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ABSTRACT 

A quasi two-dimensional numerical study is performed to analyze the thermo-magneto-convective transport 
of liquid metal around a square cylinder in a square duct subjected to a strong externally imposed axial 
magnetic field. The channel bottom wall is considered heated while the top wall is maintained at the free 
stream temperature keeping the cylinder adiabatic. The Reynolds and Hartmann numbers are kept in the range 
0 Re 6000   and 0 Ha 2160  . The flow dynamics in the aforementioned range of parameters reveals the 
existence of four different regimes out of which the first three ones are similar to the classical non-MHD 2-D 
cylinder wakes while the fourth one is characterized by the vortices evolved from the duct side walls due to 
the boundary layer separation which strongly disturbs the Kármán vortex street. The flow dynamics and heat 
transfer rate from the heated channel wall are observed to depend on the imposed magnetic field strength. 
With increasing magnetic field, the flow becomes stabilized resulting in a degradation in the forced 

convection heat transfer. A special case at a very high Reynolds number 43 10Re    with Ha = 2160 is also 
considered to show the development of a Kelvin–Helmholtz-type instability that substantially affects the heat 
transfer rate.       

Keywords: Square cylinder; MHD flow; Forced convection heat transfer; Axial magnetic field; Quasi two-
dimensional model; Kelvin–Helmholtz- instability. 

NOMENCLATURE 

a height of the duct U inlet velocity 
B magnetic field strength u, v dimensionless velocity components 
CD drag coefficient w width of the duct 
CL lift coefficient x, y dimensionless rectangular coordinates 

pc specific heat Greek symbols 

d size of the cylinder   thermal diffusivity 
f vortex shedding frequency   blockage ratio 
Ha Hartmann number   relative error 
Ld downstream length  kinematic viscosity
Lu upstream length   dimensionless temperature 

k thermal conductivity of fluid   density 
N Stuart number  electrical conductivity 
Nu Nusselt number Subscripts 
p dimensionless pressure av average 
Pr Prandtl number c critical 
Re Reynolds number m maximum 
St Strouhal number w cylinder surface 

T temperature ∞ free-stream 
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1. INTRODUCTION 

The thermofluidic transport around solid objects are 
important because of its tremendous applications in 
diverse fields of engineering. The processes are 
fundamentally also important since the boundary 
layer separation might be the most intriguing 
phenomenon in fluid dynamics. The imposition of 
an external magnetic field to the transport of an 
electrically conducting fluid opens up a new realm 
of transport phenomena, the 
magnetohydrodynamics (MHD). The magnetic field 
interacts with the electrically conducting fluid to 
produce electromagnetic Lorentz force which is 
basically damping in nature. This causes a reduction 
in the turbulent intensity of the MHD flow, thereby 
affecting the thermofluidic transport significantly. 
In applications like nuclear fusion reactors, the 
liquid metal blankets are prone to such magnetic 
damping. Hence, there is a chance for the 
degradation of the heat transfer. The heat transfer 
can be augmented by promoting the turbulence by 
placing obstacles inside the blankets. However, the 
thermofluidic transport around the obstacles will 
strongly depend on the shape of the obstacles.   

In MHD flows over bluff bodies, apart from the 
geometric shape of the body, the orientation of the 
magnetic field with respect to the body axis plays a 
crucial role. While the streamwise (Mutschke et al., 
1997, 2001; Yoon et al., 2004) and transverse 
orientations (Hussam et al., 2011, 2013; Chatterjee 
et al., 2012, 2013a, b, 2014; Chutia and Deka, 
2015) have received some attention, the axial 
orientation is very infrequent. Mück et al. (2000) 
carried out a three-dimensional numerical 
simulation of the MHD liquid metal flow around a 
square cylinder with an axially oriented magnetic 
field in a rectangular duct. Sommeria and Moreau 
(1982) proposed a quasi-two-dimensional model 
that assumes that the flow outside the Hartmann 
layers is nearly two-dimensional. Using the model 
in Sommeria and Moreau (1982), Dousset and 
Pothérat (2008) studied the quasi-two-dimensional 
flow of liquid metal in a square duct past a circular 
cylinder in presence of a strong axially imposed 
magnetic field. However, the heat transfer aspects 
were not taken into consideration in these studies. 

