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ABSTRACT 

In this study, the effect of Hall current on the criterion for the onset of MHD convection in a porous medium 
layer saturated by a nanofluid is investigated. The model used for nanofluid combines the effect of Brownian 
motion and thermophoresis, while for a porous medium Brinkman model is used. A physically more realistic 
boundary condition than the previous ones on the nanoparticle volume fraction is considered i.e. the 
nanoparticle flux is assumed to be zero rather than prescribing the nanoparticle volume fraction on the 
boundaries. Using linear stability theory, the exact analytical expression for critical Rayleigh Darcy number is 
obtained in terms of various non-dimensional parameters. Results indicate that the magnetic field, Hall 
current, porous medium and nanoparticles significantly influence the stability characteristics of the system. 
The increase in the Hall current parameter, the Lewis number, the modified diffusivity ratio and the 
concentration Rayleigh Darcy number is to hasten the onset of convection while the magnetic Darcy number, 
the porosity parameter and the Darcy number has stabilized on the onset of convection.  

Keywords: Hall current; Thermal instability; Porous medium; Nanofluid; Brownian motion; 
Thermophoresis. 

1. INTRODUCTION

The study of the Magneto hydrodynamic (MHD) 
convection with or without Hall current effect has 
attracted considerable attention for the researchers 
due to its numerous applications in glass, crystal 
growing, MHD power generators, extrusion 
processes, cooling of nuclear reactors, as well as 
flow of laboratory plasma (Sutton and Sherman 
1995). Hall currents is mainly effect where by a 
conductor carrying an electric current perpendicular 
to an applied magnetic field develops a voltage 
gradient which is transverse to the magnetic field. 
It was discovered by Hall in 1879 and known as 
Hall current effect. For strong magnetic field case, 
the effect of Hall current is important and the 
conventional MHD is not valid. The  effect  of  Hall 
current  on  the  thermal  instability  of  a horizontal 
layer of  conducting  fluid was  studied by Sherman 
(1966), Gupta (1967), Palese and Georgescu (2004), 
Rani and Tomar (2010). An extension to the porous 
medium case was made by Raptis and Ram (1984), 
Sharma and Gupta (1993), Sunil and Sigh (2000), 
Kumar and Mohan (2012) and Singh and Mehta 
(2013). They were found that the Hall current 
parameter has destabilizing effect on the system. 

Heat transfer enhancement in MHD systems is an 
essential topic from an energy saving perspective. 
Convective heat transfer can be enhanced passively 
by enhancing thermal conductivity of the fluid. 
Various techniques have been proposed to enhance 
the heat transfer performance of fluids. Modern 
nanotechnology provides new opportunities to 
process and produce materials with average 
crystallite sizes (1-100) nm. Fluids with 
nanoparticles suspended in them are called 
nanofluids, a term proposed by Choi (1995). 
Nanofluids can be considered the next-generation 
heat transfer fluids as they offer exciting new 
possibilities to enhance heat transfer performance 
compared to pure fluids (Wang 2007). In order to 
get improved heat transfer performance of MHD 
devices, the use of nanofluid with higher thermal 
conductivity can be considered as a working 
medium (Sheikholeslami et al. 2013; Loganthan 
and Vimala 2015). 

