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ABSTRACT 

Free convective flow of a Jeffrey fluid in a vertical deformable porous stratum is investigated. It is assumed 
that heat is generated within the fluid by both viscous and Darcy dissipations.  The velocity, displacement and 
the temperature distributions are evaluated using a perturbation method valid for small values of buoyancy 
parameter N . The effects of Jeffrey parameter, f  and s  on the flow velocity and solid displacement are 

discussed in detail.  In the absence of Jeffrey parameter, deformable porous parameters and the pressure 
gradient, all the results reduce to the corresponding results of Rudraiah et al. (1977). Higher skin friction is 
observed for a given buoyancy force for a non-Newtonian Jeffrey fluid when compared with Newtonian fluid.  
On comparing deformable and undeformable porous layers of present work and Rudraiah et al. (1977), we 
conclude that the skin friction gets reduced when the porous material is a deformable one. It is noticed that 
the effect of increasing Jeffrey parameter is to increase the skin friction in the deformable porous stratum. 

Keywords: Jeffrey fluid; Non-newtonian fluid; Free convection; Perturbation method. 

NOMENCLATURE 

g acceleration due to gravity 

K  drag coefficient 

0K  thermal conductivity 

p  pressure 

T  temperature 

0T  ambient temperature 

N buoyancy parameter  

a apparent viscosity of the fluid in the 

porous material 
  density of the fluid 

  coefficient of linear thermal expansion of 
the fluid 

  Lame constant 

s volume fraction components of solid 

phase 

f 1 s , the volume fraction components of 

fluid phase  

1  Jeffrey parameter 

f coefficient of viscosity 

  measure of the viscous drag of the outside 
fluid relative to drag in the porous 
medium 

  ratio of the bulk fluid viscosity to the 
apparent fluid viscosity in the porous 
layer  

1. INTRODUCTION

In recent years a great deal of interest has been 
generated to study heat transfer in fluid flows 
through porous media because of their extensive 
applications in engineering, biology and medicine. 
These include heat exchange between soil and 
atmosphere, flow of moisture through porous 

industrial materials, heat exchangers with fluidized 
beds, fiber and granular insulation materials, 
packed-bed chemical reactors, oil recovery and 
movement of biofluid in tissue regions of blood 
vessels.  Such tissue regions of blood vessels are 
being modeled as undeformable porous media 
(Gopalan, 1981).  But it is appropriate to model 
them with deformable porous media. Further the 
influence of glycocalyx on biofluid flow within 
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blood vessels can be better understood with theory 
of flow through deformable porous media. The 
glycocalyx is the thin layer of glycoproteins lining 
the surface of endothelial cells in all blood vessels.  
This layer is of 1 µm thickness in capillaries and 
small blood vessels studied by Turner et al.  (1983). 
Further this has strong influence on local flow 
conditions (such as wall shear stress) during the 
formation of atherosclerosis.  In view of these facts, 
the study of flow through deformable porous media 
is necessitated. 

 
The study of flows through deformable porous 
materials was initiated by Terzaghi (1925) and 
further developed by Biot (1941, 1955), Atkin and 
Craine (1976) and Kenyon (1976). This 
deformation theory is applied to the study of flows 
in biological tissue layers and articular cartilage 
(Jayaraman, 1983: Mow et al., 1984: Holmes, 1985: 
Oomens et al., 1987: and Holmes et al., 1990).  
Following the theory of mixtures given by Kenyon 
(1976) and Bowen (1980), Barry et al. (1991) 
modeled the porous material as a continuous binary 
mixture comprising of solid and fluid phases where 
each point in the mixture is occupied 
simultaneously by both fluid and solid. The solid 
and fluid are assumed to be intrinsically 
incompressible.  Bulk compression of the mixture 
arises only by a decrease in the fluid fraction.  The 
deformation is small and hence the intrinsic 
properties of the porous medium are taken as 
constant.  Based on this, he derived the governing 
equations for the flow in deformable porous media 
and investigated the flow of a Newtonian fluid over 
a thin deformable porous layer. Farina et al. (1997) 
described the application of a deformable porous 
media model to the manufacturing of composite 
materials by compression moulding. Ambrosi 
(2002) is studied infiltration through deformable 
porous media. Wen et al. (2009) investigated 
dynamic responses of a viscous fluid flow 
introduced under a time dependent pressure 
gradient in a rigid cylindrical tube that is lined with 
a deformable porous surface layer. Sreenadh et al. 
(2014) discussed Couette flow over a deformable 
permeable bed. 
 