As such, it has been observed that apart from the 
work of Chatterjee and Gupta (2015) nobody has 
reported till date the heat transfer aspect for liquid 
metal flow over square object placed in a heated 
duct under axially oriented strong magnetic field. 
This has got particular importance in nuclear 
engineering and electromagnetic casting. 
Accordingly, we emphasize here to understand the 
MHD thermal transport over a square object in a 
duct subjected to strong axial magnetic field.  

2. MATHEMATICAL FORMULATION 

We consider flow of an electrically conducting and 
incompressible fluid (an eutectic alloy, GaInSn) in a 
duct of square cross section past a square cylinder 
(Fig. 1). All the solid walls are assumed to be 
electrically insulated and the cylinder is thermally 

insulated as well. The cylinder axis is at the centre 
of the duct, and orthogonal to the streamwise 
direction. The bottom wall (in the equivalent 2-D 
problem, refer to Fig. 1(b)) is considered heated 
( wT ) while the top wall (Fig. 1(b)) is kept at the 

free stream temperature  wT T  . The duct 

dimensions (a = w = 0.04 m) and the cylinder size 
(d = 0.01 m) are so chosen that it produces a 
blockage ratio / 0.25d w   . The upstream 

 uL  and the downstream  dL  lengths are chosen 

as 12d and 42d respectively. These values are in 
conformity with Dousset and Pothérat (2008). A 
steady homogeneous magnetic field B with 
intensities between 0 and 1.35 Tesla is imposed 
along the cylinder axis. 

The quasi two-dimensional model described in 
Sommeria and Moreau (1982) is used here which is 
derived by averaging the flow equations along the 
direction of the magnetic field. The model is 
particularly valid for 1Ha   and 1N   

( 2 ReN Ha  is the interaction parameter). The 

dimensionless governing equations in absence of 
any phenomenological cross effects and neglecting 
natural convection, viscous dissipation and Joule 
heating can be stated as:   

. 0 u ,            (1) 
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where u , p and   are the dimensionless velocity, 
pressure and temperature fields, respectively, 
projected onto the x-y plane, t is the dimensionless 
time, Re mu d   is the Reynolds number (where 

the reference velocity mu  is the maximum of the 

velocity profile imposed at the inlet boundary at y = 

0), Ha aB    is the Hartmann number with 

Pr    being the Prandtl number ( pk c   is 

the thermal diffusivity). The non-dimensional form 
of the model is obtained by scaling the lengths by 

the cylinder size d , pressure by 2
mu , time by 

/ md u  and temperature by wT T T     The 

fluid properties are described by density 
36360 kg m  , kinematic viscosity 

7 2 13.4 10  m  s    , thermal conductivity 
1 116.5 W m  Kk   , specific heat 

1 1152.6 J kg  Kpc   and electrical conductivity 

6 1 13.46 10   m     . The Prandtl number is 
obtained as Pr = 0.02. The flow is assumed to start 
impulsively from rest with a velocity mu  

everywhere in the domain.  

At the inlet ( ux L  ) the boundary condition is  
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Fig. 1. (a) Actual configuration of the problem. (b) equivalent 2-D problem. 

 

derived as the exact parallel flow solution of Eqs. 
(1) and (2) for the duct flow problem without the 
obstacle given by: 
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                                                                               (4) 

The exit boundary ( dx L ) is located sufficiently 

far downstream from the region of interest hence an 
outflow boundary condition is applied at the outlet. 
The outflow boundary condition is modeled by a 
homogeneous Neumann condition for the velocity 

and temperature variables as: 0n outlet
 u  and 

0n outlet
   . No slip boundary conditions are 

imposed on the side walls and on the cylinder 
surface (

 
0

solid wall
u ). Temperatures at the inlet 

and top wall are set at     0wT T T T       

and on the bottom wall 1  . The cylinder is 
thermally insulated (i.e. a zero normal temperature 
gradient is imposed on the cylinder surface, 

0n cylinder
   ). Pressure boundary conditions are 

not explicitly required since the solver extrapolates 
the pressure from the interior. 