Buongiorno (2006) was the pioneer researcher who 
gave a comparatively satisfactory model including 
the effects of Brownian motion and thermophoresis 
of the nanoparticles suspended.  He noted that the 
nanoparticles absolute velocity can be viewed as the 
sum of the base fluid velocity and a slip velocity. 
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With the help of these model, convective instability 
in nanofluid was conducted by many researchers 
including Tzou (2008a,b), Dhananjay (2011), Nield 
and Kuznetsov (2009, 2010, 2011), Kuznetsov and 
Nield (2010a,b), Yadav et al. (2011, 2012a,b, 
2013a,b, 2014a,b,c, 2015a,b,c, 2016a,b,c,d,e), 
Umavathi et al. (2015) and Chand and Rana (2012, 
2015 a,b). The effect of magnetic field effect on the 
thermal instability in nanofluids was studied by 
Yadav et al. (2013c, 2014d, 2015d,e,f, 2016f,g), 
Gupta et al. (2013) and Chand et al. (2014a,b). 
They found that the fluid under magnetic effects 
experiences a Lorentz force. This force, in turn, 
affects the buoyant flow field. Very recently, 
Sheikholeslami et al. (2015a,b) studied the two-
phase simulation of nanofluid flow and heat transfer 
with the effect of magnetic field. They obtained that 
the temperature boundary layer thicknesses 
decreased with increasing aspect ratio and 
Hartmann number but increased with increasing 
Reynolds number, Schmidt number, Brownian 
parameter, thermophoresis parameter and Eckert 
number.  

In all the investigations available in the literature, 
the thermal convection in a porous medium layer 
saturated by a nanofluid under the Hall current 
effect with zero flux boundaries for nanoparticles 
was not studied. Therefore, it would be of 
importance here to examine the effect of Hall 
current on the onset of MHD convection in a porous 
medium layer saturated by a nanofluid based on a 
new boundary condition for the nanoparticle 
fraction (zero flux boundaries with the combination 
of Brownian motion and thermophoresis for 
nanoparticles), which is physically more realistic 
than the other ones (Nield and Kuznetsov 2014). 
The model used for nanofluid combines the effects 
of Brownian motion and thermophoresis, while for 
porous medium Brinkman model with corrections 
to include effects due to the magnetic field, the Hall 
current and nanoparticles is considered. 

2. MATHEMATICAL FORMULATION  

Assuming that the nanoparticles being suspended 
in the base fluid, using either surfactant or 
surface charge technology, prevent the 
agglomeration and deposition of these on the 
porous matrix (Nield and Kuznetsov 2009), we 
consider an infinite horizontal layer of 
incompressible electrically conducting nanofluid 
heated from below (as shown in Fig. 1). A 

Cartesian co-ordinate system  , ,x y z  is chosen 

in which z axis is taken at right angle to the 
boundaries.  The nanofluid is confined between 

two parallel plates * 0z  and *z L , where the 
temperatures at the lower and upper boundaries 

are taken as *
0T  and *

1T , respectively, *
0T  being 

greater than *
1T . A uniform strong vertical 

magnetic field * *
0(0, 0, )HH  acts on the 

system. Asterisks are used to distinguish the 
dimensional variables from the non-dimensional 
variables (without asterisks).  

   axisz  

         *
00,0, HH   

            
* *

1 ,T T                              
*z L  

 

                                                                                  (0,0, )g g  

                       axisy
                                 Porous layer 

 

O                         * *
0 ,T T                     axisx            * 0,z   

            

  

Fig. 1. Physical model and co-ordinate system. 
 
2.1. Assumptions 

The mathematical equations describing the physical 
model are based upon the following assumptions:  

(i) The thermophysical properties except for density 
in the buoyancy force (Boussinesq Hypothesis) are 
constant; 

(ii)The fluid phase and nanoparticles are in thermal 
equilibrium state and thus, the heat flow has been 
described using one equation model. 

(iii) Nanofluid is incompressible, electrically 
conducting, Newtonian and laminar. 

(iv) Nanoparticles are spherical and non-magnetic. 

 (v) Each boundary wall is assumed to be 
impermeable and perfectly thermal conducting. 

(vi) Radiative heat transfer between the sides of 
wall is negligible when compared with other modes 
of the heat transfer. 

