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ABSTRACT

This paper presents the unsteady magnetohydrodynamic (MHD) flow of a generalized Burgers' fluid between

two parallel side walls perpendicular to a plate. The flow is generated from rest at time 0t  induced by
sawtooth pulses stress applied to the bottom plate. The solutions obtained by means of the Laplace and the
Fourier cosine and sine transforms in this order are presented as a sum between the corresponding Newtonian
and non-Newtonian contributions. We investigate the effect of magnetic field and permeability on the fluid
motion by a numerical procedure for the inverse Laplace transform, namely Stehfest's algorithm. Moreover,
the influence of side walls on the fluid motion, the effect of pulse period, magnetic and porosity parameters
and material parameters is presented by graphical illustrations.

Keywords: Generalized burgers' fluid; Sawtooth pulses stress; MHD flow; Porous medium.

NOMENCLATURE

A first Rivlin-Ericksen tensor
B total magnetic field

( )H  Heaviside unit step function

J current density

k̂ unit vector along the z-direction
k permeability of the medium
L velocity gradient
R Darcy’s resistance
S extra-stress tensor
T time period

V velocity field

 electrical conductivity of the fluid

1 relaxation time

3 retardation time

2 material parameter

4 material parameter

 kinematic viscosity

0 strength of applied magnetic field

1. INTRODUCTION

The interest in the research of oscillating motions of
non-Newtonian fluids induced by stress has been
greatly grown due to their multiple applications.
Such type of flows are of interest to workers in
cement industry, medicine and geology, e.g., in
dams, clay rotation, artificial surfing, heartbeat,
motion in the liquid core of the earth during
earthquakes are the best examples of motion
induced by stress. Among the many models that
have been used to describe the behavior of rate type
fluids, Burgers' fluids are the most complex one.
There is a long chain of work published on rate type
models, but we mention here the references that
most relate to our work.

Chakraborty and Ray (1980) examined the

magneto-hydrodynamic Couette flow between two
parallel plates when one of the plates was set into
motion by random pulses applied at random instants
of time. Makar (1987) presented the solution of
magneto-hydrodynamic flow between two parallel
plates when one of the plates was subjected to
velocity tooth pulses, neglecting the induced
magnetic field. Ghosh and Sana (2009) solved an
initial value problem designed for the motion of an
Oldroyd-B fluid bounded by an infinite rigid non-
conducting plate. The flow was generated from rest
in the fluid due to velocity sawtooth pulses
subjected on the plate in the presence of an external
magnetic field. Khan and Zeeshan (2011)
investigated the MHD flow of an Oldroyd-B fluid
through a porous space. The motion was generated
in the fluid due to the velocity sawtooth pulses
applied on the plate.
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In all of the above citations, the conditions on the
boundary are given in terms of velocity. A little
work is available in the literature where stress is
given on the boundary. It is therefore of interest to
construct solution of hydromagnetic flow of fluids
induced by stress. The stress at the boundary gives
important information about the nature of
dissipation at the boundary. Fetecau et al. (2011)
obtained solutions for the motion of viscous fluids
due to an infinite plate that applies oscillating shear
stresses to the fluid. Seth et al. (2011) studied the
unsteady hydromagnetic couette flow of an
incompressible electrically conducting fluid in a
rotating system in the presence of a uniform
transverse magnetic field through porous medium
induced by the impulsive movement of the upper
plate of the channel using Laplace transform
technique. Vieru (2011) obtained the solution for
the flow induced by a flat plate between two walls
perpendicular to a plate that applied a time
dependent shear to the fluid. Vieru et al. (2012)
examined the unsteady motion of a second grade
fluid between two parallel side walls perpendicular
to a plate by means of the Fourier sine and cosine
transforms. The flow was induced by an infinite
plate that applied an oscillating shear to the fluid.

