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ABSTRACT 

In this paper, we have considered the blood flow in a curved channel with abnormal development of stenosis 
in an axis-symmetric manner. The constitutive equations for incompressible and steady non-Newtonian 
tangent hyperbolic fluid have been modeled under the mild stenosis case. A perturbation technique and 
homotopy perturbation technique have been used to obtain analytical solutions for the wall shear stress, 
resistance impedance to flow, wall shear stress at the stenosis throat and velocity profile. The obtained results 
have been discussed for different tapered arteries i.e., diverging tapering, converging tapering, non-tapered 
arteries with the help of different parameters of interest and found that tapering dominant the curvature of the 
curved channel. 

Keywords: Curved artery; Blood flow; Stenosis; Analytical solutions; Hyperbolic tangent fluid model. 

NOMENCLATURE 

a indicate stenosis position ,U V components of velocity 

b length of stenosis ew Weissenberg number 

iC constants (i=1-10) x axial direction 

0e  radius of normal artery 

F flow rate   tapering parameter 

( )h x  height of stenosis 0  extra stress tensor 

L length of stenosed artery   maximum height of stenosis 
n 2  stenosis shape  resistance impedance

en fluid parameter o resistance (no stenosis)

P pressure  shear rate viscosity at infinity

Q embedding parameter 0 shear rate viscosity at zero

enR   Reynolds number o shear stress (no stenosis)

r radial direction  second invariant strain tensor

cR curvature   shear rate

,rrS ,rxS xxS shear stress   time constant

ou averaged velocity   tapering parameter

( ,  ) denotes the non-dimensional 
quantities 

, , , ,
(ja j=1-4 )

constants

1. INTRODUCTION

Most of the cardiovascular diseases, especially 
atherosclerosis or stenosis have been found to be 

responsible for major deaths in both developing and 
developed countries. It occurs to deposition of 
proliferation in the connective tissues and 
cholesterol in the arterial wall. The presence of 
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stenosis at one or more major location may lead to 
disorders in circulatory systems and different arterial 
diseases such as myocardial, angina pectoris, 
coronary thrombosis, infarction and strokes etc. 
Young et al. (1973) investigated axisymmetric and 
nonsymmetric plastic models. Hassan et al. (2008) 
investigated the laminar sinusoidal pulsating flow 
through a modeled arterial stenosis with a 
trapezoidal profile. Mandal et al. (2010) investigated 
numerical solutions of the steady viscous flow due to 
arterial disease through different double stenosed 
artery. Nadeem et al.  (2015) investigated the 
viscous fluid model through an axis-symmetric 
stenosis with the effect of three different types of 
arteries. 

The rheological study of blood flow has several 
goals such as not only to understanding health and 
disease issues but also that what kind of fluid it is in 
nature. Some researchers considered blood as a 
Newtonian fluid especially flows of blood in the 
large vessels such as the aorta. Liu et al. (2004) 
investigated the pulsating blood flow through 
models of stenotic and tapered arteries to discuss 
the distributions of the wall shear stress. In fact 
blood flow through constricted arteries behaves like 
a non-Newtonian fluid at low shear rates being 
suspension of plasma, white cells, red cells and 
platelets. Canic et al. (2003) investigated the 
quasilinear effects arising in a hyperbolic system of 
partial differential equations modelling blood flow 
through large compliant. Sankar et al. (2004) 
discussed the effects of catheterization and non-
Newtonian nature of blood in small arteries 
mathematically by modeling blood as a Herschel-
Bulkley fluid. Mekheimer and ElKot (2008) 
discussed the micropolar fluid model for axis-
symmetric blood flow through radially symmetric 
but axially nonsymmetric mild stenosis tapered 
arteries. Sankar et al. (2009) discussed the 
mathematical model of pulsatile flow of non-
Newtonian fluid in stenosed arteries. Here they 
discussed the Herschel Bulkley fluid and found an 
analytical solution by using a regular perturbation 
method. Nadeem et al. (2012) investigated the 
blood flow through a tapered artery with a stenosis 
assuming the flow is steady and treated blood as 
hyperbolic tangent fluid. Reddy et al. (2014) 
investigated the blood flow between the clogged 
(stenotic) artery and the catheter with asymmetric 
nature of the stenosis. Jung et al. (2014) 
investigated the hemodynamics behavior of the 
blood flow in the presence of the arterial stenosis. 
Ellahi et al.  (2014) discussed the blood flow model 
through composite stenosis. Here they treated blood 
as a micropolar fluid model under the mild stenosis 
case. Nadeem et al. (2009 and 2015) investigated 
the two-dimensional equations of tangent 
hyperbolic fluid using the assumptions of low 
Reynolds number and long wavelength 

In all the studies that are cited above, the arteries 
carrying blood were considered to being horizontal. 
It is widely known that many vessels in 
physiological systems are not the horizontal 
because some have the inclination and some are the 
curve. Chakraborty et al. (2011) discussed the 

suspension model of blood flow through an inclined 
tube by considering an axially non-symmetric 
stenosis. However no work has done yet for blood 
flow in a curved artery (channel) with stenosis but 
some work has done for peristalsis. Nadeem et al. 
(2013) discussed the peristaltic flow of the tangent 
hyperbolic fluid in a curved symmetric channel with 
sinusoidal waves. 