2.2. Governing Equations 

The continuity equation for the nanofluid is 

* * 0 ,D  v                                                     (1) 

where *
Dv  is the nanofluid Darcy velocity. If one 

introduces a buoyancy force, Lorentz force and 
adopts the Boussinesq approximation, then the 
momentum equation can be written as   

    
 

2* * *0
*

* * * *
0 1

* * *

 

  1 1

  ,
4

p

e

p
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 

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



    


       

   

*
* *D
D D

v
v v

g

H H

 

     (2) 

where 0  is the density of the nanofluid at the 

reference temperature *
1T ,   is the porosity of the 
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porous medium, K is the permeability of the 
porous medium,   is the thermal expansion 

coefficient, *t  is the time, *p  is the pressure, *  is 

volumetric fraction of nanoparticle, p  is the 

density of nanoparticle, *H is the magnetic field, 
  is the effective viscosity, ,    and e are the 

viscosity, density and magnetic permeability of 
nanofluid, respectively. 

The energy equation is: 

   

 

*
* * *2 *

*

* * * * * * * *
*

1

.

mm f

T
Bp

T
c c T k T

t

D
c D T T T

T

 

  


    


  

             

*
Dv

     (3) 

where  mc is the effective heat capacity, mk  is 

the effective thermal conductivity, BD  is the 

Brownian diffusion coefficient and TD  is the 

thermophoretic diffusion coefficient of the 
nanoparticles,  

f
c  and  

p
c  are the heat 

capacity of the nanofluid and nanoparticles, 
respectively. The second term of the right hand side 
is the additional flow work due to Brownian motion 
and thermophoresis of nanoparticles relative to the 
flow velocities. 

The conservation equation for the nanoparticles is       

 * * *2 * *2 *
* *

1

1
. T

B

D
D T

t T
 


        

*
Dv (4)                    

When the strength of the magnetic field is strong, 
one cannot neglect the effect of Hall current. 
Therefore, the modified Maxwell’s equations 
relevant to the problem are:  

   
 

* * * * *2 *
*

* * * *

1

         ,
4

t

eN

 




        

        

* *
D Dv H H v H

H H

 

      (5) 

* * 0 ,  H                                                      (6) 

where ,  ,  ,  ,   and e N    are the electrical 
resistivity, the electrical conductivity, the velocity 
of light, the charge of electron and the electron 
number density of the nanofluid, respectively.  

In this paper, a physically more realistic boundary 
condition on the nanoparticle volume fraction is 
considered i.e. the nanoparticle flux is assumed to 
be zero rather than prescribing the nanoparticle 
volume fraction on the rigid impermeable 
boundaries. Thus the boundary conditions are: 

* * *
0

* *

* * *
1

0,  ,  

0T
B

w T T

d D dT
D

dz T dz



 

 
 at  * 0z  ,                 (7a) 

* * *
1

* *

* * *
1

0,  ,  

0T
B

w T T

d D dT
D

dz T dz



 

 
  at  *z L .          (7b) 

Introducing the following non dimensional 
parameters: 

   * * *,  ,  ,  ,  ,x y z x y z L * 2 ,mt t L   

   * * *,  , ,  , ,mu v w u v w L   * ,mp p K     

   * * * *
0,  ,  ,  ,  ,x y z x y zH H H H H H H  

 * * *
0 0 ,         * * * *

1 0 1 ,T T T T T    (8) 

where ,
( )

m
m

f

k

c





( )

( )
m

f

c

c




  and *
0  is a 

reference scale for the volumetric fraction of 
nanoparticle .  

Then, the non-dimensional form of Eqs. (1)-(7) are: 

0, v                                                              (9) 
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     (13)  

0,  H                                                          (14) 

0,  1,  0A

d dT
w T N

dz dz


     at 0z   (15a) 

 

0,  0,  0A

d dT
w T N

dz dz


     at 1z  .  (15b) 

Here    * *
0 0 1D mR g LK T T      is the 

Rayleigh Darcy number,  2
aD K L    is the 

Darcy number, e m BL D   is the Lewis number, 

 0r mP     is the Prantdl number, 
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 0rMP     is the magnetic Prantdl number, 

   *
0B p

N c c    is the modified particle 

density increment, 

   * * * *
0 1 1 0A T BN D T T D T    is the 

modified diffusivity ratio, 

   * *
0 01  m p fo mR gLK         

is the basic 

density Rayleigh Darcy number, 

   *
0n p fo mR gLK      is the concentration 

Rayleigh Darcy number, 

 * 2
0 04eQ H K      is the magnetic 

Darcy number and  *
0 4M H eN    is the 

Hall current parameter.  