Fetecau et al. (2012) presented an analysis for the
unsteady flow of an incompressible Oldroyd-B fluid
induced by a time-dependent shear stress of order of
fractional parameter to the fluid using Fourier sine
and Laplace transforms. Sohail et al. (2013)
provided close-form expressions for the starting
solutions corresponding to the unsteady motion of a
Maxwell fluid between two parallel walls due to an
infinite plate that applies oscillating shear stresses
to the fluid. Rubbab et al. (2013) studied the
unsteady natural convection flow of an
incompressible viscous fluid near a vertical plate
that applied an arbitrary shear stress to the fluid
using the Laplace transform technique.

Seth and Singh (2013) presented an analysis for the
unsteady hydromagnetic couette flow of a viscous
incompressible electrically conducting fluid in a
rotating system with Hall effects in the presence of
a uniform transverse magnetic field induced by the
time dependent velocity oscillations of the upper
plate in its own plane. Kumar and Prasad (2014)
presented the MHD pulsatile flow through a porous
medium driven by an unsteady pressure gradient
between permeable beds of a viscous
incompressible Newtonian fluid. Further studies of
fluid motions induced by stress may be found in
Akhtar et al. (2011), Shahid et al. (2012), Sultan et
al. (2014) and Sultan et al. (2015).

The main objective of the present investigation is to
study the MHD flow of a generalized Burgers' fluid
through a porous medium between two parallel
walls. The flow is induced by the sawtooth pulses
stress. The MHD flow involving such fluids has
promising applications on the development of
energy generation MHD pumps. The boundary
condition used is of interest as sound waves, light
waves, and ocean waves travel like the form of
sawtooth pulses. Study of sawtooth pulses flows is
also important because of their increasing

applications in aerospace science, astrophysics,
atmospheric science and physiological fluid
dynamics Ghosh (2011). Moreover, a
sawtooth wave has strong electromagnetic
properties. A sawtooth pulse may be used in the
detection of magnetic effect on electrically
conducting flows of biological fluids. Analytical
expressions for the velocity field and the shear
stresses are determined by means of the Fourier
cosine and sine transforms coupled with Laplace
transform. Finally, a comprehensive study of some
physical parameters involved is performed to
illustrate the influence of these parameters on the
velocity.

2. GOVERNING EQUATIONS

For the generalized Burgers' fluids, the Cauchy
stress tensor is given by

= -p I+S , (1)

2 2

1 2 3 42 2
,

S+  +  = A+  +
S S A A

t tt t

   
    

  

 
  
 

(2)

where pI denotes the indeterminate spherical
stress, 3 1  having the dimension of time and

2 and
4 both having the dimension of square of

time and

2

2
.

= TS ds
LS SL

t dtt

 

   
 

(3)

We seek a velocity field V and stress field S of the
form Sultan et al. (2014)

,
ˆV= v(x, y, t)= (x, y,t) k,  S=S(x, y,t)w (4)

where k̂ is the unit vector along the z -direction.
If the fluid is at rest up to the moment t 0 , then

( , ,0)
V(x, y, 0)= 0,  S(x, y,0)=  = 0.

S x y

t




(5)

Eqs. (1)- (3) and (5) give S  =S =S 0xx xy yy  and

the meaningful equations

2

1 2 1 32
( 1+ + ) (x, y,t)= ( 1+

t tt
    
  
 
2

4 2

( , , )
+ )

w x y t

xt

 


for 1( , ,0) 0.x y  (6)

2

1 2 2 32
( 1+ + ) (x , y,t)=  ( 1+

t tt
    
  
 

2

4 2

( , , )
+ )

w x y t

yt

 


for 2( , ,0) 0.x y  (7)

where  1 =S x,  y,  t  x z and  2 =S x ,  y ,  ty z

are the non-trivial shear stresses.

The Darcy's resistance R in a generalized Burgers'
fluid satisfies the following expression
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2

1 2 2
( 1+ + ) =R

t t
 
 
 

2

3 4 ,2
( 1+ + )V

k t t


 
 


 

(8)

We assume that a uniform Magnetic field of
strength, 0 , is applied to the fluid. We also assume

that the direction of magnetic field is perpendicular
to the velocity field.

