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ABSTRACT 

Heat transfer, fluid flow and entropy generation due to buoyancy forces in a 2-D enclosure equipped with a 
conductive baffle and containing Al2O3nanofluid is carried out using different conductivities of baffle and 
different concentrations of nanoparticles. The bottom wall is subjected to constant hot temperature. The right 
and left vertical walls are maintained at lower temperature and the top wall is insulated. The finite volume 
method is used to solve the governing equations and calculations were performed for Rayleigh number from 
103 to 106, thermal conductivity ratio from 0.01 to 100 and volume fraction of nanoparticles from 0 to 0.2. An 
increase in mean Nusselt number and a decrease of the total entropy generation were found with the increase 
of volume fraction of nanoparticles for the whole range of Rayleigh number.  

Keywords: Natural convection; Nanofluids; Conductive baffle. 

NOMENCLATURE 

Be Bejan number 
Cp specific heat at constant pressure  
g gravitational acceleration  
k thermal conductivity  
n unit vector normal to the wall. 

sN dimensionless local generated entropy 

Nu local Nusselt number 
Pr Prandtl number
Ra Rayleigh number 

cR thermal conductivity ratio 

'genS generated entropy   

t dimensionless time  
T dimensionless temperature    

cT '  cold temperature  

hT ' hot temperature   

To bulk temperature   

V


dimensionless velocity vector  
W enclosure width and height   
x, y, z dimensionless Cartesian coordinates 

  Thermal diffusivity  
  Thermal expansion coefficient  

 density
  dynamic viscosity  
  kinematic viscosity
 nanoparticle or solid volume 

fraction
 irreversibility coefficient

 dimensionless stream
function

 dimensionless vorticity
T dimensionless temperature

difference

Subscripts 
av average
x, y, z Cartesian coordinates 
fr friction
f fluid
m mean or average 
nf nanofluid
s solid   
th thermal
tot total

Superscript 
‘ dimensional variable
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1. INTRODUCTION 

Natural convection is the main heat transfer mode 
governing performances of numerous applications 
such as solar collectors, thermal storage systems 
and cooling of electrical components. Cavities 
containing baffles or partitions have important 
implications in many branches of engineering 
particularly in microelectronics fabrication industry, 
especially for the cooling of components attached to 
printed circuit boards, which are placed vertically. 
Fluids used in thermal applications such as water 
and mineral oils have restricted designers, because 
of their low thermal conductivity. Thus, nanofluids 
were developed to improve the heat exchange 
performances. Nanofluids are dilute liquid 
suspensions of nanoparticles with at least one 
critical dimension smaller than (100 nm) suspended 
stably and uniformly in a base liquid. The use of 
nanoparticles having high thermal conductivity 
produces a high thermal conductivity nanofluid. 
Many models have been proposed, focusing mainly 
on parameters such as geometry of nanoparticles 
(Hamilton (1962), Jang and Choi (2007), Chon et 
al. (2005)), Brownian effects (Houshang (2011), 
Nasrin and Alim (2013), Jang and Choi (2004)), 
temperature and interaction between nanoparticles 
and the base fluid (Amrollahi (2008), Chon et al. 
(2005), Li and Peterson (2006)). The first model 
was proposed by Maxwell (1904) showing that 
thermal conductivity of nanofluid increases with 
increasing volume fraction of solid nanoparticles. 
Various research works have been related with the 
natural convection in enclosure filled with 
nanofluids. Heat transfer enhancement in a two-
dimensional enclosure utilizing nanofluids was 
investigated numerically by Khanafer et al. (2003). 
The results illustrate that the nanofluid heat transfer 
rate increases with an increase in the nanoparticles 
volume fraction. The presence of nanoparticles in 
the fluid is found to alter the structure of the fluid 
flow. These main findings are obtainedin 
variousother configurations considered by: Oztop 
and Abu-Nada (2008), Mahmoudi et al. ((2010), 
(2011)), Mahmoodi (2011), Mahmoodi and Sebdan 
(2012), Nasrin, and Alim (2013) and Hassan 
(2014). Kolsi et al. (2014) investigated numerically 
natural convection and entropy generation inside a 
three-dimensional cubical enclosure filled with 
water-Al2O3nanofluid. The second law of 
thermodynamics was applied to predict entropy 
generation rate. The results explain that the average 
Nusselt number increases when the solid volume 
fraction of nanoparticles and the Rayleigh number 
increase. Cho (2014) performed a numerical 
investigation into the natural convection heat 
transfer performance and entropy generation in a 
partially-heated wavy-wall square cavity filled with 
Al2O3–water nanofluid. For a given Rayleigh 
number, the mean Nusselt number increases and the 
total entropy generation reduces as the volume 
fraction of nanoparticles increases. For a given 
volume fraction of nanoparticles, the mean Nusselt 
number and total entropy generation both increase 
as the Rayleigh number increases. The Bejan 
number (ratio of heat transfer irreversibility to the 

