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ABSTRACT

In this paper, we have considered the blood flow in a curved channel with abnormal development of stenosis
in an axis-symmetric manner. The constitutive equations for incompressible and steady non-Newtonian
tangent hyperbolic fluid have been modeled under the mild stenosis case. A perturbation technique and
homotopy perturbation technique have been used to obtain analytical solutions for the wall shear stress,
resistance impedance to flow, wall shear stress at the stenosis throat and velocity profile. The obtained results
have been discussed for different tapered arteries i.e., diverging tapering, converging tapering, non-tapered
arteries with the help of different parameters of interest and found that tapering dominant the curvature of the

curved channdl.
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indicate stenosis position
length of stenosis
constants (i=1-10)
radius of normal artery
flow rate

height of stenosis

length of stenosed artery
stenosis shape

fluid parameter

pressure

embedding parameter

Reynolds number
redial direction
curvature

shear stress
averaged velocity

denotes the non-dimensional

quantities

1. INTRODUCTION

Most of the cardiovascular diseases, especialy
atherosclerosis or stenosis have been found to be

NOMENCLATURE

uyv components of velocity

We Weissenberg number

X axial direction

& tapering parameter

7o extra stress tensor

) maximum height of stenosis
A resistance impedance

A resistance (no stenosis)

Hop shear rate viscosity at infinity
Ho shear rate viscosity at zero

T shear stress (no stenosis)

I1 second invariant strain tensor
7 shear rate

r time constant

@ tapering parameter

o, ¢ ¢

aj ( j:1'4) constants

responsible for major deaths in both developing and
developed countries. It occurs to deposition of
proliferation in the connective tissues and
cholesterol in the arterial wall. The presence of
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stenosis at one or more major location may lead to
disordersin circulatory systems and different arterial
diseases such as myocardial, angina pectoris,
coronary thrombosis, infarction and strokes etc.
Young et al. (1973) investigated axisymmetric and
nonsymmetric plastic models. Hassan et al. (2008)
investigated the laminar sinusoidal pulsating flow
through a modeled arterial stenosis with a
trapezoidal profile. Mandal et al. (2010) investigated
numerical solutions of the steady viscous flow dueto
arterial disease through different double stenosed
artery. Nadeem et al. (2015) investigated the
viscous fluid model through an axis-symmetric
stenosis with the effect of three different types of
arteries.

The rheological study of blood flow has severa
goals such as not only to understanding health and
disease issues but also that what kind of fluid itisin
nature. Some researchers considered blood as a
Newtonian fluid especially flows of blood in the
large vessels such as the aorta. Liu et al. (2004)
investigated the pulsating blood flow through
models of stenotic and tapered arteries to discuss
the distributions of the wall shear stress. In fact
blood flow through constricted arteries behaves like
a non-Newtonian fluid at low shear rates being
suspension of plasma, white cells, red cells and
platelets. Canic et al. (2003) investigated the
quasilinear effects arising in a hyperbolic system of
partial differential equations modelling blood flow
through large compliant. Sankar et al. (2004)
discussed the effects of catheterization and non-
Newtonian nature of blood in small arteries
mathematically by modeling blood as a Herschel-
Bulkley fluid. Mekheimer and ElKot (2008)
discussed the micropolar fluid model for axis-
symmetric blood flow through radially symmetric
but axially nonsymmetric mild stenosis tapered
arteries. Sankar et al. (2009) discussed the
mathematicall model of pulsatile flow of non-
Newtonian fluid in stenosed arteries. Here they
discussed the Herschel Bulkley fluid and found an
analytical solution by using a regular perturbation
method. Nadeem et al. (2012) investigated the
blood flow through a tapered artery with a stenosis
assuming the flow is steady and treated blood as
hyperbolic tangent fluid. Reddy et al. (2014)
investigated the blood flow between the clogged
(stenotic) artery and the catheter with asymmetric
nature of the stenosis. Jung et al. (2014)
investigated the hemodynamics behavior of the
blood flow in the presence of the arterial stenosis.
Ellahi et al. (2014) discussed the blood flow model
through composite stenosis. Here they treated blood
as amicropolar fluid model under the mild stenosis
case. Nadeem et al. (2009 and 2015) investigated
the two-dimensional equations of tangent
hyperbolic fluid using the assumptions of low
Reynolds number and long wavelength