Thus the Lorentz force due to magnetic field
becomes

2
0J B = -  ,V  (9)

The balance of linear momentum which governs the
MHD flow through porous medium becomes

 = +  J B  + R ,
dV

dt
    (10)

We consider the unsteady flow of an incompressible
generalized Burgers' fluid over an infinite flat plate
between two parallel side walls separated by a
distance d apart, perpendicular to the plate.

Initially, the system is at rest. At time 0t  , the
plate applies a pulsating shear to the fluid induced
by sawtooth pulses.

In view of Eqs. (6)-(10), the governing equation
leads to

2

1 2 2

( , , )
1 +  +  =

w x y t

t tt
 

   
    

2 2 2

3 4 2 2 2
1+  +  + w(x,y,t)

t t x y
 

      
            

2

1 2 2
- 1 +  +  w (x ,y,t)

t t
 

  
     

2

3 4 2
- 1 +  +  w (x ,y ,t ) .

t t
  
  
    

(11)

where
2

0,



 

   and
k


  .

We use the following appropriate initial conditions

2

2

w(x, y,0) w(x, y,0)
w(x, y,0)= = =0,

t t

 
 

for  x >0,  y [0, d], (12)

the boundary conditions

2

1 1 1 02
(1+ + ) (x ,y, t)| =xt t

   
 
 

2

3 4 02

w(x,y,t)
(1+ + )  |  =U  f (t)xt xt

   
  
 

for y (0,d) and t>0, (13)

w(x, 0, t)=w(x, d, t)=0 for x,t>0. (14)

and the natural conditions

w (x,y,t)
w (x, y, t)= 0

x





as x ,y [0,d].  

(15)

where f(t) denotes the sawtooth pulses which is an

even periodic function.

According to the nature of the applied stress, we
assume that the mathematical form of the function
f(t) , Ghosh, A.K. and P. Sana (2009), is

1

1 1
( ) ( ) ( 1) ( ) ( ) ,

2
p

pT
p

f t tH t t pT H t
T





 
    
 
 

 (16)

Where ( )H  is defined as p TH (t) = 0 for t  pT

and p TH (t) = 1 for t > pT .

In order to solve the problem, we use the Laplace
transform technique and Fourier cosine and sine
transforms in this order.

3. CALCULATION OF VELOCITY
FIELD

Applying the Laplace transform to Eq. (11), we
obtain the following problem

 2
1 21 +  +  q ( , , ) =q q w x y q 

 
2 2

2
3 4 2 2

1+  +  + w(x,y,q)q q
x y

  
  
    

 2
1 2- 1 +  +  w (x ,y,q )q q 

 2
3 4- 1 +  +  w (x ,y ,q ) .q q   (17)

The Laplace transform  w x, y,q of the function

w(x,  y, t) has to satisfy the conditions

2
11 2 0( 1 + + ) ( x ,  y ,q ) |xq q   

2
3 4 0

w (x,y,q)
= (1+ + )  |xq q

x
   




2 2
1

1 1 1
( 1) exp( ) ,

2
p

p

U
pTq

T q q





 
    
 
 

 (18)

w(x, 0, q)=w(x, d, q)=0 . (19)

w (x ,y,q )
w (x , y, q )= 0

x





as

x ,y [0,d].   (20)

Multiplying both sides of Eq. (17) by

   2
cos  x sin y ,n 


where ,n

n

d


  integrating
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with respect to x and y from 0 to  and 0 to

d respectively, and bearing in mind the conditions
(18)-(20), we find that

2 ( 1) 1
w (  ,q )=

n

n

n

U

T


  
 

3 2 2 2
2 1 4 2 41/ [( q +( + ( + )+ + )qn        

2 2
3 1 3+(1+ ( + )+ + )n     

2 2+ ( + )+ + )]n   

2
1

1
1+2 (-1) exp(- pTq)p

pq





 
  

 
 , (21)

