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ABSTRACT 

This study introduces a finite element method using a higher-order interpolation function for effective 
simulations of wave transformation. Finite element methods with a higher-order interpolation function usually 
employ a Lagrangian interpolation function that gives accurate solutions with a lesser number of elements 
compared to lower order interpolation function. At the same time, it takes a lot of time to get a solution 
because the size of the local matrix increases resulting in the increase of band width of a global matrix as the 
order of the interpolation function increases. Mass lumping can reduce computation time by making the local 
matrix a diagonal form. However, the efficiency is not satisfactory because it requires more elements to get 
results. In this study, the Legendre cardinal interpolation function, a modified Lagrangian interpolation 
function, is used for efficient calculation. Diagonal matrix generation by applying direct numerical integration 
to the Legendre cardinal interpolation function like conducting mass lumping can reduce calculation time 
with favorable accuracy. Numerical simulations of regular, irregular and solitary waves using the Boussinesq 
equations through applying the interpolation approaches are carried out to compare the higher-order finite 
element models on wave transformation and examine the efficiency of calculation. 

Keywords: Finite element method; Boussinesq equations; Lagrangian interpolation function; Legendre 
cardinal interpolation function. 

1. INTRODUCTION

Waves approaching a beach transform in diverse 
ways through diffraction, refraction, and shoaling. 
The usual approach to simulating wave 
transformation and investigating its effects is to 
perform physical model experiments and numerical 
modeling. Rather than experiments, numerical 
simulations are performed for various coastal 
processes as they are less affected by economic and 
physical restrictions. Of the many numerical 
methods, a finite element method (FEM) has a 
complicated formulation process due to 
approximated solutions, but is very efficient for 
complex boundary features. With the merit, FEM 
has been frequently used for complex topography 
and coastal regions (Adytia and Groesen 2012; 
Panchang et al. 2000; Park et al. 1994; Patera 1984; 
Walkley and Berzins 2002; Wei and Jia 2014a, 
2014b; Woo and Liu 2004b). 

In FEM, a Lagrangian polynomial is mainly used to 
interpolate elements. When the governing equation 
is higher order differential equation such as 
Boussinesq-types equations, a higher-order element 

can be applied to a governing equation directly. 
However, a higher-order Lagrangian polynomial is 
used as an interpolation function, original equations 
become too complicated. For the reason, in most 
cases governing equations are formalized using a 
linear interpolation equation (Kato et al. 1998; Woo 
and Liu 2004a). Although the process to formalize 
governing equations with a linear interpolation 
function is simple, a large number of elements is 
needed to improve the accuracy of solutions. If 
there are many differential terms in governing 
equations, a linear interpolation function is limited 
in application. In this case, the use of higher-order 
elements is unavoidable (Sanz-Serna and Christie 
1981; Woo and Liu 2001). If a higher-order 
Lagrangian (or Hermite type) polynomial is used, 
nodes within elements should be mostly distributed 
at equal intervals. In this approach, some problems 
may arise. First, a great deal of time is required to 
acquire a solution since the degree of a polynomial 
increases. Secondly, although mass lumping, which 
is a way to make a full matrix into a diagonal 
matrix, is performed to reduce calculation time, this 
method lowers the accuracy of solutions. Note that 
mass lumping makes a diagonal matrix through 
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summing up all elements in a row of a mass matrix 
to leave one element with the rest of 0 in a 
corresponding row. The problem of solution 
accuracy being reduced due to mass lumping can be 
offset by adjusting node locations within elements. 
Since the interpolation process through the node 
adjustment can be done using a Legendre 
polynomial, the interpolation function will be called 
the Legendre interpolation function hereinafter. The 
application of the Legendre interpolation function 
transforms a mass matrix into a diagonal matrix 
through numerical integration. Using the Legendre 
interpolation function, the numerical integration of 
a mass matrix leads to fast calculation with 
favorable accuracy, similar to conducting mass 
lumping. The method with the Legendre 
interpolation function is proposed by Patera (1984) 
and has been applied to simulations of gravity 
waves by Eskilsson and Sherwin (2003) and by 
Eskilsson et al. (2006). Note that while the method 
is noted as a spectral element method in their 
papers, the terminology is not used in this study 
because the application of higher-order polynomials 
explains the method more clearly. In both papers, 
the features of the Legendre interpolation function, 
an important point of the method, are not well 
explained. In Eskilsson and Sherwin (2003), the 
numerical integration of the high order Legendre 
interpolation function is compared with FEM 
modeling using a linear interpolation function to 
show its efficient calculation. Nonetheless, the 
comparison of the higher order Legendre 
interpolation function with the linear Lagrangian 
interpolation function lacks an explanation of the 
relative features of the methods because of the 
different linearity. In this study, in order to 
investigate the merits of the Legendre interpolation 
function in applications to wave transformation, the 
method is compared with the application of the 
Lagrangian interpolation function of the same 
degree. The comparisons are performed through 
calculations of the Boussinesq equations, which can 
consider weak non-linearity and dispersion (Nwogu 
1993) with the methods. 