2.3. Basic Flow 

The basic state of the nanofluid is assumed to be 
time independent and is described by 

0,v   ,bT T z   ,bp p z   ,b z 
ˆ . zH e  

Here subscripts b  represents basic state i.e. bT  is 

the basic temperature, bp  is the basic pressure, b  

is the basic volumetric fraction of nanoparticle and 
ˆze is the unit vector in z- direction. 

In basic state, Eqs. (11) and (12) can be written as: 

22

2
0,b b b bB A B

e e

d T d dT dTN N N

dz L dz dz L dz

     
 

(16) 

2 2

2 2
0,b b

A

d d T
N

dz dz


                                     (17) 

under the following boundary conditions: 

1,  0b b
b A

d dT
T N

dz dz


    at 0z  ,       (18a) 

0,  0b b
b A

d dT
T N

dz dz


    at 1z  .       (18b) 

On solving Eqs. (16) and (17) subject to the 
boundary conditions (18), we found that 

1bdT

dz
   and b

A
d

N
dz


 ,                            (19a,b) 

The pressure and magnetic field are of no 
consequence here as it will be eliminated 
subsequently. 

2.4.   Perturbation Equations 

For small disturbances onto the primary flow, we 
assume that: 

( ) ,bp p z p  ˆ , zH e H

( ) ,b z     ,v v ( ) ,bT T z T  
( ) ,b z                                                (20) 

where prime indicates perturbation quantities over 
their equilibrium counterparts and assumed to be 
small. On substituting Eq. (20) into Eqs. (9)-(15) 
and neglecting the product of prime quantities, we 
have: 
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           (25)    

0,  H                                                         (26) 

Operating on Eq. (22) with ˆ     ze  and 

using the identity 2           
together with Eqs. (21) and (26), we obtain z -
component of the momentum equation as: 

4 2 2 2
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2 2
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    0,
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r z
n P

rM

D
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 (27) 

where 2
P  is the Laplacian operator in the 

horizontal plane.  

Equation (25) can be written in three directions: 

2 ,x xr r
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(30)  

By differentiate Eq. (28) with respect to y  and 

differentiate Eq. (29) with respect to x , and then 
subtract first one by second, we have 

2 2 0.r r z
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P P H
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 

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(31) 

On eliminating zH   from Eq. (27) with the help of 

Eqs. (30) and (31), we have 
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Assuming the perturbation quantities are of the 
form as: 
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where ,  x yk k  are the wave number along 

the x and y directions respectively and 

2 2
x ya k k   is the resultant wave number. 

On substituting Eq. (33) into the differential Eqs. 
(23), (24) and (33), the linearized equations in 
dimensionless form are as follows: 

2 2 0,A B B

e e

N N N
W D D a D

L L


 
      
 

     (34) 

   2 2 2 21
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e e
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D a D a

L L


 

 
      

 
       (35) 
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P

  
      

   

       

 

 (36) 

where  2 2
3

r

rM

P
D a

P

 


 
    

 
, 

   
2

2 2 2 2
4 3
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rM

P
M D a D

P

        
   

 and 

.
d

D
dZ

  

And, the boundary conditions become: 

0,  D 0AW N D        at 0 and 1z  .   (37) 

Here the growth rate  is in general a complex 
quantity such that ,r ii     the system with 

0r  is always stable, while for 0r  , it will 

become unstable. For neutral stability, the real part 
of    is zero. Hence, we now write ii  , where 

i is real and is a dimensionless frequency.  