Where

0 0

2
w (  ,q)=  w(x,y,q )cos(  x)

d

n  




 

sin( y) dy dx; n=1,2,3,....n . (22)

Eq. (21) can also be written as

4,

2 ( 1) 1 1
w (  ,q)= [

( )

n

n

n n

U

T q q


   
 



 3 2 2 2
2 1 4 2 4[{ q + + ( + )+ + qn        

 2 2
3 1 3+ ( + )+ + }n q     

 3 2 2 2
2 1 4 2 4/{( q + + ( + )+ + qn       

 2 2 2 2
3 1 3+ 1+ ( + )+ + + ( + )n nq        

4 ,+ + ) ( ( ) ) } ] ]nq q  

2
1

1
1+2 (-1) exp(- pT q) .p

pq





 
  

 
 (23)

or

4,

2 ( 1) 1 1
w (  ,q)= [

( )

n

n
n n

U

T q q


   
 



3 2 2 2
2 1 4 2 4

2

1
[{ q +( + ( + )+ + )qn       


 

2 2
3 1 3+( ( + )+ + ) }n q     

1, 2 , 3,/{(q-q ( ))(q-q ( ))(q-q ( )n n n  

4,( ( ))}]]nq q 

2
1

1
(1+ 2  (-1 ) exp(- pT q) ).p

pq




  (24)

Writing the above Eq. as

4,

2 ( 1) 1 1
w (  ,q)= [

( )

n

n
n n

U

T q q


   
 



1, 2 ,

2 1, 2 ,

( ) ( )1
[

( ) ( )
n n

n nq q q q

   

  
 

 

3 , 4 ,

3 , 4 ,

( ) ( )
]]

( ) ( )
n n

n nq q q q

   

 
 
 

2
1

1
(1 + 2  (-1 ) ex p (- p T q ) ).p

pq




  (25)

where

1, 1, 1, 2,( ) ( ) / [( ( ) ( ))n n n nq q      

1, 3, 1, 4,( ( ) ( ))( ( ) ( ))]n n n nq q q q     (26)

2, 2, 2, 1,( ) ( ) / [( ( ) ( ))n n n nq q      

2, 3, 2, 4,( ( ) ( ))( ( ) ( ))]n n n nq q q q     (27)

3, 3, 3, 1,( ) ( ) / [( ( ) ( ))n n n nq q      

3, 2, 3, 4,( ( ) ( ))( ( ) ( ))]n n n nq q q q     (28)

4, 4, 4, 1,( ) ( ) / [( ( ) ( ))n n n nq q      

4, 2, 4, 3,( ( ) ( ))( ( ) ( ))]n n n nq q q q     (29)

2 2
4, ( ) ( + )+ +n nq       (30)

, ,( ) ( )i n i nq s 

2 2
1 4 2 4

2
2

( + )+ +

3
n      



 
 (31)

3 2 2
. 2 , 1 4( ) q ( )+( + ( + )i n i n n       

2 2 2
2 4 , 3+ + )q ( )+( ( )i n n       

1 3 ,+ )q ( )i n    for n=1,2,3. (32)

3 2 2
4. 2 4, 1 4( ) q ( )+( + ( + )n n n        

2 2 2
2 4 4, 3+ + )q ( )-( ( )n n       

1 3 4 ,+ )q ( )n   

In the above relations

1/3
2 3

1, 1, 1,
1,

( ) ( ) ( )
s ( )

2 4 27
n n n

n
     


 
    
 
 

1/3
2 3

1, 1, 1,( ) ( ) ( )

2 4 27
n n n      

    
 
 

(33)

1/3
2 3

1, 1, 1,
2,

( ) ( ) ( )
s ( )

2 4 27
n n n

n Z
     


 
    
 
 

1/3
2 3

1, 1, 1,2 ( ) ( ) ( )

2 4 27
n n nZ

      
    
 
 

, (34)

1/3
2 3

1, 1, 1,2
3,

( ) ( ) ( )
s ( )