2. THEORETICAL BACKGROUND 

Ocean waves show various characteristics 
depending on relative water depth. In the deep 
water condition, the wave dispersion (σ: ratio of 
water depth to wave length) is significant. As a 
wave approaches the shallow water depth, wave 
dispersion becomes smaller, while non-linearity (ε: 
ratio of wave height to water depth) becomes 
bigger. Therefore, for simulations of wave 
characteristics, there is a need to use relevant 
governing equations that can consider both 
dispersion and non-linearity. The Boussinesq 
equations have been widely used for wave 
simulation. Since Peregrine (1967) proposed the 
former type of the equations for a model applicable 
to varying depth, the Boussinesq-type equations 
have been developed by many researchers such as 
Adytia and van Grosen (2012), Gobbi and Kirby 
(1999), Kim et al. (2009), Madsen et al. (1991), 
Nwogu (1993), Roeber et al. (2010), and Witting 

(1984). 

2.1 Governing Equations 

This study uses the Boussinesq equations presented 
in Eqs. (1) and (2), which were introduced by 
Nwogu (1993) for wave simulation. The Boussinesq 
equations model can simulate weakly non-linear 
(ε≪1) and weakly dispersive (σ≪1) waves. 
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In the equations, η is the free water surface 
elevation, u is the horizontal velocity, h is the water 
depth, and A1, A2, B1, and B2 are the constants 
defined as follows: 
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where θ is the constant defined in Eq. (7). 

z

h
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In Eq. (7), z is the vertical distance measured from 
still water level. Nowgu (1993) compared the 
normalized phase and group velocities for different 
α and found that 0.531   yielded the smallest 
error; hence, the value of   is usually used in the 
equations. 

2.2 Formulation 

Due to the higher-order differential term included in 
Eq. (1), two main methods are used to apply FEM 
to the Boussinesq equations. One of the methods is 
to use a higher-order interpolation function, 
whereas the other is to lower the higher-order 
differential term’s order using auxiliary variables. 
This study formulated the equations using the latter 
method, proposed by Walkey and Berzins (1999). 
Eqs. (1) and (2) can be expressed as follows when 
the auxiliary variables are used: 
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Applying the Galerkin method to Eqs. (8) ~ (10) 
with the assumption of constant water depth gives 
the following equations (Zienkiewicz and Taylor, 
1989):  
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where ηe, ue, and we are the values of η, u, and w at 
each node, respectively, and g is the gravitational 
acceleration. Me, De, and Ke are the matrices 
defined as follows: 
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where Je is the Jacobian, and N (or [N0 N1 ⋯ Np]) is 
the interpolation function of the p degree. For the 
interpolation function, the Lagrangian interpolation 
function expressed as Eq. (17) is used and the nodes 
are located with the same interval within the 
elements. 
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In Eq. (17), Lp indicates the Legendre polynomial 
with the p degree and ξp is the location of the nodes 
within the elements. For the case of the Lagrangian 
interpolation function, these locations are 
distributed evenly with an element. In this case, as 
the terms of the interpolation function become a 
higher order, solving the matrix takes a long time. 
As a way to resolve the problem of the time 
increment, lumping can be applied to the mass 
matrix to make a diagonal matrix. However, mass 
lumping decreases the accuracy of the solutions 