In all the studies that are cited above, the arteries
carrying blood were considered to being horizontal.
It is widely known that many vessels in
physiological systems are not the horizontal
because some have the inclination and some are the
curve. Chakraborty et al. (2011) discussed the
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suspension model of blood flow through an inclined
tube by considering an axialy non-symmetric
stenosis. However no work has done yet for blood
flow in a curved artery (channel) with stenosis but
some work has done for peristalsis. Nadeem et al.
(2013) discussed the peristaltic flow of the tangent
hyperbolic fluid in a curved symmetric channel with
sinusoidal waves.

Motivated by the above anaysis we have
considered bloodflow in curved arteries having mild
stenosis and treated blood as non-Newtonian
tangent hyperbolic fluid. The governing eguations
for a tangent hyperbolic fluid in a curved artery (or
curved channel) along with the effects of curvature
are modeled and solved analytically with the help of
regular perturbation method and homotopy
perturbation method. The comparison of both
analytical methods shows that the solutions are
amost same for small physical parameters. In the
end physica phenomena of the present anaysis
have been discussed by plotting the graph of wall
shear stress, resistance impedance to flow by
numerical integration, velocity profile and stream
lines.

2. FORMULATION OF
PROBLEM

THE

We consider the flow of an incompressible non-
Newtonian tangent hyperbolic fluid in a curved

artery of radius R*with center O, components of
velocity in radial I' and axial X directions arev
and U respectively. The equations for conservation
of mass and momentum can be written as,

O ([~ o \) . o U
Z((r+R)V)+R==0, )
or oX

p— " J— 72
p[vau R0 ]

or T+R*OX r+R"

oP O (= or\=—
_87?+F+1R* E((r +R )Srr)

R i(§§)-,§i @)

R* oP 1
- *T-’—* *\2
r+R"ox (r+R")
0 - N2 R* 08 =
— (I +R)“Six) += —(Sxx ), 3
(ar( y'Sm) r+R*6x( XX) ®)

Where the constitutive equation for hyperbolic
tangent fluid is given by Nadeem et al. (2009, 2013,
2015)

1=-Pl +5, (4

S=[ o + (o, + o) tanh(T7) e I57¢, (5)
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In above equations P isdefined as pressure, f, as
shear rate viscodity at infinity, g as shear rate

viscosity at zero, I as time constant, N, as power

law index and ;asshear rate,

- E == 1
V= ZiZij”y“ 21_[' (6)

Where [1=tr(grad( ) +grad/ )" )2, which is
defined as second invariant strain tensor. Now for
the cases 'y << 1and 1, =0, Eq. (5) isreduced to
Eq. (7) as,
S=[uo(T7)" 70,
=[o(L-1+T7) 1y = pol1+ e (T7 = D] 77¢.
M

Where }0 —L+Ll' and extra stress tensor for
hyperbolic tangent fluid can written as

=_ - v
Sir =2up[1+ ne(ry—l)]af,

Six =S = to[1+ e (7 —1)]
NLR VU
or r+R*ox r+R*”
= = R* U VvV
Sxx =2up[1+ N (Ty = D](= == *),
r+R"ox r+R
(8)