Flow with porous medium is a topic of prime 
importance now-a-days owing to its applications in 
metal production, underground bed flow and oil 
recovery from partially depleted reservoirs.  Flows 
through undeformable porous media have been 
studied very well by several researchers using 
classical Darcy or modified Darcy laws (Muskat, 
1937 and Tam, 1969).  Bear (1972) was the first to 
present and use the continuum approach in 
modeling flow and transport phenomena. Rudraiah 
and Nagaraj (1977) made a study on natural 
convection through a vertical porous stratum 
including both viscous and Darcy resistances.  It is 
observed that permeability acts to decrease the 
dissipation effects. Umavathi and Malashetty 
(1999) discussed the Oberbeck convection flow of a 
couple stress fluid through a vertical porous 
stratum.  MHD free convection adjacent to a 
vertical surface with Ohmic heating and viscous 
dissipation is investigated by Chen (2004). 

Unsteady boundary layer flow of a viscous, 
electrically conducting and heat absorbing fluid 
along a semi-infinite vertical permeable moving 
plate has been studied by Chamka (2004). Ebaid et 
al. (2006) have analysed the peristaltic transport of 
a Newtonian fluid in an asymmetric channel 
through a porous medium. Zaheer Abbas and 
Tasawar Hayat (2008) studied the radiation effects 
on the magnetohydrodynamic flow of an 
incompressible viscous fluid in a porous space 
using homotopy analysis method.  Srinivas et al. 
(2011) discussed the effect of chemical reaction on 
space porosity on MHD peristaltic flow in a vertical 
asymmetric channel. Shadloo and Kimiaeifar 
(2011) obtained an analytical solution for 
magnetohydrodynamic flows of viscoelastic fluids 
in converging/diverging channels applying 
homotopy perturbation method. Rashidi et al. 
(2012) analysed MHD convective flow due to a 
rotating disk with viscous dissipation and Ohmic 
heating. Natural convection flow of a third grade 
fluid between two parallel plates is studied by 
Rashidi et al. (2013a) applying multi-step 
differential transform method. Rashidi et al. 
(2013b) studied entropy generation in steady MHD 
flow due to a rotating porous disk in a nanofluid 
employing Von Karman transformation. Rashidi et 
al. (2014a) examined MHD fluid flow over a 
permeable vertical stretching sheet with radiation 
and buoyancy effects. Lie group solution for free 
convective flow of a nanofluid past a chemically 
reacting horizontal plate in porous media has been 
studied by Rashidi et al. (2014b).  Rashidi and 
Freidoonimehr (2014) investigated entropy 
generation in magnetohydrodynamic stagnation-
point flow with heat transfer in a porous medium 
via DTM- Pade.  Abolbashari et al. (2014) 
presented the entropy analysis in an unsteady 
magneto-hydrodynamic nanofluid regime adjacent 
to an accelerating stretching permeable surface. 
Rashidi et al. (2015) presented entropy generation 
analysis for stagnation point flow through a porous 
medium over a permeable stretching surface. Prasad 
et al. (2015) studied the effects of temperature-
dependent transport properties on MHD convection 
flow in a vertical channel. Freidoonimehr et al. 
(2015) obtained dual solutions for the problem of 
magneto-hydrodynamic Jeffery–Hamel nanofluid 
flow in non-parallel walls employing a new 
analytical technique, Predictor Homotopy Analysis 
Method (PHAM). 