3. NUMERICAL TECHNIQUE AND 
VERIFICATION 

The conservation equations subjected to the 
aforementioned boundary conditions are solved 
using a finite volume based CFD solver Ansys 
Fluent (2010). Ansys Fluent solves the governing 
system of partial differential equations in a 
collocated grid system. The QUICK (Quadratic 
Upstream Interpolation Convective Kinetics) 
scheme is used for spatial discretization of the 
convective terms and a central difference scheme is 
used for the diffusive terms. A standard pressure 
interpolation scheme is used to compute the face 
values of pressure from the cell values. PISO 
(Pressure-Implicit with Splitting of Operators) 
algorithm is used as the pressure-velocity coupling 
scheme. A second order implicit time integration is 
used. The dimensionless time step size is taken as 

32 10t   . Finally, the algebraic equations are 
solved by using the Gauss-Siedel point-by-point 
iterative method in conjunction with the Algebraic 
Multigrid (AMG) method solver. The use of the 
AMG method in conjunction with the Gauss-Siedel 
type iterative technique can greatly accelerates the 
convergence and reduce the computational time. 
(Huang and Chang, 2003). The convergence criteria 
based on  relative   error  for  the  inner   (time step)  



D. Chatterjee and S. K. Gupta / JAFM, Vol. 9, No. 5, pp. 2167-2175, 2016.  
 

2170 

Table 1 Grid sensitivity analysis showing characteristics of various meshes and errors in average 
drag coefficient and Strouhal number at Re = 100 

Meshes M1 M2 M3 M4 M5 

Total nodes on cylinder surface 220 280 340 400 460 
Nodes in the Shercliff layers at the top 

and bottom walls for Ha = 2160 
12 16 20 24 28 

Total nodes in the domain 42400 71600 112000 155210 196200 

   1 5
DC D DC Mi C M    0.058 0.046 0.0032 0.0030 - 

   1 5St St Mi St M    0.006 0.009 0.00024 0.00022 - 

   1 5Nu Nu Mi Nu M   0.062 0.052 0.044 0.042 - 

 
iterations are set as 10-6 for the discretized 
equations. It is to be mentioned that due to the non-
linearity of the convective terms in the governing 
equations, the problem is solved with a nested-loop 
approach. While so called global or inner iterations 
represent the real time-steps and are used to update 
the variables like velocity, temperature and 
pressure, based on a linearized system and 
boundary conditions; there is also an outer loop for 
updating the coefficients of the linearized system. 

A non-uniform structured grid distribution having a 
close clustering of grid points in the vicinity of the 
cylinder wall is used. A very high grid density is 
adopted in the proximity of the object to capture the 
phenomena of flow suppression at the rear 
stagnation zone. Also in order to capture the 
Shercliff layers close clustering of grids is used near 
the walls. 100 divisions on each side of the square 
object are used with the first cell height from the 
cylinder as  0.513469 and 0.00366 from the duct 
wall. Altogether, 154125 cells (155210 nodes) are 
used to discretize the entire computational domain. 
Fig. 2 shows a representative grid distribution in the 
vicinity of the cylinder.  

 

 
Fig. 2. Closer view of the grid in the proximity of 

the cylinder. 
 

A comprehensive grid sensitivity analysis is also 
carried out to understand the self consistency of the 
problem. Table 1 shows the results of the grid 

sensitivity analysis. Type (M4) mesh is preferred 
keeping in view the accuracy of the results and 
computational convenience in the simulations. 

In an effort to numerically verify the adopted 
computational scheme, we compare the average 
drag coefficient and RMS lift coefficient obtained 
from the numerical simulation in Muck et al. (2000) 
for the MHD flow of liquid metal around a square 
obstacle in a duct with the present numerical 
technique. The comparison is shown in Fig. 3 with 
no significant discrepancies between the two sets of 
results. 