The geometry of axissymmetricstenosis in
dimensional form is defined as

h(x)=e(x)[1-7* " (x —a) - (x —a)")],

a<x <a+b, ©
=e(x), orelse
with
e(x)=eq+ex, (10)

where, in above €(X)is the radius of stenotic
arterial segment, e, is the radius of a non-stenotic
arterial segment, ¢ is tapering parameter, b is the
length of stenosis, where @ indicates its position
and n > 2determine the shape of stenosis. The

parameter " isgiven as
go ot (1)
gb"(n-1)

where§ is the maximum height of stenosiswhich is
located at

- b

X=a+—. (12)
nnfl

Introducing the following non dimensiona

variables,

v v T Va 2
re Xy Yy p &P
€ b U, Uyd Ugbu
We _%’Rm :buop, S, _bef ’
€ H Ut
grx eosrx,
UoH
s bSx . 1%
XX T v/ T T
Uo Up
13

Using Eq. (13) mild stenosis case §* = % <=<Jand

taking the
(L) e

(e= %”b ~0(),R, Lb) <=<1), above Egs. (2),

(3) and (8)can be written as

extra conditions

%P _0, (14)
r
R P 1 0

_r+R&+(r+Rc)25

((r+R)'S,)-0 19

also,
oU U

— ou U 2
Sx=(1- ne)(g—ﬁW'Wene(aT—ﬁ) .
(16)

Substituting Eqg. (16) into Eqg. (15) , we arrive at

Re(r+R;)aP 200
1 a—x_(r+Rc) pe
+(r+RC)%—U +iN—7er:,]:

au \( oU o
(o 5 e (T2

(17)

The dimensionless boundary conditions are defined
as

a—Uzo at r=0, U=0at r=h (18)
r

The geometry of stenosis in dimensionless form is
defined as

h(x) = @+ ) [1-7((x —0) = (x —0)")] (19)
oc<X<o+],

where
n_
onn-1 o a
n= 17 =—, O-:E’
(n-1 €o (20)
R* b
== =22 =tane.
Re % & ¢ 7
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Fig. 1. Geometry of curved arery with
3. SOLUTION OF THE PROBLEM
3.1 Regular Perturbation Solution

According to method we may expand velocity and
flow rate by considering w, as asmall parameter

U=Ug+wlU,+ W§U2 +oe
(21)

F = Fo+ WeFy + W2F, + ...,

With the help of Eq. (21) the solution of Eq. (17)
subject to boundary condition (18)takes the
following form

U - Re(r+R;)dP
1-ne dx

+(Cp+wWCs)(r +R )+

S (FHRe)In(r +Re) =

«Ca)

a e a e
+8(:LNRC)3+3'2V(r+RC)In(r+RC) (22)

We have defined flow rate as

h
F = [udr,
(23)
Substituting in Eq. (22) into Eq. (23)weget pressure
gradient as follow

dP F-w.Cq

dx Csg 24

Pressure drop (AP=Pat x=0 and AP =-Pand
x=L) through the stenosis between the region
x=0 and x=L computed from above Eq. (24) can
be written as,

AP = I[ dl:)jdx.

4. |IMPEDANCE RESISTANCE

(25)

Using Eg. (25), the resistance can be defined as
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Z:AF—P_{jK (%) Jh—g dX +a}b|< (x)dx
) 0 a (26)
+ [ K0 o dx},
a+b

where

K(X)=—%, 27

Using Eq. (27) into Eq. (26), takes the form

a+b
/1:{—F_Wecﬁ j(L b)+ J.K(x)dx
CsF h=1
(28)
5. WALL SHEAR STRESS
EXPRESSIONS

After using dimensionless variables wall shear
stress can be defined as

— ouU U
S, =[(1-ny)(—-
=101 (G )
ouU
W N (— — 2 (29)
r+R;
The maximum shear stress at the throat of stenosis
islocated at X = & + —— and given as©
nnfl
;rx =§rx |h:1—§- (30)

Finally the expressionfor 4 and S can be defined
asfollows:

U ) @YV
r+R U r+R

§-l1-n)& Y1hon

(3D

a+b
A= D), [ K eosa,

CsF
(32
inwhich
, S =X, 7 =’Ti, Jo=L, 7o =F.