total irreversibility) reduces as the Rayleigh number 
increases, but is insensitive to the volume fraction 
of Nanoparticles. Parvin and Chamkha (2014) 
studied the laminar natural convection and entropy 
generation in a nanofluid filled complex cavity with 
a horizontal and a vertical portion. The cavity is 
filled with either water or Cu–water nanofluid. The 
effects on fluid flow, heat transfer and entropy 
generation at various Rayleigh numbers and solid 
volume fractions are investigated. The results show 
that using the nanofluid, generally leads to lowering 
the flow strength whereas increases the Nusselt 
number, entropy generation and the Bejan number. 
By increasing the Rayleigh number, the Nusselt 
number and Bejan number increase. The purpose of 
this work is to numerically investigate the nanofluid 
free convection heat transfer in a square cavity 
equipped by a conductive baffle. The effects of the 
Rayleigh number, conductivity ratio and volume 
fraction of nanoparticles on the flow, heat transfer 
and entropy generation have been examined. 

2. MATHEMATICAL FORMULATION 

Figure 1 shows a schematic diagram of the 
enclosure. The fluid in the enclosure is a water 
based nanofluid containing Al2O3 nanoparticles. 
The nanofluid is assumed incompressible and 
laminar. It is assumed that the water and the 
nanoparticles are in thermal equilibrium. The 
thermo-physical properties of the nanofluid are 
presented in Table 1.  
 

 
Fig.1. Problem geometry and coordinates. 

 
Table 1 Thermophysical properties of water and 

Al2O3 nanoparticle 
Physical properties Water Al2O3 

Cp (J/kg.K) 4179 765 

  (kg/m3) 997.1 3970 

k (W/m.K) 0.613 40 

 x 107 (m2 /s) 1.47 131.7 

 x 10-5 (1 /K) 21 0.85 

 
The bottom wall is maintained at a constant 
temperature (Th) higher than the right and left walls 
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(Tc) and the top wall is adiabatic. The thermo-
physical properties of the nanofluid are assumed to 
be constant except for the density variation in the 
buoyancy term, which is approximated by the 
Boussinesq model. 
 
The stream function-vorticity formulation is used to 
express the governing equations for the laminar and 
unsteady state natural convection: 
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for the fluid zone (2) 
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The effective density of the nanofluid is given as: 

  sfnf   1                                      (4) 

The heat capacitance of the nanofluid is expressed 
as (Abu-Nadu, (2008); Khanaferet al. (2003)): 

      
spfpnfp ccc   1
                     

(5) 

The effective thermal conductivity of the nanofluid 
is approximated by the Maxwell–Garnetts model: 
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The viscosity of the nanofluid is approximated as 
(Brinkman 1952): 

  5.21 





 f

nf

                                                      

(7) 

Scaling length, velocity and time by W , W/ and 

/2W , and defining dimensionless temperature as 

   chc TTTTT ''/''  , the governing equations 

in dimensionless stream function-vorticity form are: 
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for the fluid zone                                                   (9) 
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for the solid zone (9’) Kinematics 
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The foregoing dimensionless parameters are given 
as follows: 
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The energy equation (conduction) needs to be 
solved in the solid portion of the domain. The baffle 
conductivity ks, is assumed constant.  

At the solid-fluid interface the temperature and heat 
flux must be continuous. The latter requirement is 
mathematically expressed as: 

c
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where
nfsc kkR  is the thermal conductivity ratio 

between the material of the baffle and the nanofluid. 

The associated initial and boundary conditions for 
the problem considered are: 
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 On the horizontal top wall: 
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The generated entropy is written in the following 
form:  
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The dimensionless local generated entropy is 
written in the following way:  
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is the irreversibility 

coefficient. 