The behavior of some of the biofluids like blood, 
synovial fluid etc., demand the use of non-
Newtonian models. Now-a-days Jeffrey model is 
attracting the attention of researchers to describe 
many biological situations. Vajravelu et al. (2011) 
discussed the convective peristaltic flow of a Jeffrey 
fluid in a vertical porous stratum. Tariq Javed et al. 
(2013) analysed the boundary layer flow of a non-
Newtonian fluid over a stretching sheet using Keller 
box method. Sreenadh et al. (2013) obtained a 
solution for free convective MHD Jeffrey fluid flow 
between two coaxial permeable cylinders assuming 
quadratic density temperature variation. Noreen 
Sher Akbar et al. (2013) analyzed characteristics of 
Jeffrey fluid model for peristaltic flow of chyme in 
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small intestine with magnetic field. Abd-Alla et al. 
(2014) have investigated the peristaltic flow of a 
Jeffrey fluid in an asymmetric channel. Santhosh 
Nallapu and Radhakrishnamacharya (2014) studied 
Jeffrey fluid flow in the presence of magnetic field 
through porous medium in tubes of small diameters.  
Available literature on non-Newtonian models 
shows that not much attention has been given in the 
non-Newtonian fluid flow in a vertical deformable 
porous stratum. 
 
In view of this the authors envisage to study natural 
convection flow of a non-Newtonian Jeffrey fluid in 
a deformable vertical porous layer.  Here Jeffrey 
model is chosen as it is one of the simplest models 
for non-Newtonian fluids and this model reduces to 
Newtonian model as a special case by 
taking 1 0  . The velocity, displacement and 

temperature are obtained. The impact of buoyancy 
on the flow pattern is discussed in detail. 

2. MATHEMATICAL 
FORMULATION  

Consider the steady fully developed, free 
convective flow of a Jeffrey fluid through a vertical 
deformable porous stratum as shown in Fig.1. The 
porous material is modeled as a continuous binary 
mixture of solid and fluid phases where each point 
in the mixture is occupied continuously by both 
fluid and solid (Barry et. al, 1991). x -axis is taken 
midway in the channel and y  -axis perpendicular to 
it. The deformations are assumed to be small and 
are predominantly in the-direction. It is assumed 
that heat is generated within the fluid by both 
viscous and Darcy dissipations.  The walls are 
placed at a distance 2b  and maintained at a 
constant temperature 1T  . The fluid velocity and 

solid displacement in the deformable layer are 
assumed to be  ,0,0v  and  ,0,0u , respectively. A 

pressure gradient 
p

x




is applied, producing an 

axially directed flow.  Due to the assumptions of an 
infinite channel there will be no x dependence in 
any of the terms except the pressure.  For simplicity 
we restrict our discussion to the half width of the 
channel. 
 

 
Fig. 1. Physical Model. 

With the assumptions mentioned above, for the 
fully developed flow model under consideration, the 
basic equations of the problem for deformable 
porous region reduce to (Barry, 1991, Rudraiah et 
al., 1977). 
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The boundary conditions are 

10, 0,u v T T          at     y b                     (4) 

0, 0, 0
du dv dT

dy dy dy
        at    0y      

3. NON-DIMENSIONALIZATION OF 
THE FLOW QUANTITIES 

It is convenient to introduce the following non-
dimensional quantities. 
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  In view of the above dimensionless quantities, the 
Eqs. (1) – (4) take the following form.  The 
asterisks (*)  are neglected here after. 
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The boundary conditions are 

0, 0, 1u v            at     1y     

0, 0, 0
du dv d

dy dy dy


    at      0y     

                   (9)  
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4. SOLUTION OF THE PROBLEM 

The governing momentum and energy Eqs. (6) to 
(9) are coupled partial differential equations that 
cannot be solved in closed form.  In most of the 
practical problems perturbation technique is used to 
solve these types of non-linear equations.  We can 
write  

     0 0 0 0 1 1 1 1, , , , , , , , , ........u v p u v p N u v p    

     (10) 

Using the above relation in Eqs. (6)-(9), we obtain a 
system of equations of different orders. 

4.1.   System of Order 0N  

The governing equations of the zeroth- order are  

2
0 0

0 02
1

1
0

1 f
d v dp

v
dxdy

  


   


             (11) 

2
0 0

02
0s

d u dp
v

dxdy
                  (12) 

2
0

2
0

d

dy


                (13) 

The appropriate boundary conditions are 

0 0 00, 0, 1u v        at 1y                    (14) 

0 0 00, , 0
du dv d

dy dy dy


    at 0y        

Solving the Eqs. (11)-(13) with the use of boundary 
conditions (14) and we obtain the zeroth-order fluid 
velocity, solid displacement and the fluid 
temperature as 

0 1 1 1 22 cosh 1v B a y a                               (15) 

1 1 12
0 1 14

1

2 cosh 1

1

B a y
u C a y





  


              (16) 

0 1                  (17) 

We note that expression for zeroth order velocity 
reduces to the corresponding results of Rudraiah et 
al. (1977) for the natural convection flow of a 
Newtonian fluid through a vertical undeformable 
porous stratum by taking 2

1 0, 0,f      . 