(Walkley and Berzins 1999). As an alternative 
method to satisfy the needs of both calculation time 
and accuracy, the Legendre interpolation function 
proposed by Patera (1984) can be used for the 
calculation. This method can reduce the calculation 
time similarly to the effect by the mass lumping 
without lowering the solutions’ accuracy. The 
interpolation function using the Legendre function 
can be formulated as follows:  
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where Lp indicates the Legendre polynomial with 
the p  degree and ξp is the location of the nodes 
within the elements satisfying (ξ−1)(ξ+1)∂ξ 
Lp(ξ)=0. When a cubic polynomial is used, Eqs. 
(17) and (18) are formulated in the following 
equations showing the distributions in Fig. 1.  

For the Lagrangian interpolation function: 
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For the Legendre interpolation function: 
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Directly integrating Eqs. (14) ~ (16) generates a 
4×4 matrix. By summing up those for all elements, 
a matrix with a bandwidth size of 4 is generated. In 
this case, as the number of elements increases, more 
calculation time is needed. Although the calculation 
time can be reduced by making a diagonal matrix 
using mass lumping, the accuracy of solutions 
decreases. If the Legendre matrix is used, the mass 
matrix can be transformed to a diagonal matrix by 
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carrying out the Gauss-Radau-Legendre numerical 
integration without mass lumping (Karniadakis and 
Sherwin 2005). 

 

a) 
  

b) 
 

c) 
  

d) 
  
Fig. 1. Lagrangian and Legendre interpolation 
functions for third-order: a) N1; b) N2; c) N3; d) 

N4. 
 

The basic concept of the Gauss-Radau-Legendre 
numerical integration is the same as a general Gauss 
integration. In other words, the integrated value of a 
function can be the sum of weight-multiplied 
function values of certain locations between -1 and 
1. The difference from a general Gauss integration 
is that the location values of the Gauss-Radau-
Legendre integration are the same as the node 
locations of the Legendre interpolation function. 
Consequently, the number of integration points is 
one more than that of degrees. The certain locations 
and weights are defined as follows:  
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where 
0 ,0

i
  is a weighting factor for numerical 

integration. If calculating Eqs. (21) and (22) for the 
case of cubic higher-order elements, the values of 
the integration points are -1, -1/√5 1/√5, 1 and 
corresponding weights are 1/6, 5/6, 5/6, 1, 
respectively (see Karniadakis and Sherwin (2005) 
for details). 

The differential values necessary for calculating 
Eqs. (15) and (16) are obtained as follows.  
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Summing up the obtained matrices for each element 
gives the values of M, D, and K. With the values, η 
and u can be solved as follows: 
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where n indicates the nth time term, ∆t is the time 
interval, and E and F denote the right hand-side 
term of Eqs. (11) and (12), respectively. With un+1 
which is solved from the above process, wn+1 can be 
obtained in the following equation. 

1 3 1

1 2
( )

n n
w a a h u

     1
M K  (26) 

3. SIMULATION RESULTS  

This study investigates the applicability of a finite 
element model using the Legendre elements for 
regular, irregular and solitary wave conditions. For 
each type of the tested waves, different methods to 
solve the matrix equation, Eq. (14), were examined, 
as follows: full matrix calculation using the 
Lagrangian elements (La-A); diagonal matrix 
calculation through the mass lumping using the 
Lagrangian elements (La-B); full matrix calculation 
using the Legendre elements (Le-A); numerical 
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integration using the Legendre elements (Le-B). 
The solutions obtained by the approaches were 
compared to show the relative merits of each 
method using the Legendre functions.  