The first term of Nsrepresents the local 
irreversibility due to the temperatures gradients, it is 
noted NS-th. The second term represents the 
contribution of the viscous effects in the 
irreversibility it is noted NS-fr. Ns give a good idea 
on the profile and the distribution of the generated 
local dimensionless entropy. The total 
dimensionless generated entropy is written:  
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Bejan number (Be) is the ratio of heat transfer 
irreversibility to the total irreversibility due to heat 
transfer and fluid friction:  
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Local Nusselt is given as follows:  
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The average values of Nusselt number, on the hot 
wall is expressed by: 
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3. NUMERICAL METHOD 

The governing Eqs. (8)–(10) were discretized using 

the control-volume-finite-difference described by 
Patankar (1980). The central difference scheme for 
treating convective terms and the fully implicit 
procedure to discretize the temporal derivatives are 
retained. The grid is uniform in both directions with 
additional nodes on boundaries (Borjini et al.2005). 
The resulting nonlinear algebraic equations are 
solved using the successive relaxation-iterating 
scheme (1984). The equation of radiative transfer is 
solved by repeatedly sweeping. The governing 
equations are represented by a general differential 
equation as follows: 
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4. CONVERGENCE GRID TESTING AND 

CODE VALIDATION 

An extensive mesh testing procedure was conducted 
to guarantee a grid independent solution. Five 
different mesh combinations were used for the case 
of Ra =105 and Pr = 6.2. It is found that a grid size 
of 121x121 ensures an extremely grid independent 
solution. A time step of 10-4 is retained to carry out 
all numerical tests and all results are presented for a 
dimensionless time equal to 2. The solution is 
considered acceptable when the following 
convergence criterion is satisfied for each step of 
time:                                          

11,2,3
1 5
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max 10
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i i n n
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T T
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


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
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A first validation (Fig. 2) test was made by 
comparing the present code results for Ra =105 and 
Pr=0.70 against the numerical simulation of 
Khanafer et al. (2003) in the case of differentially 
heated cavity. A second validation (Fig.3) was 
made by comparing the results of the present code 
with those of Oztop and Abu-Nada (2008) in the 
case of partially heated cavity filled by Al2O3 

nanofluid. It is clear that the present code is in good 
agreement with other work reported in literature as 
shown in Fig. 2 and Fig.3. 
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Fig. 2. Nusselt number versus Ra number; 
comparison with results of Khanaferet al.(2003). 
 
 

Fig. 3. Nusselt number versus  for Ra=104; 
comparison with results of Oztop and Abu-Nada 

(2008). 

5. RESULTS AND DISCUSSIONS 

The thermal fields and the flow pattern are 
presented respectively in Figs. 4 and 5, showing 
isotherms and streamlines for,  = 0 and 0.2, Rc = 1 
and different Rayleigh Numbers. The fluid adjacent 
to vertical walls becomes cold and moves 
downward; after getting heated by the bottom hot 
wall, moves up due to buoyancy force, thus two 
convective cells forms inside the cavity. From Fig. 
5, it is seen that the convective heat transfer 
becomes more important as the Ra increases, and 
the value of stream functions are increased showing 
stronger convective cells. At Ra = 106, there are 
sharp temperature gradients close to the vertical 
cold and the horizontal bottom hot walls.  

Fluid rises up from middle portion of the bottom 
wall and flows down along the two vertical walls, 
forming two symmetric rolls with clockwise and 
anti-clockwise rotations inside the cavity. For Ra = 
104, the magnitudes of stream functions are small 
signifying conduction dominant heat transfer within 
the cavity and increases slowly by increasing in the 
volume fraction of nanoparticles. The magnitude of 
stream functions increases by increasing in the solid 
volume fraction of nanofluid. This increase is more 
significant increasing Ra number. By increasing Ra, 
the flow structure changes from circular shaped 
cell, to oval shaped circulation cell. Isotherms for 
both =0 and 0.2 are almost overlapped, except 
near and in the conductive baffle. Thermal 
boundary layer is found to grow at the edge of the 
bottom corners and larger thickness of boundary 
layer is found at the top portion of sidewall. The 

