Kuznetsov (2013) 
and Yadav et al. (2014b) the Lewis number eL  is 

on the order of 1 310 10 , AN  is on the order of 

1 10 , the nanoparticle Rayleigh-Darcy number 

nR and  are on the order of 1 10 , and Hence 

from Eq. (34), the value of 2
i  will be always 

negative. Since i is real for oscillatory 

convection, therefore oscillatory convection 
cannot occur and the principle of the exchange of 
stability is valid for the case of nanofluid. 

The stationary convection curves 

in  , e,RD cR  plane for various parameter values 

are shown in Figs. 1-5. The values of the 
parameters 2,AN  10eL  , 0.7  and 

0 .5nR  are fixed except the varying 

parameters. The range of parameters fall in these 
figures is taken from the available literature 
(Buongiorno, 2006; Nield and Kuznetsov, 2013; 
Yadav et al., 2011, 2012, 2014b, c, d, 2015c,d,e). 
From these figures, it is clear that the linear 
stability criterion is expressed in terms of critical 
thermal Rayleigh-Darcy number ,R D c , below 

which the system is stable and unstable above.  

To validate the numerical procedure used to find 
the critical stability parameters, first the test 
computations are obtained under the limiting case 
of nanoparticle and electric field i.e. 

eR 0nR   and tabled in Table 1. From the 

Table 1, we recognize that in the absence of 
nanoparticles and electric field we recover the 
exactly well-known result that the critical 

Rayleigh-Darcy number ,R D c  is equal to 24  

and the corresponding wave number ca  is . 

This verifies the accuracy of the numerical 
method used.  
 
The critical thermal Rayleigh-Darcy number 

,R D c  and the corresponding wave number ca as 

a function of AC electric Rayleigh-Darcy number 

eR  are obtained for different values of 

nanoparticles Rayleigh-Darcy number nR  are 

shown in Figs. 1 and 2, respectively. From Fig. 1, 
it is found that the critical thermal Rayleigh-
Darcy number ,R D c  decreases with an increase 
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in the value of the AC electric Rayleigh-Darcy 
number eR . That is, higher the electric field 

strength the less stable the system due to an 
increase in the destabilizing electrostatic energy 
to the system. From Fig. 1, it is also observed that 
the critical thermal Rayleigh-Darcy number 
decreases as nanoparticles Rayleigh-Darcy 
number nR  increases. 

 

0 20 40 60 80 100

-100

-50

0

50

  R
e

 R
D

,c

 

 

R
n
=0, 0.5, 1.5, 2.5

 
Fig. 1. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,R D c  for different values of 

concentration Rayleigh-Darcy number R n  

with 2,AN  1 0eL  , 0.7  . 
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  R
e

a c

R
n
=0, 0.5, 1.5, 2.5

 
Fig. 2. Effect of AC electric Rayleigh-Darcy 

number eR on the critical wave number ca  for 

different values of concentration Rayleigh-
Darcy number R n  with 2,AN  10eL  , 

0 .7  . 

  
This is because as an increase in volumetric 
fraction of nanoparticles, increases the Brownian 
motion of the nanoparticles which cause 
destabilizing effect on the stability of the system. 

The corresponding critical wave number ca  has 

been plotted in Fig. 2 and it indicated that 
increase in the values of AC electric Rayleigh-

Darcy number eR tends to increase ca  and thus 

its effect is to decrease the size of convection 

cells. The critical wave number ca  has no change 

for the different value of nanoparticles Rayleigh-

Darcy number nR . This is because nanoparticles 

diffuse in the base fluid so they are not proficient 
to change the size of convections cell. Therefore, 
nanoparticle parameters (such as nanoparticle 
Rayleigh-Darcy nR , Lewis number eL and 

modified diffusivity ratio AN ) have no 

significant effect on the critical wave number 
observed. 
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Fig. 3. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

Lewis number eL with 2,AN   0 .7  , 

R 0.5n  . 
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Fig. 4. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

modified diffusivity 
ratio AN with 10,eL  0.7  , R 0.5n  . 

 
Figs. 3-5 show the effect of Lewis number  eL , 

the modified diffusivity ratio  AN  and porosity 

parameter on the stability of the system. From 

Figs. 3-5, we found that the Lewis number  eL  

and the modified diffusivity ratio  AN  

accelerate the onset of convection, while 
porosity parameter delays the convection in a 

nanofluid layer. It may be happened because the 
thermophoresis at a higher value of 
thermophoretic diffusivity is more supportable 
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to the disturbance in nanofluids, while both 
thermophoresis and Brownian motion are 
driving forces in favour of the motion of 
nanoparticles.   

Based on the Eq. (26), we can also conclude that 
the critical thermal Rayleigh-Darcy number ,RD c  

depends on eR  and   1A N eS N R L   . 

Therefore, for simplification of our results, Tables 
1 is also made which show the effect of these 
parameters on the stability characteristic.  
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Fig. 5. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

porosity  with 2,AN  10eL  , R 0.5n  . 
 

7. CONCLUSIONS 

The effect of vertical AC electric field on the onset 
of convection in a nanofluid-saturated porous layer 
is studied. The flux of volume fraction of 
nanoparticles with the effect of thermophoresis is 
taken to be zero on the isothermal boundaries and 
the eigenvalue problem is solved theoretically using 
the Galerkin method. It is observed that the 
instability of the fluid is reinforced with an increase 
in the value of AC electric Rayleigh-Darcy number 

eR , the Lewis number  eL , the modified 

diffusivity ratio AN  and the concentration 

Rayleigh-Darcy number nR . The size of 

convection cells depends only on AC electric 
Rayleigh-Darcy number eR and decreases with 

increasing the AC electric Rayleigh-Darcy 
number eR . It is also found that the vertical AC 

electric field does not influence the existence of 
oscillatory convection and the principle of 
exchange of stability is valid for nanofluid. 
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