Motivated by the above analysis we have 
considered bloodflow in curved arteries having mild 
stenosis and treated blood as non-Newtonian 
tangent hyperbolic fluid. The governing equations 
for a tangent hyperbolic fluid in a curved artery (or 
curved channel) along with the effects of curvature 
are modeled and solved analytically with the help of 
regular perturbation method and homotopy 
perturbation method. The comparison of both 
analytical methods shows that the solutions are 
almost same for small physical parameters. In the 
end physical phenomena of the present analysis 
have been discussed by plotting the graph of wall 
shear stress, resistance impedance to flow by 
numerical integration, velocity profile and stream 
lines. 

2. FORMULATION OF THE 
PROBLEM 

We consider the flow of an incompressible non-
Newtonian tangent hyperbolic fluid in a curved 
artery of radius R with center ,O components of 

velocity in radial r  and axial x directions areV
and U respectively. The equations for conservation 
of mass and momentum can be written as, 

   0,
U

r R V R
r x

  
  

 
                        (1) 

2
V R V U

V
r xr R r R




 

     
    

 

  1
rr

P
r R S

r rr R



 

  
 

 

  ,xx
rx

R S
S

xr R r R



 


 
 

                               (2) 

U R U U UV
V

r xr R r R




 

  
       

 

2

1

( )

R P

xr R r R



 


 
 

 

 2( ( ) ) ,rx xx
R

r R S S
r xr R





 

 
 

           (3) 

Where the constitutive equation for hyperbolic 
tangent fluid is given by Nadeem et al. (2009, 2013, 
2015) 

,P  I S                                                         (4) 

0 0 0[ ( ) tanh( ) ] ,en       S                      (5) 
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In above equations P  is defined as pressure,  as 

shear rate viscosity at infinity, 
0 as shear rate 

viscosity at zero,  as time constant, en as power 

law index and  as shear rate, 

1 1
,

2 2ij ji
i j

                                        (6) 

Where 2(grad( ) grad( ) ) ,Ttr V V   which is 
defined as second invariant strain tensor. Now for 
the cases 1   and 0,   Eq. (5) is reduced to 

Eq. (7) as, 

0 0

0 00 0

[ ( ) ] ,

[ (1 1 ) ] [1 ( 1)] .

e

e

n

n
en

  

     

 

       

S  

   
 

(7)  

Where 
0

tL L    and extra stress tensor for 

hyperbolic tangent fluid can written as 

0

0

0

2 [1 ( 1)] ,  

[1 ( 1)]

( ),

2 [1 ( 1)]( ),

rr e

rx rx e

xx e

V
S n

r

S S n

U R V U

r xr R r R

R U V
S n

xr R r R

 

 

 



 



 


   


    

 
 

  


    

 







(8) 

The geometry of axis-symmetricstenosis in 
dimensional form is defined as 

1( ) ( )[1 ( ( ) ( ) )],

,

( ),  or else

n nh x e x b x a x a

a x a b

e x

     

  


    (9) 

with 

0( ) ,e x e x                                                    (10) 

where, in above ( )e x is the radius of stenotic 

arterial segment, 
0e is the radius of a non-stenotic 

arterial segment,   is tapering parameter, b is the 
length of stenosis, where a  indicates its position 
and 2n  determine the shape of stenosis. The 

parameter  is given as 

1

0

,
( 1)

n
n

n

n

e b n




 


                                                (11) 

where is the maximum height of stenosis which is 
located at 

1
1

.
n

b
x a

n 
                                                       (12) 

Introducing the following non dimensional 
variables, 

2
0

0

0

0

0

,  ,  ,  ,  ,  

, ,  ,

 ,  

,  .

o o o

rro o
e en rr

o

rx
rx

o

xx o
xx

o

e Pr x U bV
r x U V P

e b u u u b

u bu bS
w R S

e u

e S
S

u

ebS
S

u u

 


 






    


  



 


(13)  