In the case of the regular wave, the initial 
conditions and boundary conditions of the 
monochromatic wave were set as follows: 
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where x1 and x2 are the spatial starting and ending 
points of the domain area, η0 is the amplitude, and k 
is the wavenumber. The wave velocity c  and the 
angular velocity ω can be obtained, respectively, 
from the following equations:  

  2 2

1 2
1

c
kh a a k h




 
 (28) 

 
 

2 22

1 2

2 2 2

1 2

1

1

a a k h

ghk b b k h

  


 
  (29) 

The numerical simulation of the regular waves was 
carried out under shallow water conditions. The 
relative water depth, kh, was 0.167 and the wave 
height of 0.01 m and the water depth of 3.2 m were 
set to meet the weak nonlinearity. The time interval, ∆t, was 0.01 sec to minimize any numerical error 
related to the time difference. Fig. 2 shows the 
results of the calculation of the finite element model 
and the analytical solutions at 0.5t T  and 

5t T . 

Note that T indicates the incident wave period. In 
the computation, the grid per wavelength was 
divided into 10 and the Lagrangian and Legendre 
functions were used for an interpolation function. 
As shown in the figure, the numerical solutions are 
in good agreement with the analytical solutions.  

To compare the accuracy of the solutions, the L∞ 
error defined below was calculated and compared: 
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where Ndof is the total number of nodes. Fig. 3 

compares the errors between the numerical 
results and the analytical solutions depending on 
the number of elements for 10 wave periods. 
When the full matrix was solved directly, there 
was no big difference in the error between the 
FEM with the Lagrangian interpolation function 
(La-A) and that with the Legendre function (Le-
A) as shown in Fig. 3a). The full matrix solutions 
start to converge, showing an error of Ο (10-1) 
from the use of 3 elements per wave length. On 
the other hand, in the cases of the diagonal 
matrix, the FEM with the Lagrangian 
interpolation function (La-B) shows a difference 
from that with the Legendre function (Le-B). 
Overall, the method with the Legendre 
interpolation function shows smaller errors. On 
average, the error of Le-A is almost double that 
of Le-B, and the maximum error is almost seven 
times when the number of elements is two. For 
the method with the Lagrangian interpolation 
function, the error converges to Ο (10-1) when 6 
or more elements were used per wave length. 
Meanwhile, the error of the FEM with the 
Legendre interpolation function reaches Ο (10-1) 
from 4 elements per wave length. 

 

a) 
  

b) 
  

Fig. 2. Comparison of the regular wave solutions 
with the analytical solution for: a) t = 0.5T; b) t = 

5T. 
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a) 
  

b) 
  

Fig. 3. Errors estimated by the Lagrangian (La) 
and Legendre (Le) interpolation functions for 
the regular waves: a) full matrix; b) diagonal 

matrix. 

a) 
  

b) 
  

Fig. 4. Comparison of the irregular waves 
solutions with the analytical solution for: a) t = 

1T; b) t = 5T. 

Irregular waves are also considered to check the 
accuracy of the method. Irregular waves could be 
assumed as a sum of linear waves which have 
different heights, periods and phases. In this study, 
we consider only two components for the sake of 
simplicity, and thus the free surface of irregular 
waves can be expressed as follows: 
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where k1 and  k2 are the wavenumbers 
corresponding to ω1 and ω2. The values of ω are set 
as ω1=ω (1−0.1); ω2=ω(1+0.1). The wave 
amplitude, wave period and water depth are the 
same as in Figs. 2 and 3. The horizontal and vertical 
velocities satisfy the same relationship as shown in 
Eq. (27). Figure 4 shows the comparison between 
the numerical solutions and the analytical solution. 