(33

6. HOMOTOPY
SOLUTIONS

PERTURBATION

In this section solution have been computed by
using homotopy perturbation method suggested by
He in (2005), we can write Eq. (17)in operator form
Z’Vene
1-ng

OZLU +
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2( 08U\ 6 U
{(”Rc) (&)[&2]—(”&)(&2} -
A Rc)}

(34)

where linear operator and initial guessis defined as

2
Ly :(r+RC)2%+(r+RC)§—1 (35)
Re(r +R;) Py
10=———>—(r+R)In(r +R; ) +
2(1-ng) 6xC (36)
8
C7(r+RC)+r+RC.

The homotopy perturbation method suggests that
we can write Eq. (34)as follow

HQ.U)=@1-Q){LU]-L[Ug]}+{QLU]+

W Ny 2,0U oW

Ton, (T+R) GOE) (T +Re)

U, R(r+R;)opP

GV 1-ne ox Rl
@37

According to method procedure, we define as
U=U,+QU,+Q%U, +..,

F=F,+QF +Q°F, +..,

(38)

Where Q is the embedding parameter, substituting
above Eq. (38) into Eq. (37) and take @Q—1,we
arrive at

R(r+R)dP

A1) & (r+R)In(r + R)+(C, +C,)
W,

(CS+C10) az e
(r+R)+ TR +8(r+RC)3+

%(H R)In(r +R.).

(39
Using Eq. (39) in Eq. (23), we get
dP F-C,

& G (40)

7. RESULTSAND DISCUSSION

To analyze the imperative aspect in this paper we
have considered three different types of tapering
effects on a curved arteries having mild stenosis by
plotting the graphs of wall shear stress, wall shear
stress at the throat of stenosis and impedance
resistance to blood flow with the help of the
different emerging flow parameters such as stenosis
height, stenosis shape, curvature, Weissenberg
number and shear thinning fluid parameter by
keeping parameters constant as F =0.09, o = 0.01,

§=009,1n,=01w,=01L=2R =31, n=2.
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Figs. (2) to (6)are plotted to show the influence of
stresses on the wal of curved arteries in the
presence stenosis with axia distance x. It is
observed from these figures that stresses on the wall
of stenosed arteries start steeply decreasing towards
the downstream of the stenotic segment and then
start rapidly increasing towards the end of the
stenotic segment. The wall shear stress for different
values of fluid parameter n, is given in Fig. (2). It
is observed from this figure that stresses on the wall
of curved arteries increases with an increase in shear
thinning fluid parametern,. Fig. (3) is plotted for

different values of Weissenberg number w, which is

theratio of the relaxation time and a specific process
time of fluid. It is observed from graph that by
increasing Weissenberg number there will be
increase in relaxation time and when we relax time
flow can move easily, so stresses on the wall of
curved arteries decreases. The wall shear stress for
different values of stenosis height & and curvature
R, aregivenin Figs. (4) and (5). It is observed that
the stresses on the wall arteries are inversely related
to the stenosis height and directly related to the
curvature of the curved arteries. The effect of
stenosis shape N with different tapering is given in
Fig. (6). It is observed that a stress on the wall of the
curved arteries increases between the region
0< x<0.57, while opposite trend is observed in the
rest of region. The velocity profile for different
tapering effectsis given in Figs. (8) and (9). It is
observed from these graphs that the velocity profile
increases at the center of the stenosed arteries with
an increase in the values of stenosis height § and

Weissenberg  number w, between  the interval

_0.46<r <0.54,while opposite trend is observed

near the wall of stenosed arteries between the
interval —0.88<r <-0.45 and 0.55<r <0.89. Itis
observed from these graphs that amplitude for
converging tapering is higher at the center of the
arteries as compared to the near of the wall of
curved arteries. The distribution for wall shear stress
at the stenosis throat against the maximum height of
stenosis ¢ is plotted through Figs.(10)-(12). The
wall shear stress at the stenosis throat for different
values of shear thinning fluid parameter n and