Using Eq. (13) mild stenosis case 
0

1e
    and 

taking the extra conditions 
1 1( ) ( )1 10( (1), 1),

n ne n n
enb bO R 

     above Eqs. (2), 

(3) and (8)can be written as 

0,
P

r





                                                             (14) 

  2

2

1
0,

( )
c

c rx
c c

R P
r R S

r R x r R r

 
   

   
     (15) 

also, 

  21 ( ) ( ) .rx e e e
c c

U U U U
S n w n

r r R r r R

 
    

   
(16) 

Substituting Eq. (16) into Eq. (15) , we arrive at 

   
2

2
2

.
1

c c
c

e

R r R P U
r R

n x r

  
 

  
 

 c
U

r R U
r


  


2

1
e e

e

w n

n



 

   
2 2

2
2 2c c

U U U
r R r R U

r r r

                          
 

(17)  

The dimensionless boundary conditions are defined 
as 

0  0,   0  .
U

at r U at r h
r


   


               (18) 

The geometry of stenosis in dimensionless form is 
defined as 

( ) (1 )[1 (( ) ( ) )]

1,

nh x x x x

x

   
 
     
  

       (19) 

where 

1

0

0 0

,  ,  ,
( 1)

 ,  ,  tan .

n
n

c

n a

n e b

R b
R

e e
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  

 



  



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                    (20) 
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Fig. 1. Geometry of curved arery with 

3. SOLUTION OF THE PROBLEM 

3.1  Regular Perturbation Solution 
 
According to method we may expand velocity and 
flow rate by considering 

ew as a small parameter 

2
0 1 2

2
0 1 2

...,

...,

   

   

e e

e e

U U w U w U

F F w F w F

                           (21) 

With the help of Eq. (21) the solution of Eq. (17) 
subject to boundary condition (18)takes the 
following form 

     ln
1

c c
c c

e

R r R dP
U r R r R

n dx


   


 

      1 3 2 4
1

( )e c e
c

C w C r R C w C
r R

    


 

    
 

   2 3
3

ln
28

e e
c c

c

a w a w
r R r R

r R
   


     (22) 

We have defined flow rate as  

0

,
h

F Udr 
                                                         (23)

 

Substituting in Eq. (22) into Eq. (23)weget pressure 
gradient as follow 

6

5
.eF w CdP

dx C




                                               (24)

 

Pressure drop ( P P  at 0x  and PP  and
Lx  ) through the stenosis between the region 
0x  and Lx   computed from above Eq. (24) can 

be written as, 

0

.
L dP

P dx
dx

    
                                             

(25)

 

4.  IMPEDANCE RESISTANCE 

Using Eq. (25), the resistance can be defined as 

1
0

1

{ ( ) | ( )

( ) | },

a a b

h
a

L

h
a b

P
K x dx K x dx

F

K x dx










  



 


         (26) 

where 

6

5
( ) ,eF w C

K x
C F


                                          (27) 

Using Eq. (27) into Eq. (26), takes the form 

 6

5 1

( ) .
a b

e

h a

F w C
L b K x dx

C F






 
    
 
 

  

(28) 

5.  WALL SHEAR STRESS 
EXPRESSIONS 

After using dimensionless variables wall shear 
stress can be defined as 

 [ 1 ( )rx e
c

U U
S n

r r R


  

 
 

 

2( ) ] | ,e e r h
c

U U
w n

r r R 


 
 

                            (29) 

The maximum shear stress at the throat of stenosis 

is located at
1

1
1




nn
b
ax  and given as© 

1| ,rx rx hS                                                    (30) 

Finally the expression for  and 
rxS  can be defined 

as follows: 

  2[ 1 ( ) ( ) ] | ,rx e e e r h
c c

U U U U
S n w n

r r R r r R 
 

    
   

(31)   
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a b
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a

F w Cb
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L C F L







      

(32)  

in which 

,  ,  ,  ,  .rxrx
rx rx o o

o o o

S
S L F

    
  

      

(33)  

6.  HOMOTOPY PERTURBATION 
SOLUTIONS 

In this section solution have been computed by 
using homotopy perturbation method suggested by 
He in (2005), we can write Eq. (17)in operator form 

2
0

1
e e

U
e

w n
L

n
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   

   

2 2
2

2 2
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U U U
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                         
 

   
 (34) 

where linear operator and initial guess is defined as 

   
2

2
2

1U c cL r R r R
rr

 
    


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     
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10

8
7

ln
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.

c c
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e
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c
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C
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r R

 
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 

 


    (36) 

The homotopy perturbation method suggests that 
we can write Eq. (34)as follow 

 

   

   