Figure 5 presents the errors induced by the 
numerical scheme. The general trends are almost 
the same as the regular wave cases. The numerical 
model predicts the free surface elevations well and 
the results produced using the Legendre 
interpolation and diagonal matrix show better 
predictions than those using Lagrangian 
interpolation. The averaged error of La-B is 2.85 
times larger than that of Le-B and the maximum is 
almost ten times when the number of elements per 
wave length becomes two, as the regular case 
shows. 

Finally, the solitary wave is modeled to examine the 
accuracy of the method. The solitary wave that 
propagates balancing the dispersion and the 
nonlinearity has been widely used for studies on 
wave nonlinearity. Wei and Kirby (1995) presented 
the following analytical solutions for Nwogu 
(1993)’s Boussinesq equations:  

    
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, sech
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    2
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where 
0

( )c g h  , and a1, a2, a, and b are 

defined as follows: 
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where 2
/ 2 1 / 2   . As in the modeling of the 

regular waves, the initial and boundary conditions 
of η, u, and w were set using Eqs. (32) and (33), and 
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the numerical simulations were conducted by 
changing the number of elements in the domain. 
The calculation conditions were water depth of 0.45 
m, wave height of 0.045 m, and domain length of 
100 m. The time interval was set as 0.01 sec to 
minimize any error related to the time difference.  
 

a) 
  

b) 
  

Fig. 5. Errors estimated by the Lagrangian (La) 
and Legendre (Le) interpolation functions for 
the irregular waves: a) full matrix; b) diagonal 

matrix. 

In Fig. 6, the wave elevations at t = 5 and 30 sec 
from the simulations with 100 elements are 
presented. When the section was sufficiently 
divided, the numerical solutions of both the 
Lagrangian and Legendre interpolation functions 
agree well with the analytical solutions, as shown in 
the figure.  

Figure 7 compares the error defined by Eq. (31) 
between the numerical solutions and the analytical 
solutions of the solitary wave. When analytically 
integrating the full mass matrix of Eq. (14), the 
errors of the Lagrangian (La-A) and Legendre 
interpolation functions (Le-A) are similar. As the 
number of elements increases within the calculation 
domain, the error tends to decrease. With 90 
elements or more, the error appears to begin to 
converge to Ο (10-2). Unlike the full matrix 
calculation, there is a big difference in the diagonal 
matrix calculation between the mass lumping for 
the Lagrangian function (La-B) and the numerical 
integration (Le-B). When the number of elements is 
small, the error of Le-B is larger than Le-A, 
showing values almost 1.5 times larger. When the 
Legendre interpolation function (Le-B) is used, the 

error of the approach converges to Ο (10-2) when 
there are 130 elements. Meanwhile, in the case of 
the Lagrangian interpolation function (La-B), the 
error does not appear to converge even until 250 
elements. In terms of the error convergence, the 
diagonal matrix calculation is not relatively good. 

 

a) 
  

b) 
  

Fig. 6. Comparison of the solitary wave solutions 
with the analytical solution for: a) t = 5 sec; b) t = 

30 sec. 
 

In order to assess the efficiency of the methods, the 
calculation time until the acceptable accuracy 
shown in Figs. 3 and 7 is reached is examined 
through the FORTRAN function, cpu_time. Since 
the methods for the full matrix calculation (La-A, 
Le-A) have similar accuracy for all cases, one of 
those, La-A, was used as the representative case of 
the full matrix calculation. Thus, for the comparison 
of the calculation time, the method of full matrix 
calculation (La-A) and two methods of direct matrix 
calculation (La-B, Le-B) are examined for the 
regular and solitary waves in Fig. 8.  