Equations (34)–(36) together with the boundary 
conditions (37) constitute a linear eigenvalue 

problem of the system. The resulting eigenvalue 
problem is solved analytically using the Galerkin 
weighted residuals method. In this method, the test 
(weighted) functions are the same as the base (trial) 
functions. Accordingly ,  W   and   are taken in 
the following way: 

1

,
N

s s
s

W A W


 
1

,
N

s s
s

B


  
1

N

s s
s

C


   ,        

(38)  

where ,sA sB  and sC are constants. The base 

functions ,sW  s and s represented by power 

series as trivial functions satisfying the respective 
boundary conditions and are assumed in the 
following form: 

sin , sin ,  1,2,3,...s s s AW s z N s z s        

(39)  

Using Eq. (38) into Eqs. (34)-(36) and multiplying 
Eq. (34) by s , Eq. (35) by s and Eq. (36) by 

sW ; performing the integration by parts with 

respect to z between 0z   and1 , we obtain a 
system of 3s linear algebraic equations in the 3s  
unknowns ,sA sB and sC . For the existence of non 

trivial solution, the determinant of the coefficient 
matrix must vanish, which gives the characteristic 
equation for the system, with Rayleigh Darcy 
number DR as the eigenvalue of the characteristic 

equation. For a first approximation, we take 
1,s  and this gives the following characteristic 

equation for the system 
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  2
rM rP P ,i i J     

     (40) 

where 2 2J a   . 
 

3. RESULTS AND DISCUSSION 

3.1   Stationary Convection 

First, consider the case of stationary convection 
i.e. 0i  . Then, Eq. (40) gives the following 

expression for the Rayleigh Darcy number 
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 
    

  

22 2
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a a M
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   

         

 (41) 

It is clear from Eq. (41) that the Rayleigh Darcy 
number DR  is a function of the wave number ,a  

porosity parameter ,  Darcy number aD , Lewis 

number ,eL  modified diffusivity ratio ,AN  

nanoparticle concentration Rayleigh number ,nR  

magnetic Darcy number Q and Hall current 

parameter M . 

The critical wave number is at the onset of 
instability, which is obtained from the condition 

2 20 , w h e re  
c

D

x x

d R
x a

d x




    
   




 and 

satisfies the following relation 
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  
      

     

4 2 4 4 2 2 2 2 3

4 2 2 2 4 2 2 4 2

4 4 2 2 2

2 2 2 2 2

2 5 4

2 3 6 2

1

1 0.

a a

a

a

a

D x D M x

M D M M x

M D M Q x

M M D Q

     

    
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    
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 


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(42) 

It is clear from Eq. (42) that the critical wave 
number does not depend on nanofluids parameters. 
It depends on magnetic Darcy numberQ , Hall 

current parameter M , porosity parameter   and 
Darcy number aD .  

In the absence of Hall current, magnetic field and 
nanoparticles i.e. M , Q  and nR  are all equal to 

zero, then Eqs. (41) and (42) give, respectively: 

   22 2 2 2

2

1
,

a
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a D a
R

a

                        (43) 
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D D D
x
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      
 .     (44) 

These are the same results as given in (Nield and 
Bejan 2006). 

To study the effect of ,M Q , ,aD  ,  ,eL  AN  

and nR , we examine the behaviour of ,DdR

dM
  

,  DdR

dQ
,  ,   ,   and  D D D D D

a e A n

dR dR dR dR dR

dD d dL dN dR
 

analytically. Eq. (41) yields: 
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These show that, for the stationary convection, the 
Hall current parameter M , Lewis number eL , 

modified diffusivity ratio AN  and nanoparticles 

concentration Rayleigh number nR   have always a 

destabilized effect, while the magnetic Darcy 
number Q  and Darcy number aD  have always 

stabilized the system. The porosity 
parameter have a stabilizing effect if 

    
  

22 2 2 2 2 2 2 2

2 2
3 2 2 2 2

n A e
a a M QR N L

a a M

    

   

  


 
. 