2 4 27
n n n

n Z
     


 
    
 
 

1/3
2 3

1, 1, 1,( ) ( ) ( )

2 4 27
n n nZ

      
    
 
 

, (35)
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Where

2 2
3 1 3

1 ,n
2

1 ( )
( )= n      

 


    

2 2 2
1 4 2 4

2
2

( ( ) )
- ,

3
n      


     (36)

2 2

1 ,n
2

( )
( )= n   

 


   

2 2 3
3 1 3

3
2

(1 ( ) )
2

2 7
n      


    


2 2
1 4 2 42

2

1
- {( ( ) )

3 n      


   

2 2
3 1 3(1 ( ) )},n           (37)

1 3

2

i
Z
 
 . (38)

To solve Eq. (25), we use the formula

-1
2

1,

1
L =

( ( ))nq q q 

 
   

1 , 1 ,

2
1 ,

e x p ( ( ) ) ( ) 1
.

( )
n n

n

q t q t

q

 

  (39)

Inversion of Eq. (25) by means of the Laplace
transform and Fourier cosine and sine transforms,
and using Eq. (39), we obtain

1 0

2 2
w(x,y ,t)= sin( ) ( ) cos( )n n

n

y B x
d

  





 

1, 1,2
1,

1
[ {(exp( ( ) ) ( ) 1) ( )

( )
n n

n

q t q t H t
q

 


   

1, 1,(exp( ( )( )) ( )n nq t pT q   

( ) 1) ( )} ]pTt pT H t d   

1 0

2 2
sin( ) ( )cos( )n n

n

y A x
d

  





  

1, 2, 3,[{ ( , ) ( , ) ( , )} ( )n n nt t t H t      

1, 2,
1

2 ( 1) { ( , ) ( , )p
n n

p

t pT t pT 



      

3, ( , )} ( )] .n pTt pT H t d   (40)

Where

2

2 ( 1) 1 2 ( 1) 1
( ) , ( )

n n

n n
n n

U U
A B

T T
 

      
   

  ,

, ,
, , 2

,

exp( ( ) ) ( ) 1
( , ) ( )

( )

j n j n
j n j n

j n

q t q t
t

q

 
  



 


for 1,2,3.j  (41)

The first part of Eq. (40) gives solution for
Newtonian fluid while the second part gives
corresponding non-Newtonian contribution.

4. CALCULATION OF TANGENTIAL
STRESS

To obtain the expressions for the shear stresses

1(x,  y,  t) and
2 (x,  y,  t) , applying the Laplace

transform to Eqs. (6) and (7), we have the
expressions

2
3 4

1 2
1 2

( 1+ + ) ( , , )
(x, y,q)=

( 1+ + )

q q w x y q

xq q

 


 




(42)

2
3 4

2 2
1 2

( 1+ + ) ( , , )
(x, y,q)=

( 1+ + )

q q w x y q

yq q

 


 




(43)

From Eq. (21) with inverse Fourier cosine and sine
transforms, we have

1

2 2
w (x ,y ,q)= ( ) sin( ) cos( )n n

n

A y x
d

  







1, 2 , 3 ,

1

(q -q ( ))(q -q ( ))(q -q ( ))n n n  


2
1

1
(1+2 (-1) exp(- pTq) ) .p

p

d
q





  (44)

Using Eq. (44) in Eqs. (42) and (43) , we have

1
1

2 2
(x , y,q )=  -  ( ) sin ( )n n

n

A y
d


  








2
3 4

2
1 20

s i n ( ) (1 + + )

( 1 + + )

x q q

q q

   

 



 

1, 2 , 3,

1

(q-q ( ))(q -q ( ))(q -q ( ))n n n  


2
1

1
(1+2 (-1) exp(- pTq) ) .p

p

d
q





  (45)

2
1

2 2
(x, y,q)=  ( ) cos( )n n n

n

A y
d


   








2
3 4

2
1 20

co s( )(1 + + )

(1 + + )

x q q

q q

  

 