10

2
2

2

2

2
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2
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1
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1

e e
c c

e
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c

e
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  
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 

 
(37)  

According to method procedure, we define as 

...,

...,

2
2

10

2
2

10


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FQQFFF

UQQUUU                               (38) 

Where Q is the embedding parameter, substituting 
above Eq. (38) into Eq. (37) and take  ,1Q we 

arrive at 
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(39)  

Using Eq. (39) in Eq. (23), we get 

.
5

11

C

CF

dx

dP 


                                                 (40) 

7.  RESULTS AND DISCUSSION 

To analyze the imperative aspect in this paper we 
have considered three different types of tapering 
effects on a curved arteries having mild stenosis by 
plotting the graphs of wall shear stress, wall shear 
stress at the throat of stenosis and impedance 
resistance to blood flow with the help of the 
different emerging flow parameters such as stenosis 
height, stenosis shape,  curvature, Weissenberg 
number and shear thinning fluid parameter by 
keeping parameters constant as  ,09.0F ,01.0

,09.0 ,1.0en ,1.0ew L=2, 1.3cR , 2n . 

Figs. (2) to (6)are plotted to show the influence of 
stresses on the wall of curved arteries in the 
presence stenosis with axial distance x. It is 
observed from these figures that stresses on the wall 
of stenosed arteries start steeply decreasing towards 
the downstream of the stenotic segment and then 
start rapidly increasing towards the end of the 
stenotic segment. The wall shear stress for different 
values of fluid parameter 

en  is given in Fig. (2). It 

is observed from this figure that stresses on the wall 
of curved arteries increases with an increase in shear 
thinning fluid parameter

en . Fig. (3) is plotted for 

different values of Weissenberg number 
ew which is 

the ratio of the relaxation time and a specific process 
time of fluid. It is observed from graph that by 
increasing Weissenberg number there will be 
increase in relaxation time and when we relax time 
flow can move easily, so stresses on the wall of 
curved arteries decreases. The wall shear stress for 
different values of stenosis height   and curvature 

cR  are given in Figs. (4) and (5). It is observed that 

the stresses on the wall arteries are inversely related 
to the stenosis height and directly related to the 
curvature of the curved arteries. The effect of 
stenosis shape n  with different tapering is given in 
Fig. (6). It is observed that a stress on the wall of the 
curved arteries increases between the region

57.00  x , while opposite trend is observed in the 
rest of region. The velocity profile for different 
tapering effectsis given in Figs. (8) and (9). It is 
observed from these graphs that the velocity profile 
increases at the center of the stenosed arteries with 
an increase in the values of stenosis height  and 

Weissenberg number
ew between the interval 

,54.046.0  r while opposite trend is observed 

near the wall of stenosed arteries between the 
interval 45.088.0  r  and .89.055.0  r  It is 
observed from these graphs that amplitude for 
converging tapering is higher at the center of the 
arteries as compared to the near of the wall of 
curved arteries. The distribution for wall shear stress 
at the stenosis throat against the maximum height of 
stenosis   is plotted through Figs.(10)-(12). The 
wall shear stress at the stenosis throat for different 
values of shear thinning fluid parameter

en and 

Weissenberg number 
ew are given in Figs. (10) and 

(11). It is observed that shear stress at the throat of 
stenosis for curved arteries increases by increasing 
the values of shear thinning fluid parameter 

en , 

while opposite behavior at the throat of stenosis is 
observed for Weissenberg number 

ew . Fig. (12) is 

plotted for shear stress at throat of stenosis for 
different values of curvature 

cR  and observed 

stresses at throat of stenosis decreases with an 
increase in the curvature of the curved arteries. The 
resistance impedance to blood flow along maximum 
height of stenosis  for different type of stenosed 
arteries are plotted from Figs. (13)-(16) and 
observed in these figures  that  impedance  
resistance to  blood  flow  is  maximum  near  the  
peak  of stenosis,  which gives  higher amplitude  for 
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Figs. 2. Variation of wall shear stress for 
,1.0en     

Figs. 3. Variation of wall shear stress for 
.1.0ew
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Figs. 7. Comparison of velocity profile between 

RPM and HPM. 