3.2   Oscillatory Convection 

The present section is devoted to find the possibility 
as to whether the instability due to the presence of 
Hall current and magnetic field may occur as 
oscillatory convection. Since we wish to determine 
the Rayleigh Darcy number for the onset of 
instability via a state of pure oscillations, it suffices 
to find conditions for which Eq. (40) will admit of 

solutions with i  real.  Equating real and 

imaginary parts of (40) and eliminating DR  

between them, we have 

     3 22 2 2
1 2 3 4 0,i i iF F F F                  (45) 
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, 

And 2 2J a   . The coefficients 3F  and 4F  are 

very lengthy and not needed in the discussion of 
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overstability, and have not been written here. Since 

i  is real for overstability, the three values of 

 2i should be positive. The sum of roots of the 

Eq. (45) is 2

1

F

F
 .  For oscillatory convection to 

occur, 2 0F  (because 1 0F  ), and on using the 

parametric values of nanofluid, the values of 2F  

which cannot be positive, ruling out the possibility 
of oscillatory convection in this case.  

 

Fig. 2. Variation of Rayleigh Darcy number DR  

with wave number a , for various values of Hall 

current parameter M  with  0.1,nR   AN 5,  

0.8,   35 10 ,eL    0.5,aD  200.Q   

 
The Eq. (41) is also solved numerically to obtain 
the critical Rayleigh Darcy number ,D cR  and the 

corresponding critical wave number  ca  for 

alumina/water nanofluid as shown in Figs. 2-8 for 
various parameter values. According to Buongiorno 
(2006) and Yadav et al. (2013c, 2014d), the 
following parameter values for alumina/water 
nanofluid are taken: 

*
0 0.001, 

0
31000 kg/m ,  3 34 10  kg/m ,p  

-7 2 2.0 10 m /s,  -11 24 10 m /s, BD   -11 26 10 m /s,TD  
6 3

p ( c)  =3.1 10 J/m ,  -3=10 Pas, -3=3.4 10 1/K, 

6 3( c)  =4 10 J/m ,f  * *
0 1 1K,T T   *

1 300KT  . 

 The parameter values given above give the 
following representative values of dimensionless 

parameters: 3 5 10 ,eL    5,rP  AN 5.  The values 

of nR  can be controlled by changing the distance 

between the boundaries and changing the reference 
scale for the nanoparticle fraction. Finally, we fix 
the values for the parameters as 

35 10 ,eL    0.1,nR  AN 5,  5,rP   Q=200,  

0.5,  0.5aM D  and 0.8   except the varying 

parameters.  

In Fig. 2, Rayleigh Darcy number DR is plotted 

against wave number a , for different values of Hall 
current parameter M . Here we observed that the 
critical Rayleigh Darcy number decreases as M  
increases and hence the Hall current is having a 
destabilizing factor to make the system more less 
stable. This is due to the fact that the Hall current 
effect produces a cross-flow i.e. right angle to the 
primary flow in the presence of a transverse 
magnetic field. This breakdown of the primary flow 
may be presumably attributed to the inherent 
instability.  

The significant characteristics of the magnetic 
numberQ  on the stability of the system are 
exhibited graphically in Fig. 3. From Fig. 3, it is 
found that the when the magnetic numberQ  
increases, in terms of the larger value of the critical 
Rayleigh number cR , the system becomes more 

stable.  This is due to the fact that the variation of 
Q  leads to the variation of the Lorentz force and 
the Lorentz force produces more resistance to 
transport phenomenon. Hence, magnetic field has a 
stabilizing effect on the stability of the system.  