 

1, 2 , 3,

1

(q -q ( ))(q -q ( ))(q -q ( ))n n n  


2
1

1
(1+2 (-1) exp(- pTq) ) .p

p

d
q





  (46)

Let us take

2
3 4

2
1 2

( 1 + + )
A (q )=

( 1 + + )

q q

q q

 

 
,                       (47)

and

( , )nB q 
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2
1, 2, 3,

1

q (q-q ( ))(q-q ( ))(q-q ( ))n n n  
,          (48)

Writing Eq. (47) under the following equivalent
form

1
2 3 2 2

1 1

a
A (q )= a + a

( a )

q

q b



 

1
4 2 2

1 1

a
( a )

b

q b


 
,                                     (49)

Where

2 3 1 41 4
1 2 3 2

2 2 2

a = ,  a = ,  a =
2

    
  



2 2 4 1 2 3 1 4
4 2 2

2 1 2

2 ( ) ( )
a =

4

       

  

  



2
1 2

1
2

4
,

2
b

 



 (50)

and 2
1 24 0   .

Applying the inverse Laplace transform to Eq. (49),
we obtain

2 3 1 1A(t) =a +a cosh(b  t) exp(-a t)

4 1 1+ a sinh(b  t) exp(-a t).

(51)

Now writing Eq. (48) in the following equivalent
form

1, 2 , 3 ,

1
B ( ,q )= -

( ) ( ) ( )
n

n n nq q q


  

1, 2 , 3 ,

1 1 1 1
[1 ]

( ) ( ) ( )n n nq q q q  
   

1, 2, 3,

1, 2, 3,( ) ( ) ( )
n n n

n n nq q q q q q

  

  
  
  

(52)

Where

1,n 

2
1, 1, 2, 1, 3,

1

( ( )) ( ( ) ( ))( ( ) ( ))n n n n nq q q q q     
(53)

2,n 

2
2, 2, 1, 2, 3,

1

( ( )) ( ( ) ( ))( ( ) ( ))n n n n nq q q q q     
(54)

3,n 

2
3, 3, 1, 3, 2,

1

( ( )) ( ( ) ( ))( ( ) ( ))n n n n nq q q q q     
(55)

Applying inverse Laplace transform to Eq. (52), we
obtain

1, 2, 3,

1
( ,t)=-

( ) ( ) ( )n
n n n

B
q q q


  

1, 2, 3,

1 1 1
[1 ]

( ) ( ) ( )n n n
t

q q q  
    

1, 1, 2 , 2 ,e x p ( ) e x p ( )n n n nq t q t  

3, 3,exp( )n nq t .                                          (56)

Let

( , t)= ( A  B )(t)n  

0
= A (t-q) B ( ,q) dq  ,

t
n 

(57)

Using Eqs. (51) and (56) in the above equation, we
obtain

2 3 1 10
(n, t)= [a +a cosh(b  (t-q)) exp(-a (t-q))

t
 

4 1 1+a sinh(b  (t-q)) exp(-a (t-q))]

1, 2 , 3 ,

1
[

( ) ( ) ( )n n nq q q  
 

1, 2, 3,

1 1 1
{1 }

( ) ( ) ( )n n n

q
q q q  

    

1, 1, 2 , 2 ,exp( ) exp( )n n n nq q q q  

3, 3,exp( )]n nq q . (58)

Finally, inversion of Eqs. (45) and (46) by means of
Laplace transform and using Eq. (58), we obtain

1
1

2 2
(x , y,t)=  -  ( ) sin( )n n

n

A y
d


  








10

s in ( )[ ( , t )H (t) 2 ( 1) p
n

p

x   
 


  

pT( , t-pT)H (t)]n  , (59)

2
1

2 2
(x, y,t)=  ( ) cos( )n n

n

A y
d


  








10

cos( )[ ( , t)H (t) 2 ( 1) p
n

p

x  
 


  

pT( , t-pT)H (t)]n  .                                         (60)

5. RESULTS AND DISCUSSIONS

The present problem is concerned with unsteady
motion of generalized Burgers' fluid generated from
rest induced by sawtooth pluses stress. Laplace
transform technique and Fourier cosine and sine
transforms have been used as mathematical tools in
this order.  The obtained expression for the velocity
field has been written as the sum of Newtonian and
non-Newtonian contributions.