 

 
(a) 

 
(b) 

Fig. 3. Comparative evolutions of CD (a) and 

L RMSC (b) vs. N. The comparison is made with 

the numerical results of Muck et al. (2000) (β = 
0.1) for Re = 200. 
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Fig. 4. Flow regime map, Sector I: attached flow, sector II: steady symmetric recirculation region, 
sector III: laminar periodic flow with regular Kármán vortex street formation, and sector IV: flow 

regime where secondary vortices are emanated from the side walls. I II III
c c cRe Re Re   are the 

successive critical thresholds between the flow regimes. 
 

(a) 

 

(b) 

 

(c) 

 
Fig. 5. Dimensionless vorticity contours at a dimensionless time instant t = 100 and Re = 1000 for 

different Hartmann numbers (a) Ha = 320, (b) Ha = 1120 and (c) Ha = 2160 
 
4. RESULTS AND DISCUSSION 

A series of numerical computations are performed 
fixing the blockage ratio 0.25  and taking B = 

0.1, 0.2, 0.4, 0.7, 1.0, 1.35 Tesla corresponding to 
the Hartmann numbers Ha = 160, 320, 640, 1120, 
1600, 2160. In order to ensure that the quasi-two-
dimensionality approximation remains valid, we 
intentionally choose 1N   (say, N = 10). Hence, 
we start from Ha = 160 which is consistent with the 
choice of N. 

4.1. Flow Dynamics  

The typical flow regime map is presented in Fig. 4 
showing clearly the four different regimes evolved 

as an outcome of the imposed magnetic field. For a 
given magnetic field strength (Ha) as Re increases 
gradually, four different regimes evolve. The first 
three regimes are identical to the 2-D non-MHD 
flow regimes, i.e., the attached flow regime I, the 
twin vortex regime II and the laminar periodic 
regime with regular Kármán vortex shedding III. 
The fourth regime IV is different from the non-
MHD flow regime where the regular Kármán vortex 
street becomes irregular. 

For a visual appreciation of the various flow 
regimes evolved, the instantaneous vorticity 
(dimensionless) contours are presented in Fig. 5 at a 
representative Reynolds number and for different 
Hartmann numbers. It is observed that in (a) regular  
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Fig. 6. Regime IV: dimensionless vorticity contours at t = 60 for Re = 2000, Ha = 640. S1, S2 and S3 are 
secondary vortices, Kc and Kac are the clockwise and anticlockwise Kármán vortices. 

 

 

Kármán vortex street becomes irregular (regime 
IV), (b) regular Kármán vortex shedding is 
observed (regime III) and (c) flow becomes steady 
with twin vortex formation (regime II). The 
increasing magnetic field strength stabilizes the 
flow resulting in the suppression of vortex 
shedding. 

As demonstrated in Fig. 6, the regime IV is 
characterized by the formation of the regular 
Kármán vortices (Kc and Kac) from the rolling-up 
of the free shear layers as in regime III along with 
the formation of the secondary vortices (S1, S2 and 
S3) from the separation of the Shercliff layer at the 
side walls. These secondary vortices either cross the 
downstream wake obliquely and interact strongly 
with the adjacent Kármán vortices or quickly 
dissipate as soon as they detach from the Shercliff 
layer (Mück et al., 2000) 

The particular role of the secondary vortices 
evolved from the side walls can be ascertained from 
Fig. 7 where the variation of the Strouhal frequency 
( mSt f d u , f being the vortex shedding 

frequency) with Hartmann number for a 
representative Reynolds number Re = 1000 is 
shown. The frequency is observed to drop to zero in 
regime II where the flow becomes steady. Another 
drop in the frequency can be observed in regime IV 
which is attributable to the fact that in regime IV a 
secondary vortex develops in the Shercliff layer, it 
sheds and begins to cross the wake during its 
downstream motion, and creates an obstacle that 
impedes the flow of the incoming Kármán vortices. 
As a consequence, the vortex shedding frequency of 
the latter vortices decreases, leading to the observed 
drop in the Strouhal number. In regime III, as the 
formation of the secondary vortices occurs 
downstream of the cylinder, it does not affect that of 
the Kármán vortices. 