temperature contours occur symmetrically with 
respect to vertical centerline. It is seen that for 
=0.2, the streamlines close to the walls get close to 
each other, thus stronger fluid flow occurs near the 
active walls and the temperature gradient increases 
resulting in enhanced heat transfer. Fig.6, presents 
the effect of the conductivity ratio on the flow 
structure and the thermal field for  = 0 and 
different Rayleigh numbers. The comparison 
between obtained streamlines, reveals that Rc has 
relatively little influence on the flow. For Rc=0.1, 
isotherms redistributed in the baffle but with a 
discontinuity in the solid liquid interface. For Rc=1 
there is a continuity of isotherms in the baffle and 
the thermal field id similar to the case without 
baffle. It is observed that for higher Rc, the 
isotherms move out of the baffle: the baffle has a 
homogenous temperature, due to its high 
conductivity. This Temperature increases and 
becomes more uniform by increasing Rayleigh 
number. Fig. 7 illustrates the local Nusselt number 
vs. distance along the bottom wall, for Ra = 103 and 
106 and for  = 0 and 0.2. This figure shows that 
due to symmetry in the temperature field, the heat 
transfer rate at the bottom wall (Nuloc ) is symmetric 
with respect to the mid-length (x = 0.5) for all Ra 
and . Common to all Ra and , Nuloc exhibits local 
minima at the center of the bottom wall and that has 
maxima at the corner points of the bottom wall. For 
low Rayleigh numbers it is found that Nuloc values 
are almost constant within 0.2< x < 0.8 due to the 
less intense heat lines. It is also observed that the 
larger values of heat transfer rate occur near the 
corner regimes of bottom wall. The local Nusselt 
numbers for bottom wall at  = 0.2 is greater than 
that with  = 0 especially at the corners. 

 

  
Ra=103 Ra=104 

  
Ra=105 Ra=106 

Fig. 4. Isotherms for Rc=1 and different Ra; 
0 (dashed); 2.0 (continue). 

 
Figure 8, presents the variation of mean Nusselt 
number with volume fraction for different values of 
Rayleigh number. The lowest heat transfer was 
obtained for Ra=104 because conduction heat 
transfer is the dominant mechanism of heat transfer 
within the cavity. The greatest heat transfer was 
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obtained for Ra=106 because convection is the main 
mechanism of heat transfer. The figure shows also 
that the heat transfer increases monotonically with 
increasing the volume fraction for all Rayleigh 
numbers. Higher enhancements is obtained for 
Ra=106. In fact the enhancement in the Nusselt 
number when the volume fraction of nanoparticles 
is increased from 0 to 0.2, using Ra=106, is 
approximately 76.2% whereas the enhancement is 
around 71.1% for Ra = 103. As the Rayleigh 
number increases, the convection mechanism is 
enhanced, and thus the fluid in the cavity is 
perturbed more strongly, so the mean Nusselt 
number increases. The addition of nanoparticles 
increases the thermal conductivity of the working 
fluid, and therefore enhances the transport of the 
heat energy. Consequently, for all values of the 
Rayleigh number, the mean Nusselt number 
increases with an increasing nanoparticle volume 
fraction. 
 
  2.0  

R
a=

10
3  

 
 185.0max   

 
 342.0max   

R
a=

10
6  

 
 14.118max   

 
 22.912max   

Fig. 5. Streamlines for Rc=1 and different Ra. 
 
The effect of the conductivity ratio on the average 
Nusselt number is presented in Fig. 9 for Ra=103, 
104, 105 and 106. The results presented in this figure 
show that the increase of Rc enhance the heat 
transfer for all Rayleigh numbers except Ra=104. 
This behavior can be due to the transition from the 
conduction dominated regime to the convection 
dominated regime. Quantitatively, the effect of Rc 
is more significant for low Rayleigh numbers. In 
fact, when Rc is increased from 0.01 to 100, Nuav, 
increase by about 1.15% for Ra=103 and 0.015% for 
Ra=106. 

In Fig. 10, entropy generation due to heat transfer, 
entropy generation due to viscous effects and total 
entropy are shown graphically for Rc=1, 05.0  , 

310  and different Ra. It is clear that entropy 

generation due to heat transfer (Sth) is higher at high 
temperature gradients and it is concentrated at the 
right and left corners of the lower hot wall. Sth 
becomes more and more intense by increasing Ra. 
For all Rayleigh numbers distribution of local 
entropy generation due fluid flow covers almost 
whole domain except near of the top wall due to the 
presence of the baffle which opposes the flow and 