Q. Sultan and M. Nazar / JAFM, Vol. 9, No. 5, pp. 2195-2204, 2016.

2201

Fig. 1. Velocity profiles for generalized Burgers'
fluid for different values of x and y . Other

parameters and values are taken as U 15 ,
d 0.01 , 3.9  , 0.004  , 1=3 , 2 2  ,

3 0.5  , 4=2 , 0.5  , 0.3  .

By using the numerical calculations and graphical
illustrations, the following physical aspects of the
fluid behavior have been analyzed.

(a) Influence of side walls and pulse oscillation
on the velocity field.

Fig. 1 represents the graphs for three values of
distance from the side walls till the middle of the
channel i.e., for different values of y for a fixed
distance (d=0.01) between the side walls, and at
different positions 0.15,0.3,0.5x  from the
bottom plate. It is seen that the pulse oscillations
decrease far from the bottom plate. It is also
observed that as the bottom plate is set into pulse
oscillation, with respect to y-coordinate, the
velocity increases from zero to a maximum till the
middle of the channel. Moreover, it reveals that
there is a time interval in which the motion is
oscillatory, and then the oscillations of the
velocity are attenuated.

Fig. 2 predicts the temporal velocity profile for
various values of x and for three values of
distances 0.2,0.4,0.6d  between the walls. It is

seen that as the distance d between the side walls
increases, the magnitude of velocity profile also
increases and the motion is oscillatory in some time
interval, and then the pulse oscillations attenuated.

Fig. 2. Velocity profiles for generalized Burgers'
fluid for different values of x and d . Other
parameters and values are taken as U 15 ,
y=0.25 , 3.9  , 0.004  , 1=3 , 2 2  ,

3 0.5  , 4=2 , 0.5  , 0.3  .

(b) Effects of pulse period, magnetic and
porosity parameters

In Fig. 3, the graphs for three values of pulse period
2, 3,T  4 are presented, for different values of

the magnetic field strength  verses y . As

 increases, the magnitude of pulse oscillation also
increases and the velocity profile reaches the steady
state slower, there exist critical values of the
magnetic field strength where its effect is negligible
(in our case the minimum and maximum values are
0.01 and 100 respectively), while the pulse period
T decreases the magnitude of pulse oscillations of
velocity profile. The effect of  represented in Fig.
4 is similar to that of  as represented in Fig.3.

In order to study the effect of the magnetic field
strength and porosity on the velocity field verses t
, we use a numerical procedure for the inverse
Laplace transforms, namely the Stehfest's
algorithm, (1972). If we denote by W x y q( , , ) the
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inverse Fourier transform of the function given by
Eq. (21), then, in accordance with Stehfest’s
algorithm, the inverse Laplace transform, namely
the velocity field w (x,y,t) is given by

2

1

ln 2 ln 2
( , , ) ( , , )

s

j
j

w x y t d W x y j
t t

 

Where

m i n ( , )

1

2

( 1 )
j s

j s
j

j
i

d 

    

  

(2 )!

( )! !( 1)!( )!(2 )!

si i

s i i i j i i j   
.

s is a positive integer number and [ ]r denotes the
integer part of the real number r .

The influence of the magnetic field on the velocity
field is shown in Fig. 5. From this diagram, we
observe that the influence of magnetic field is to
decrease the magnitude of pulse oscillation and the
velocity reaches the steady state earlier. Fig. 6 is
drawn to show the effect of porosity on the fluid
velocity. Note that, the effect of porosity is similar
as that of the magnetic field.