Subsequently, an attempt has been made to 
delineate the characteristic features of the flow field 
qualitatively at a larger Reynolds and Hartmann 

numbers combination, 4Re 3 10   with Ha = 
2160. The specific intention is to introduce a regime 
where instabilities take place in the free shear 
layers. Fig. 8 shows the instantaneous 
dimensionless vorticity contours depicting an 
irregular procession of counter-rotating vortices 

whose formation mechanism was initiated by the 
Kelvin–Helmholtz (KH) instability. Small-scale 
vortices are generated in the free shear layers by the 
KH instability and feeds a chain of KH vortices. 
The latter roll up at the tail of the free shear layers, 
merge into a large vortex which eventually breaks 
away and flows downstream. This mechanism is 
alternately generated by either free shear layer and 
feeds the vortex street. 

 

 
Fig. 7. Strouhal frequency as a function of 

Hartmann number for Re = 1000. 
 

4.2.   Thermal Characteristics 

The instantaneous thermal fields are shown for 
different Hartmann numbers at Re = 1000 in Fig. 9. 
At this Reynolds number for low magnetic field 
strength Ha = 320 and 1120, the temperature fields 
are found time dependent since the flow is unsteady 
periodic with vortex shedding. However, with 
further increase in the magnetic field strength (Ha = 
2160), the damping action of the magnetic field 
reduces the flow velocity near the heated wall 
resulting the suppression of the unsteadiness in the 
flow. The flow becomes steady at this Ha. This 
causes increase in the thermal boundary layer 
thickness and hence the temperature gradient along 
the heated wall decreases. The thermal field for 

4Re 3 10   and Ha = 2160 is shown in Fig. 10. 
The KH instability at this regime makes the energy 
transport   more   chaotic.   Accordingly,   the   heat  

S1 S2 

S3 Kac Kc 
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Fig. 8. Dimensionless vorticity contours at 43 10Re    with Ha = 2160 showing Kelvin–Helmholtz 

(KH) instability 

 
 

(a) 

 
(b) 

 
(c) 

Fig. 9. Dimensionless temperature contours at a dimensionless time instant t = 100 and Re = 1000 for 
different Hartmann numbers (a) Ha = 320, (b) Ha = 1120 and (c) Ha = 2160. 

 

Fig. 10. Dimensionless temperature contours at 43 10Re    with Ha = 2160. 
 

 

transfer rate increases significantly. It should be 
noted that at such Re, the small structures after the 
initial growth phase may become strongly 3-D and 
the quasi 2-D model can hardly provide more than 
some qualitative information on the 2-D dynamics 
of the more complex 3-D flow. In order to 
understand the heat transfer behavior in various 
regimes, the average Nusselt number of the heated 
bottom wall is presented in Table 2 for a specific 
Hartmann number (Ha = 2160). The table suggests 
that the heat transfer rate increases as we move on 
from regime I onwards. At regime I where the 
thermal transport is mainly dominated by diffusion, 
the heat transfer rate is substantially low. It 
increases gradually as the convective transport 
becomes slowly significant from the steady regime 
(II) towards unsteady vortex shedding regime (III). 
In regime IV, the heat transfer becomes high due to 
the interaction of the secondary vortices with the 
Kármán vortices. Finally, in the regime where the 
KH instability develops, the heat transfer becomes 
significantly high. 

Fig. 11 shows the distribution of the instantaneous 
(at t = 100) local Nusselt number along the heated 
wall as a function of the streamwise coordinate for 

different Hartmann numbers at 3Re 10  and 
4Re 3 10  . For the fixed Reynolds number, the 

effect of Hartmann number on the heat transfer rate 
from the bottom heated wall can only be visible 
behind the cylinder. The flow is not changing at the 
upstream of the cylinder with Hartmann number 
and hence the heat transfer does not change. 
Downstream of the cylinder the flow shows 
substantial dependence on the Hartmann number. 
The shedding phenomena causes the local Nusselt 
number to fluctuate along the heated wall. With 
increasing magnetic field strength the flow 
instability is suppressed and accordingly the 
amplitude of fluctuation of the Nusselt number 
decreases and at higher Hartmann number when the 
flow becomes completely steady there is no 
fluctuation in the Nusselt number. When the 

Reynolds number is high, 4Re 3 10  , the heat 
transfer rate becomes substantially high as a result 
of higher convective transport. Behind the cylinder, 
the Nusselt number shows large oscillation due to 
the existence of the KH instability. 