 

Fig. 3. Variation of Rayleigh Darcy number DR  

with wave number a , for various values of 
magnetic Darcy number Q  

with  0.1,nR  AN 5, 0.8,   35 10 ,eL    
0.5,aD  0.5.M   

 

Figs. 4, 5, and 6 show, respectively, the effect of the 
concentration Rayleigh Darcy number nR , the 

Lewis number eL and the modified diffusivity ratio 

AN  on the stability of the system. It can be easily 

be said that an increases in the values of the 
concentration Rayleigh Darcy number nR , Lewis 

number eL  and modified diffusivity ratio AN lead 
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to the decrease in the value on Rayleigh Darcy 
number DR , thus indicating an increase in the onset 

of convection. Hence nanoparticles parameters (the 
concentration Rayleigh Darcy number nR , the 

Lewis number eL and the modified diffusivity 

ratio AN ) have a destabilizing effect on the stability 

of the system. This may be understand that as an 
increase in volumetric fraction of nanoparticles, 
increases the Brownian motion of the nanoparticles, 
which causes the destabilizing effect of 
nanoparticles parameters. 

 

Fig. 4. Variation of Rayleigh Darcy number DR  

with wave number a , for various values of 
concentration Rayleigh number nR with AN 5,  

0.8,  0.5,aD   35 10 ,eL   200,Q  0.5.M   
 

Fig. 5. Variation of Rayleigh Darcy number DR  

with wave number a , for various values of 
Lewis number eL  with  0.1,nR   AN 5,  

0.8,   0.5,aD   200,Q  0.5.M   

To assess the effect of porous medium on the 
stability of the system, the variation of Rayleigh 
number DR  as a function of wave number a  for 

different values of porosity parameter    is shown 
in Fig. 7. We found that with an increase in the 
value of  , the critical Rayleigh number 

DR increases, indicating that it delays the onset of 

convection in nanofluid saturated in porous 
medium.  

 

Fig. 6. Variation of Rayleigh Darcy number DR  

with wave number a , for various values of 
modified diffusivity ratio AN  with  0.1,nR   

0.8,   0.5,aD   200,Q   0.5.M   
 
The effect of Darcy number aD , on the natural 

curve is depicted in Fig. 8. The critical Rayleigh 
number DR increases with an increase in the Darcy 

number aD  which shows that the effect of Darcy 

number aD  delays the onset of convection in the 

nanofluid-saturated porous media. This is because; 
increase in the value of Darcy number aD  is 

related to increase in the effective viscosity which 
has the tendency to retard the fluid flow. 
 

Fig. 7. Variation of Rayleigh Darcy number DR  

with wave number a , for various values of 
porosity parameter   with  0.1,nR   AN 5,  

35 10 ,eL    0.5,aD   200,Q  0.5.M   
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Fig. 8. Variation of Rayleigh Darcy number DR  

with wave number a , for various values of 
Darcy number aD  with  0.1,nR   AN 5,  

35 10 ,eL    0.8,   200,Q  0.5.M   

Also, from Figs. 2, 7 and 8, we observed that an 
increase in the values of the Hall current 
parameter M , the porosity parameter   and the 

Darcy number aD , the critical wave number ca  

decreases and thus its effect is to increase the size 
of convection cell, while an increase in the 
magnetic Darcy numberQ  decreases the size of 
convection cell as observed from the Fig.3.  

4. CONCLUSIONS 

The onset of MHD nanofluid convection in a 
porous medium layer with the presence of Hall 
current effect was analyzed analytically using the 
linear stability theory. A physically more realistic 
boundary condition than the previous ones on the 
nanoparticle volume fraction was considered i.e. the 
nanoparticle flux was assumed to be zero rather 
than prescribing the nanoparticle volume fraction 
on the boundaries. The linear stability theory gives 
the condition for the onset of stationary convection 
and show that the oscillatory convection cannot 
occur with the new boundary conditions. The 
expression for the stationary convection show that 
the Hall current parameter and nanoparticles 
parameters (the Lewis number, the modified 
diffusivity ratio and the concentration Rayleigh 
Darcy number) accelerate the onset of convection, 
while the magnetic Darcy number, porosity 
parameter and Darcy number delay the onset of 

convection. The critical wave number ca  decreases 

with an increase in the values of the Hall current 
parameter, the porosity parameter and the Darcy 
number, while it increases with the magnetic Darcy 
number. 
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