Fig. 3. Velocity profiles for generalized Burgers'
fluid for different values of  and T . Other
parameters and values are taken as U 15 ,

t=1.5 , 3.9  , 0.004  , 1=5 , 2 2  ,

3 0.5  , 4=2 , 1d  , 0.3  .

Fig. 4. Velocity profiles for generalized Burgers'
fluid for different values of  and T . Other
parameters and values are taken as U 15 ,

t=1.5 , 3.9  , 0.004  , 1=5 , 2 2  ,

3 0.5  , 4=2 , 1d  , 0.1 

Fig. 5. Velocity profiles for generalized Burgers'
fluid for different values of  . Other

parameters and values are taken as U 15 ,
0.5x  , 0.5y  3.9  , 0.004  , 1=2 ,

2 0.7  , 3 0.3  , 4 =3 , 1d  , 0.3 

(c) Influence of parameters 1 , 2 , 3 and

4 on the velocity field.

In order to see the effects of the material
parameters

1 ,
2 ,

3 and
4 , various values of

these parameters are considered to plot the Figs. 7 and
8. In these Figs., we used the numerical
values 1 5 ,U  0 .01,x  0.01,y  0.02d  ,

4
T


 , 3.9,  0.004  , 0.3  , 1.7  and

three values for 1 , 2 , 3 and
4 . In Fig. 7 the

parameter
1 and 3 are variables and parameters

2 and
4 are constants. It can be seen that, if the
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value of the parameter
1 increases, the fluid flows

more slowly. Also, be noted that for the same value of
the parameter

1 , and by increasing
3 results in

decreasing the velocity of fluid (the velocity
amplitudes decrease if the values of

3 increase). Fig.

8 corresponds to the variation of the parameters

2 and
4 . There is no significant effect in the early

period of the movement. The difference appears in the
behavior of the fluid velocity, when compared
with

1 , velocity amplitudes increase if the parameter

2 increases. And in this case, for a constant value of

the parameter
2 , and by increasing

4 . it is clear

that, the fluid flows more faster.

Fig. 6. Velocity profiles for generalized Burgers'
fluid for different values of  . Other

parameters and values are taken as U 15 ,
0.5x  , 0.5y  3.9  , 0.004  , 1=2 ,

2 0.7  , 3 0.3  , 4 =3 , 1d  , 10  .

Fig. 7. Velocity profiles for generalized Burgers'
fluid for different values of 1 and 3 . Other

parameters and values are taken as U 15 ,
3.9  , 0.004  , x=0.01 , y=0.01 , 2 7  ,

T=
4


, 4 =3 , 0.02d  , 1.7,  0.3  .

Fig. 8. Velocity profiles for generalized Burgers'
fluid for different values of 2 and 4 . Other

parameters and values are taken as U 15 ,
3.9  , 0.004  , x=0.01 , y=0.01 , 1 5  ,

T=
4


, 3=0.5 , 0.02d  , 1.7  0.3  .

6. CONCLUSSIONS

Here we obtained analytical solutions for the
magnetohydrodynamic flow of a generalized
Burgers' fluid between two parallel side walls. The
expressions for the velocity field and the
corresponding tangential stresses induced by the
sawtooth pulses stress are obtained by means of the
Laplace and Fourier cosine and sine transforms.
The main findings are summarized as follows:

 The amplitude of pulse oscillation of velocity
profile decreases far from the bottom plate.

 The magnitude of pulse oscillation of velocity
profile increases from zero to maximum from
the side walls till the middle of the channel.

 There is a time interval in which the velocity is
oscillatory and then the oscillations of the
velocity are attenuated.

 As distance between the walls increases, the
magnitude of pulse oscillation of   velocity
profile also increases initially and then the
oscillations of the velocity are attenuated.

 Increasing magnetic field strength and porosity,
lead to decrease the amplitude of pulse
oscillation verses t whereas the amplitudes
increase verses y .
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 As the values of the parameters
1 and

3
increase, the fluid flows more slowly whereas
behavior of parameters

2 and
4 is opposite

when compared to that of
1 and

3 .
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