The variation of the time and surface averaged heat 
transfer from the heated bottom wall with Reynolds 
number for different Hartmann numbers is 
presented in Fig. 12. The average Nusselt number 
increases monotonically with Reynolds number and 
with increasing Hartmann number it decreases. 
With increasing Reynolds number, the flow velocity 
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near the heated wall increases. Accordingly, the 
cold fluid is transported toward the hot region of the 
channel and the hot fluid near the heated wall is 
convected away to mix with the cold fluid. 
Consequently, the heat transfer is enhanced at larger 
Reynolds number. The dependence on Hartmann 
number is visible only at larger Reynolds number. 
At larger Hartmann number, thicker thermal 
boundary layer develops which causes the 
temperature gradient to decrease resulting in a 
corresponding decrease in the Nusselt number. The 
heat transfer rate is observed to increase 
substantially at larger Reynolds number as can be 

seen for 43 10Re    and Ha = 2160.  
 

Table 2 Heat transfer from heated wall for 
various regime 

 Re Nuav 

Regime I 84 0.3242 
Regime II 500 0.5041 
Regime III 1200 0.8860 
Regime IV 2000 1.1841 

KH instability 43 10  10.4538 

 

 
Fig. 11. Distribution of the local Nusselt number 

on the heated bottom wall of the channel as a 
function of streamwise coordinate for different 

Hartmann numbers. 

 

 
Fig. 12. Variation of time and surface average 
Nusselt number of the heated bottom channel 

wall with Reynolds number for different 
Hartman numbers. 

5. CONCLUSION 

We perform a quasi two-dimensional simulation of 
the MHD flow and heat transfer of liquid metal in a 
square duct in presence of a square cylinder and a 
strong axially imposed external magnetic field. A 
wide variation of the Reynolds and Hartmann 
numbers are considered keeping the blockage ratio 
fixed. Additionally, computation at a larger 
Reynolds and Hartmann number combination is 
also performed to establish the Kelvin–Helmholtz 
instability occurring in the free shear layers. A finite 
volume based solver is used for the numerical 
computation after satisfactory validation.  

The work essentially discusses in a concise manner 
the evolved flow dynamics along with the 
identification of various flow regimes originated as 
a result of the imposed magnetic field and the 
thermal transport behavior under the prevailing 
conditions. Four different regimes are identified out 
of which the first three are similar to the classical 
non-MHD regimes with a fourth one 
characteristically different from the non-MHD flow. 
This fourth regime is characterized by the 
interaction of the vortices emanated from the side 
walls (Shercliff layer) with the regular Kármán 
vortices. Due to such interaction the resulting 
vortex structure becomes highly irregular. 
Additionally, a special regime is observed at a 
larger Reynolds number where a Kelvin–Helmholtz 
(KH) type instability is taking place in the free 
shear layers. The role of the magnetic field is to 
stabilize the flow along with degradation in the heat 
transfer. Most importantly, the imposed magnetic 
field due to its damping nature actually shifts the 
appearance of the flow instabilities to higher Re 
values and the resulting flow regimes span over a 
wider range of Re than in comparison to the 
corresponding non-MHD cases. A drop in the 
Strouhal frequency is observed in the regime IV due 
to the impeding action of the secondary vortices 
originated in the Shercliff layer over the regular 
Kármán vortices. The frequency identically 
becomes zero at larger Hartmann number also when 
the shedding is completely suppressed. Finally, the 
heat transfer rate from the heated channel wall 
increases monotonically with Reynolds number and 
decreases with increasing Hartmann number. 
However, this dependence of heat transfer on 
Hartmann number is more profound at larger 
Reynolds number.  
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