Assuming the acceptable accuracy as Ο (10-1), 
the number of elements per wave length of the 
regular waves are 3, 6, and 4 for La-A, La–B, and 
Le-B, respectively. As for the solitary wave, 50, 
100, and 50 elements for La-A, La–B, and Le-B, 
respectively, for the calculation domain of 100 m 
are used for the error convergence. The 
calculation time for the calculation domain with 
the fixed elements giving acceptable accuracy is 
compared in Fig. 8. Note that the calculation time 
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means the running time for one time interval (∆t). 
For both applications for the regular waves and 
the solitary wave, the diagonal matrix calculation 
with the Legendre interpolation function (Le-B) 
is conducted with the shortest time. The full 
matrix calculation (La-A) requires a much larger 
calculation time, which means the methods for 
the full matrix are too inefficient. As the spatial 
domain increases, i.e., the matrix size becomes 
larger, the calculation time increases 
exponentially, and consequently the difference 
among the methods also increases. In other 
words, as the size of the matrix increases, the 
method of Le-B becomes more efficient. For the 
regular waves, the running times for largest 
domain are 128.0, 44.37, 37.22 sec for La-A, La-
B, Le-B, and 185.72, 65.30, 22.35 sec for the 
case of solitary wave, respectively. Note that the 
numerical values obtained in the calculation are 
not absolute ones. This implies that the 
comparison results may be changed depending on 
domain size or desired accuracy. However, the 
diagonal matrix calculation with the Legendre 
interpolation function (Le-B) is found to be 
efficient in overall finite element methods, 
especially for a large domain. 

 

a) 
  

b) 
  

Fig. 7. Errors estimated by Lagrangian (La) and 
Legendre (Le) interpolation functions for the 

solitary wave: a) full matrix; b) diagonal matrix. 

 

a) 
  

b) 
  

Fig. 8. Comparison of the running time obtained 
by the Lagrangian (La) and Legendre (Le) 

interpolation functions for: a) regular waves; b) 
solitary wave. 

4. CONCLUSIONS 

This study compared the applications of the 
Lagrangian and Legendre interpolation function 
with third-order to a finite element model for wave 
simulations. The existing study for the comparison 
(Eskilsson and Sherwin 2003) targets the higher-
order Legendre cardinal interpolation function and 
the linear interpolation function, but lacks an 
explanation of whether the results by the Legendre 
function are acquired from its own characteristics or 
attributed to the higher-order interpolation function. 
This study investigated the features of the Legendre 
interpolation function with the interpolation 
functions of the same degree. For a higher-order 
finite element model, the Lagrangian higher-order 
polynomial is used to position nodes with the same 
interval. In this case, it takes a relatively long time 
because the size of a matrix becomes large while 
the mass lumping to solve such a problem reduces 
the accuracy of solutions in return. When the 
Legendre interpolation function is used, however, 
those problems can be lessened through numerical 
integration. In the application of the Legendre 
interpolation function for the FEM modeling of 
regular, irregular and solitary waves, the accuracy 
of the full matrix calculation is better than that of 
the diagonal matrix calculation. In the diagonal 
matrix calculation, the method that used the 
Legendre interpolation function (Le-B) is more 
accurate than the mass lumping for the Lagrangian 
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function. Although the solution accuracy of the full 
matrix calculation is better for a certain number of 
elements, the calculation time shows a different 
tendency. For the accuracy of Ο (10-1), the full 
matrix calculation for the regular and irregular 
waves simulation takes much longer time than the 
diagonal matrix calculation. The Legendre 
interpolation function for the diagonal matrix 
calculation takes a shorter time than the mass 
lumping for the Lagrangian function as the domain 
becomes larger. In the modeling of the solitary 
wave, the diagonal matrix calculation with the 
Legendre interpolation function shows a big 
difference in the calculation time from the mass 
lumping for the Lagrangian function, and the 
difference gets larger with the increase of the 
domain. Consequently, when the full matrix for 
FEM is solved, the most accurate results can be 
obtained with a smaller number of elements if the 
calculation time does not need to be considered. If 
the calculation time is crucial or a large domain 
needs to be modeled, however, the application of 
the Legendre interpolation function to the diagonal 
matrix for FEM can obtain the desired accuracy to 
some degree while reducing the calculation time. 
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