 
converging tapering as compare to other associated 
tapering. The effect of stenosis shape n  and 
curvature

cR on resistance impedance to flow is 

given in Figs. (13) and (14). It is analyzed that 
impedance resistance to blood flow decreases by 
increasing the values of the stenosis shape and 
curvature of the curved arteries. It is important to 
note here the resistance to blood flow is maximum 

for the symmetric stenosis casen=2. The effect of 

the Weissenberg number ew on resistance 

impedance to flow is given in Figs. (15). It is 

observed that resistance impedance to flow 
increases with an increase in maximum height of 
stenosis and decreases with an increase in the 
Weissenberg number 

ew . Fig. (16) is plotted for 

shear thinning fluid parameter en  and observed that 

the resistance impedance to blood flow decreases 
when the fluid is thinner then thicker. Trapping 
phenomenon has been discussed to show the blood 
flow pattern in the curved arteries through Figs. 
(17)-(19). It is observed here that the trapping is 
now not symmetric about the central line of the 
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curved channel which is different from the case of 
straight or vertical channels. From Fig. (17) and it is 
depicted that the number of trapping bolus increases 
by increasing value of Weissenberg number

ew and 

shear thinning fluid parameter 
en . Fig. (19), shows 

that the symmetry of trapped bolus destroys due to 
increase in curvature of the curved arteries and 
cause to slight increase in the size of trapped 
bolus.Table(1) and Fig. (7) are plotted to show the 
comparison between two analytical techniques that 
both is effective and convenient to solve highly 
nonlinear equations. The main differences between 
both analytical techniques are that regular 
perturbation requires small parameters in the 
equations, while the homotopy perturbation is 

independent of small or large parameter.HPM 
method has significant advantage that is providing 
an approximate solution to a wide range of 
nonlinear problems in applied sciences. It has been 
observed from figure that these analytical 
techniques are quite close in this problem with 
some absolute error to solve nonlinear equations. 
Precision of the considered techniques increases if 
more components are elaborate in the series. 
 

8. CONCLUSION 

In this present analysis we have discussed the 
mathematical model of blood flow that has not done 
before from author's knowledge in the curved artery 
(or curved channel) with different tapering arteries. 
The basic objectives of the problem are to discuss 
wall shear stress and resistance impedance to flow 
to measure the reduction in blood flow in curved 
artery. The study involves the main points that are 
given as follows 

 The solution of the resulting equation obtained 
by RPM and HPM are compared and at the end 
it is found that both the solution is almost 
equivalent with some absolute error. 

 The combined effect of curvature and stenosis 
shows that stenosis dominant over the curvature 
of curved artery. 

 The trapping phenomenon shows that the 
symmetry destroys due to increase in curvature

cR of curved arteries that pushed bolus away 

from the center of the channel. 
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Fig. 17. Blood flow pattern for ,01.0ew   Fig. 18. Blood flow pattern for .02.0ew
 

 
Fig. 18. Blood flow pattern for (a) ,01.0en   Fig. 18. Blood flow pattern for .09.0en  
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Fig. 19. Blood flow pattern for 0.68,cR   Fig. 20. Blood flow pattern for 0.70.cR   

 
Table 1 Comparison for velocity profile between RPM and HPM 

w  Diverging tapering Converging tapering Non tapered arteries 

r  HPM  RPM  Error  HPM  RPM  Error  HPM  RPM  Error  

h  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.8 0.0941 0.0932 0.0009 0.0916 0.0907 0.0009 0.0928 0.0919 0.0009 

0.6 0.1699 0.1683 0.0016 0.1697 0.1679 0.0018 0.1698 0.1681 0.0017 

0.4 0.2268 0.2245 0.0023 0.2281 0.2258 0.0023 0.2274 0.2252 0.0022 

0.2 0.2626 0.2601 0.0025 0.2650 0.2623 0.0027 0.2638 0.2612 0.0026 

0.0 0.2752 0.2724 0.0028 0.2779 0.2753 0.0026 0.2765 0.2738 0.0027 

-0.2 0.2616 0.2589 0.0027 0.2639 0.2613 0.0026 0.2627 0.2601 0.0026 

-0.4 0.2184 0.2162 0.0020 0.2194 0.2173 0.0021 0.2189 0.2167 0.0022 

-0.6 0.1411 0.1398 0.0013 0.1401 0.1389 0.0012 0.1406 0.1392 0.0014 

-0.8 0.0244 0.0242 0.0002 0.0200 0.0199 0.0001 0.0222 0.0220 0.0002 

h  -0.1391 -0.1376 0.0015 -0.1480 -0.1464 0.0016 -0.1436 -0.1419 0.0017 

 
 
 The wall shear stress gives higher amplitude for 

diverging tapering, while resistance impedance 
to flow gives higher amplitude for converging 
tapering. 

 The wall shear stress and shear stress at the 
throat of stenosis possess same behavior along 
maximum height of stenosis with respect to 
curvature ,cR Weissenberg number ew and 

shear thinning fluid parameter .en  

 The wall shear stress shows inverse and 
resistance impedance to blood flow shows 
direct relation with stenosis height  . 
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