4.2.   System of Order 1N  

The governing equations of the first- order are  
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The appropriate boundary conditions are 

1 1 10, 0, 0u v            at 1y     

1 1 10, 0, 0
du dv d

dy dy dy


   at 0y               (21) 

Solving the Eqs. (18)-(20) with the use of boundary 
conditions (21), we obtain the first-order fluid 
velocity, solid displacement and fluid temperature 
as 
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The expression for the velocity is given by 

0 1v v Nv  ,               (25) 

where 0v  and 1v  are given by the Eqs. (15) and 

(22). The expression for the displacement is  

0 1u u Nu  ,               (26) 

where 0u  and 1u  are given by the Eqs. (16) and 

(23). The expression for the temperature is given by 

0 1N    ,                (27) 

where 0  and 1  are given by the Eqs. (17) and 

(24). 

5. SKIN FRICTION  

Knowing the velocity field we can now calculate 
the skin friction, which is given by 

1 1 1 1 1
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6. RATE OF HEAT TRANSFER

 The rate of heat transfer at the wall 1y   is given 
by  
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7. RESULTS AND DISCUSSIONS 

The solutions for coupled equations for the fluid 
velocity ( v ), displacement ( u ) and 

temperature   are evaluated numerically for 

different values of physical parameters such as 
Jeffrey parameter 1  , the pressure gradient G  , 

the viscous parameter f  , the viscous drag 

parameter   and the parameter  is the ratio of the 
bulk fluid viscosity to the apparent fluid viscosity in 
the porous layer which are depicted in Figs. 2 to 25.  

The variation of temperature with y is calculated 
from Eq. (27) for different values of 

, , , , ,f s G N    , 1 and is shown in Figs. 2 to 8. 

We observe that the temperature decreases with 
the increase in , , ,f G   , but it exhibits opposite 

behavior with the increase in 1, , .s N    
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Fig. 2. The temperature profile   for different 

values of   for 
fixed

11, 0.5, 0.5, 0.1, 1, 0.1f s G N         . 
 

The variation of velocity profile v  with y   is 
calculated from Eq. (25) for different values 
of , , , , ,f s G N    , 1  and is shown in Figs. 9 to 

15. Here we observe that the velocity v  decreases 
with the increase in , , ,f G    whereas it increases 

with the increase in 1, , .s N   
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Fig. 3. The temperature profile   for different 

values of   for fixed 

11, 0.5, 0.5, 0.1, 1, 0.1f s G N         . 
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Fig. 4. The temperature profile   for different 

values of f  for fixed 

11, 1, 0.5, 0.1, 1, 0.1s G N         . 
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Fig. 5. The temperature profile   for different 

values of s  for fixed 

11, 0.5, 1, 0.1, 1, 0.1f G N         . 
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Fig. 6. The temperature profile   for different 

values of G  for fixed 

11, 0.5, 0.5, 1, 1, 0.1f s N          . 
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Fig. 7. The temperature profile   for different 

values of N  for 

11, 0.5, 0.5, 1, 1, 0.1f s G          . 
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Fig. 8. The temperature profile   for different 

values of 1  for fixed 

1, 0.5, 0.5, 0.1, 1, 1f s G N         . 
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Fig. 9. The Velocity profile v  for different values 

of   for fixed 

1, 0.5, 0.5,f s     10.1, 1, 0.1G N    . 
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Fig. 10. The Velocity profile v  for different 

values of   for fixed 

11, 0.5, 0.5, 0.1, 1, 0.1f s G N         . 
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Fig. 11. The Velocity profile v  for different 

values of f  for fixed 

11, 1, 0.5, 0.1, 1, 0.1s G N         . 
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Fig. 12. The Velocity profile v  for different 

values of s  for fixed 

11, 0.5, 1, 0.1, 1, 0.1f G N         . 
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Fig. 13. The Velocity profile v  for different 

values of G  for fixed 

11, 0.5, 0.5, 1, 1, 0.1f s N          . 
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Fig. 14. The Velocity profile v  for different 

values of N  for fixed 

11, 0.5, 0.5, 0.1, 1, 0.1f s G          . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

y

 v

 