reduce the fluid-fluid viscous effects. The covered 
part of the domain reduces as the Rayleigh number 
increases and iso-lines become more concentrated 
near the right and left cold walls. At Ra =103 and 
104, the entropy generation due to heat transfer is 
more influential on the contour of total entropy. For 
Ra=105 it becomes a combination of entropies due 
to fluid friction and heat transfer. However, at 
Ra=106, the pattern of the entropy is designed by 
the irreversibility due to fluid friction as their values 
are hugely greater than the heat transfer one. Hence, 
it is observable that the contours of total entropy are 
similar to the local entropy generation due to fluid 
flow. Fig. 11, shows the variation of the entropy 
generation due to heat transfer, entropy generation 
due to friction and total entropy generation with the 
nanoparticle volume fraction for different Rayleigh 
numbers. As described above, under low Rayleigh 
number conditions, the flow within the cavity is not 
intense and heat transfer is dominated by 
conduction mode. Therefore, the entropy generation 
contributions of fluid friction irreversibility and heat 
transfer irreversibility are both low, and thus the 
total entropy generation rate is also low. However, 
as the Rayleigh number increases, the flow velocity 
within the cavity increases and a larger temperature 
gradient is formed near the active walls. As a result, 
the effects of fluid friction irreversibility and heat 
transfer irreversibility in prompting entropy 
generation both increase. Consequently, the total 
entropy generation rate increases rapidly by 
increasing Ra.  It is seen that the total entropy 
generation reduces for height Rayleigh numbers as 
the volume fraction of nanoparticles increases. This 
result is explained by the fact that for height 
Rayleigh numbers there is a dominance of 
irreversibility due to friction which is decreasing 
with the volume fraction of nanoparticles. For 
smaller Ra the total entropy generation is quasi-
constant for low Rayleigh numbers due to the 
equilibrium between entropies due to heat transfer 
and friction. In fact by increasing the volume 
fraction irreversibility due to heat transfer increases 
and irreversibility due to friction decreases.  

A better understanding of the effects of Rayleigh 
number and volume fraction on entropies 
generation is obtained by studying the variation of 
Bejan number. In Fig. 12, it is noticed that at low 
Rayleigh numbers, Bejan number is near to unity 
showing the dominance of entropy due to heat 
transfer. This dominance is inversed by increasing 
Rayleigh number and Bejan number reduces 
significantly and entropy due to viscous effect 
becomes dominant. The results obtained show that 
the addition of nanoparticles increases Bejan 
number for all Rayleigh numbers showing the 
increase of thermal irreversibility by increasing the 
volume fraction. 

Figure 13, presents the effect of conductivity ratio 
on the total entropy generation for different 
Rayleigh numbers. Note that the effect of the 
conductivity ratio on the entropy generation is not 
important. The variation of the entropy generation 
with Rc haven’t the same behavior for all Rayleigh  

0
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Fig. 6. Streamlines(left) and isotherms (right) for 05.0  , for different Ra and different Rc.. 

 

 

numbers. Stot is increasing for Ra=103, decreasing 
for Ra=105 and 106 and has a minimum for Ra=104. 

 

 
Fig. 7. Local Nusselt number at hot wall for 

Rc = 1. 

 
 

 
Fig. 9. Average Nusselt number versus Rc for

0.05  . 
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Fig. 10. Local entropies generation for Rc=1, 

05.0 and 310 . 

 

 

 

 
Fig. 11. Entropy generation versus  ; (a) 

Entropy due to heat transfer; (b) Entropy due to 
friction; (c) Total entropy. 

 
Fig.12. Bejan number versus  . 

 

 
 

 

 

 

 
Fig. 13. Total entropy versus Rc for 0.05 

. 

(a) 

(b) 

(c) 
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6. CONCLUSION 

This study has performed a numerical investigation 
into the natural convection heat transfer 
performance and entropy generation within an 
enclosure containing Al2O3-water nanofluid and 
equipped with a conductive baffle attached to the 
top adiabatic wall. It has been assumed that the 
vertical walls are cold, while the bottom wall is hot. 
In performing the simulations, the governing 
equations have been modeled using the Boussinesq 
approximation and then solved using the finite 
volume method. The simulations have focused 
specifically on the effects of the, nanoparticles 
volume fraction, the conductivity ratio and Rayleigh 
number on streamlines, isothermal distribution, 
mean Nusselt number and entropy generation 
within the enclosure. The results have shown that 
for the Rayleigh numbers considered in this study, 
the mean Nusselt number increases, the total 
entropy generation decreases and the flow 
strengthens with the increase of the volume fraction 
of nanoparticles. The effect of the conductivity ratio 
was found to be negligible on variations of heat 
transfer rate and entropy generation. Overall, the 
results presented in this study provide a useful 
insight into the natural convection heat transfer 
characteristics and entropy generation within 
enclosures containing water based nanofluids. As 
such, they are expected to be of benefit in 
optimizing heat transfer systems and minimizing 
energy losses for a wide range of engineering 
applications. 
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