Weissenberg number w_are given in Figs. (10) and
(12). It is observed that shear stress at the throat of

stenosis for curved arteries increases by increasing
the values of shear thinning fluid parameter n,,

while opposite behavior at the throat of stenosis is
observed for Weissenberg number w;, . Fig. (12) is

plotted for shear stress at throat of stenosis for
different values of curvature R, and observed

stresses at throat of stenosis decreases with an
increase in the curvature of the curved arteries. The
resistance impedance to blood flow along maximum
height of stenosis ¢ for different type of stenosed
arteries are plotted from Figs. (13)-(16) and
observed in these figures that  impedance
resistance to blood flow is maximum near the
peak of stenosis, which gives higher amplitude for
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w
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X
Figs. 2. Variation of wall shear stressfor
n,=0.1,
-2.4
~Diverging tapering
« « — --Converging tapering
26 F Non-tapered artery
m.’!
X
Figs. 4. Variation of wall shear stressfor
R =31,
-2.2
~Diverging tapering
— — = - Converging tapering
241 Non-tapered artery
2.6 F3
o 28}
3t
-3.2

0 0.2 0.4
Figs. 6. Variation of wall shear stressfor stenosis

shapen,

converging tapering as compare to other associated
tapering. The effect of stenosis shape N and
curvatureR on resistance impedance to flow is
given in Figs. (13) and (14). It is analyzed that
impedance resistance to blood flow decreases by
increasing the values of the stenosis shape and
curvature of the curved arteries. It is important to
note here the resistance to blood flow is maximum

for the symmetric stenosis caseN=2. The effect of
the Weissenberg number w,on resistance
impedance to flow is given in Figs. (15). It is

2222

22
= Diverging tapering
24f === =Converging tapering
Non-tapered artery n =014
0 R
26k

=28
]
w

-3
a2k
a4k

-~
36 s N
o 0.2 0.4 0.6 0.8 1
X
Figs. 3. Variation of wall shear stressfor
w, =0.1
26 - Diverging tapering
« « — = Converging tapering R =3.27
Non-tapered artery LI
£
0 0.2 0.4 0.6 0.8 1
X
Figs. 5. Variation of wall shear stressfor
0 =0.09.

0.25F

oaf / \
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Y4 A
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0.1 ‘[:

0.05F “‘[ Divergent atpering
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Non-tapered artery
ol N N N N N N N N
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

r
Figs. 7. Comparison of velocity profile between
RPM and HPM.

observed that resistance impedance to flow
increases with an increase in maximum height of
stenosis and decreases with an increase in the
Weissenberg number w, - Fig. (16) is plotted for

shear thinning fluid parameter n, and observed that

the resistance impedance to blood flow decreases
when the fluid is thinner then thicker. Trapping
phenomenon has been discussed to show the blood
flow pattern in the curved arteries through Figs.
(17)-(29). It is observed here that the trapping is
now not symmetric about the central line of the
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Figs. 8. Variation of velocity profilefor
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Figs. 10. Variation of wall shear stressat the
throat of stenosisfor w, = 0.1,
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Fig. 12. Variation of wall shear stressat the
throat of stenosisfor R, .

curved channel which is different from the case of
straight or vertical channels. From Fig. (17) and it is
depicted that the number of trapping bolus increases
by increasing value of Weissenberg number w,and

shear thinning fluid parameter n_. Fig. (19), shows

that the symmetry of trapped bolus destroys due to
increase in curvature of the curved arteries and
cause to dight increase in the size of trapped
bolus.Table(1) and Fig. (7) are plotted to show the
comparison between two analytical techniques that
both is effective and convenient to solve highly
nonlinear equations. The main differences between
both analytical techniques are that regular
perturbation requires small parameters in the
equations, while the homotopy perturbation is

§=10.01

Diverging tapering \.

Converging tapering \

Non-tapered artery \
k!

7

7

L J7
4
(4
']

" " " " " " " "
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

r
Figs. 9. Variation of velocity profilefor w, =0.1.