 
1=0.1

1=0.2

1=0.3

 
Fig. 15. The Velocity profile v  for different 

values of 1  for fixed 

1, 0.5, 0.5, 0.1, 1, 1f s G N         . 
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Fig. 16. The displacement profile u  for different 

values of   for fixed 

11, 0.5, 0.5, 0.1, 1, 0.1f s G N        
. 
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Fig. 17. The displacement profile u  for different 

values of   for fixed 

11, 0.5, 0.5, 0.1, 1, 0.1f s G N         . 
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Fig. 18. The displacement profile u  for different 

values of f  for fixed 

11, 1, 0.5, 0.1, 1, 0.1s G N         . 
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Fig. 19. The displacement profile u  for different 

values of s  for 

11, 0.5, 1, 0.1, 1, 0.1f G N         . 
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Fig. 20. The displacement profile u  for different 

values of G  for 

fixed
11, 0.5, 0.5, 1, 1, 0.1f s N          . 
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Fig. 21. The displacement profile u  for different 

values of N  for fixed 

11, 0.5, 0.5, 0.1, 1, 0.1f s G          . 
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Fig. 22. The displacement profile u  for different 

values of 1  for fixed 

1, 0.5, 0.5, 0.1, 1, 1f s G N         . 
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Fig. 23. The Nusselt number Nu  for different 

values of f for fixed 

11, 0.5, 0.1, 1, 0.1s G        . 
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Fig. 24. The Nusselt number Nu  for different 

values of s for fixed 

11, 0.5, 0.1, 1, 0.1f G        . 
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Fig. 25. The Nusselt number Nu  for different 

values of 1 for fixed 

1, 0.5, 0.1, 1, 0.5s fG        . 

 

The variation of displacement profile u with y  is 
calculated from Eq. (26) for different values 
of , , , , ,f s G N    , 1  and is shown in Figs. 16 to 

22. Here we observe that the displacement u  
increases with the increase in 1, , , f     and N  but 

it exhibits opposite behavior with the increase 
in ,s G . 

The magnitude of the skin friction is numerically 
evaluated from Eq. (28) for different values of 
buoyancy parameter N and is presented in Table 1.  
It is found that the skin friction at the vertical wall 

1y   increases with increasing buoyancy 

parameter N . The same behavior is noticed in the 
case of vertical undeformable porous layer 
(Rudraiah et al., 1977).  The skin friction at the wall 

1y   increases with the increasing buoyancy 

parameter N . Higher skin friction is observed for a 

given buoyancy force for a non-Newtonian Jeffrey 
fluid when compared with Newtonian fluid.  

The magnitude of the Skin friction values for 
various values of Jeffrey parameter 1  are 

calculated from Eq. (28) and presented in Table 2. It 
is found that the effect of increasing Jeffrey 
parameter is to increase the skin friction in the 
deformable porous stratum.  

The rate of heat transfer at 1y   is evaluated from 

Eq. (29) for different values of ,f s  , 1  and is 

shown in Figs. 23 to 25. Here we observe that the 
Nusselt number decreases with the increase in f  

and increases with the increase in s  and Jeffrey 

parameter 1 . 

Table 1 Skin friction  at 1y  for different 

values of N  

S.No  1N   2N   3N   

1 

Rudraiah et al 
(1977) 

(undeformable 
porous layer) 

0.8056 0.8497 0.8937 

2 

Present work 
(deformable 
porous layer 
with 1 0  ) 

0.7252 0.7268 0.7285 

3 
Present work 
(with 1 0  ) 1.0660 1.3006 1.5352 

 

Table 2 Skin friction  at 1y  for different 

values of 
1  

1  0 0.2  0.4 0.6 0.8 1.0 

  0.7252 1.0660 1.3017 1.4741 1.6059 1.7103 
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