-2.7
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3k

=31 F

x

L= 82f

-3.3F

3af

w_=0.10 N,

35F e ~.
____we=0.12 \-\_
- ~
36k we_0'14 ~ 4
....... w_=0.16 ~

-3.7

0 0.211 0.02 0.‘03 D.:M 0.‘05 0.‘06 0.217 0.:)8 0.09
8

Figs. 11. Variation of wall shear stressat the

throat of stenosisfor ng =0.1.

independent of small or large parameter.HPM
method has significant advantage that is providing
an approximate solution to a wide range of
nonlinear problems in applied sciences. It has been
observed from figure that these analytical
techniques are quite close in this problem with
some absolute error to solve nonlinear equations.
Precision of the considered techniques increases if
more components are elaborate in the series.

8. CONCLUSION

In this present analysis we have discussed the
mathematical model of blood flow that has not done
before from author's knowledge in the curved artery
(or curved channel) with different tapering arteries.
The basic objectives of the problem are to discuss
wall shear stress and resistance impedance to flow
to measure the reduction in blood flow in curved
artery. The study involves the main points that are
given asfollows

» The solution of the resulting equation obtained
by RPM and HPM are compared and at the end
it is found that both the solution is almost
equivalent with some absol ute error.

» The combined effect of curvature and stenosis
shows that stenosis dominant over the curvature
of curved artery.

» The trapping phenomenon shows that the
symmetry destroys due to increase in curvature
R, of curved arteries that pushed bolus away

from the center of the channel.
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Fig. 18. Blood flow pattern for (a)n, = 0.01,
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Fig. 20. Blood flow pattern for R, =0.70.

Table 1 Comparison for velocity profile between RPM and HPM

W Diverging tapering Converging tapering Non tapered arteries
' f HPM | RPM | |Error| | HPM | RPM | |Error| | HPM | RPM | |Error|
h 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.8 | 0.0941 | 0.0932 | 0.0009 | 0.0916 | 0.0907 | 0.0009 | 0.0928 | 0.0919 | 0.0009
0.6 | 0.1699 | 0.1683 | 0.0016 | 0.1697 | 0.1679 | 0.0018 | 0.1698 | 0.1681 | 0.0017
04 | 02268 | 0.2245 | 0.0023 | 0.2281 | 0.2258 | 0.0023 | 0.2274 | 0.2252 | 0.0022
0.2 | 02626 | 0.2601 | 0.0025 | 0.2650 | 0.2623 | 0.0027 | 0.2638 | 0.2612 | 0.0026
0.0 | 02752 | 0.2724 | 0.0028 | 0.2779 | 0.2753 | 0.0026 | 0.2765 | 0.2738 | 0.0027
-0.2 | 0.2616 | 0.2589 | 0.0027 | 0.2639 | 0.2613 | 0.0026 | 0.2627 | 0.2601 | 0.0026
-04 | 02184 | 0.2162 | 0.0020 | 0.2194 | 0.2173 | 0.0021 | 0.2189 | 0.2167 | 0.0022
-0.6 | 0.1411 | 0.1398 | 0.0013 | 0.1401 | 0.1389 | 0.0012 | 0.1406 | 0.1392 | 0.0014
-0.8 | 0.0244 | 0.0242 | 0.0002 | 0.0200 | 0.0199 | 0.0001 | 0.0222 | 0.0220 | 0.0002
—h | -0.1391 | -0.1376 | 0.0015 | -0.1480 | -0.1464 | 0.0016 | -0.1436 | -0.1419 | 0.0017

» Thewall shear stress gives higher amplitude for
diverging tapering, while resistance impedance
to flow gives higher amplitude for converging
tapering.

» The wall shear stress and shear stress at the
throat of stenosis possess same behavior along
maximum height of stenosis with respect to

curvature R, Weissenberg number  w, and

shear thinning fluid parameter N,.

» The wall shear stress shows inverse and
resistance impedance to blood flow shows
direct relation with stenosis height ¢ .
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