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ABSTRACT 

An approach for the optimization of laminar flow in diffusers is presented. The goal in our optimization 
process is to maximize diffuser performance and, in this way, pressure recovery by optimizing the geometry. 
Our methodology is the optimization through wall contouring of a given two-dimensional diffuser length 
ratio. The developed algorithm uses the CFD software: Fluent for the hydrodynamic analysis and employs 
surrogate modeling and an expected improvement approach to optimization. The non-uniform rational basic 
splines (NURBS) are used to represent the shape of diffuser wall with three to nine design variables, 
respectively. The framework is assisted by the construction of Kriging model, for the management of the 
problem. The CFD software and the Kriging model have been combined for a fully automated operation using 
some special control commands on the MATLAB platform. In order to seek a balance between local and 
global search, an adaptive sample criterion is employed. The optimal design exhibits a reasonable 
performance improvement compared with the reference design. 

Keywords: Planar diffuser; Kriging surrogate model; Expected improvement approach; Numerical 
simulation; NURBS parameterization. 

1. INTRODUCTION

Diffusers are the integral parts of many flow 
systems. An improperly designed diffuser may 
lead to flow separation and excessive 
consumption of pumping power. It may also 
produce a flow mal-distribution in the 
downstream, which is not acceptable in many 
applications. Moreover, a constraint of restricted 
length is often imposed on the design. As a result, 
designing the optimum shape of a diffuser had 
been the subject of investigation for many 
researchers during the last decade. The profile of 
a plane diffuser with given upstream width and 
length had been optimized to obtain the maximum 
static pressure rise by (Cabuk and Modi 1992). 
The steady-state Navier–Stokes equation was 
used to model the flow through the diffuser 
considering two dimensional, incompressible and 
laminar flow. A set of adjoint equations had been 
solved to get the direction and relative magnitude 
of change in the diffuser profile that leads to a 
higher pressure rise. Geometries for three-
dimensional viscous flow had been optimized by 
(Svenningsen et al. 1996), applying quasi-
analytical sensitivity analysis. The optimization 
tool had been applied on a two-dimensional 
laminar diffuser in order to maximize the pressure 
recovery by contouring the divergent wall section 

and the performance of the diffuser was found to 
improve by about 5% compared with that of 
straight-walled geometry. (Cholaseuk et al. 1999) 
explored the optimum design of fluid flow 
devices using designed numerical experiments, 
and the stability (robustness) of such designs, 
respectively. The search pattern during the 
optimization process was suggested by the design 
of experiment methodology. The proposed 
framework was tested with one potential flow 
problem and two laminar-flow diffuser problems. 

In recent years, optimization based on flow analysis 
is becoming increasingly popular in the field of 
engineering design. In some cases, evolutionary 
algorithms are used to ensure reaching the global 
optimum. Genetic Algorithm (GA) and commercial 
software Fluent had been used to optimize the shape 
of a two-dimensional diffuser subjected to 
incompressible turbulent flow by (Ghosh et al. 
2009). In their shape optimization problem the 
values of area ratio and length ratio were kept fixed. 
(Mariotti et al. 2013) developed a passive control of 
laminar boundary layer separation in a two-
dimensional symmetrical diffuser using GA and 
commercial software Fluent. Their control method 
was consisted of modifying the geometry of the 
diffuser walls using contoured cavities with suitable 
shape. 
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However, the high computational costs associated 
with evaluating a large number of objective 
functions prevent applications of evolutionary 
algorithms to practical engineering design 
problems. In order to cut the prohibitive costs, a low 
fidelity surrogate model can be used to reduce the 
number of required objective function evaluations. 
(Queipo et al. 2005) and (Simpson et al. 2001) 
reviewed various surrogate models used in 
engineering design. (Madsen et al. 2000) 
demonstrated the utility of response surface model 
in a diffuser design. (Marjavaara et al. 2007) 
optimized the shape of a simplified hydraulic 
turbine diffuser using response surface and radial 
basis neural network based optimization strategy in 
conjunction with an evolutionary algorithm. A 
diffuser had been optimized using the support 
vector mechanics (SVM) by (Fan et al. 2005).The 
SVM was used to construct a response surface. In 
that study, the optimization was performed on an 
easily computable surrogate space. Efficient global 
optimization method had been used to S-duct 
diffuser shape design by (HyoGil Bae et al. 2012). 
They controlled the radius of the S-duct by the 
Hicks–Henne bump function with two design 
variables. 

 In the present work, a fully automated aerodynamic 
optimization system has been developed on the 
MATLAB platform. The system has four 
components: the geometry parameterization 
modeling module, the structured mesh generator 
Gambit, the aerodynamic simulator Fluent, and the 
Kriging surrogate based optimizer. The shape 
optimization for a two-dimensional symmetric 
diffuser is numerically performed to maximize the 
area averaged pressure recovery coefficient while 
subjecting to geometrical constraints. Results show 
that the aerodynamic performance of the diffuser 
model can be improved. Also, the effect of area 
ratio variation along with the shape of diffuser is 
considered simultaneously. Finally, a 
comprehensive investigation has also been done to 
explore the details of optimization process for the 
case of best performance. 

2. PROBLEM STATEMENT  

The considered diffuser geometry is plane 
symmetric diffuser used by (Cholaseuk et al. 1999). 
Since it is not “a priori” obvious that a symmetric 
diffuser has a symmetric flow inside, a preliminary 
validation of the set-up for the simulation of the 
reference (or original) half-diffuser with the 
simulation of the whole diffuser is done. The results 
show that two recirculation regions occur in the 
whole diffuser: the flow separates at the beginning 
of the diffuser diverging walls on both sides, the 
sizes of the two recirculation regions are nearly 
identical and the flow remains symmetric inside the 
whole diffuser. The aim of the present problem is to 
determine the optimum shape of the diffuser in such 
a way that increase the pressure recovery and 
decrease pressure loss.  
Due to symmetry, only the symmetric half of the 
diffuser is considered and is shown in Fig. 1. The 

geometry constraints are: prescribed inlet width H, 
prescribed diffuser length 3H, constant length inlet 
and outlet sections of size 0.75H and 6H 
respectively. It is important to mention that such a 
long length after the diffuser has been considered to 
ensure a proper development of the flow. Note that 
in all the figures dimensionless coordinates are 
used, i.e. X=x/H and Y=y/H (capital letters are used 
for dimensionless parameters and lowercase letters 
for dimensional quantities). In order to increase the 
flexibility of optimization the diffuser area ratio is 
not fixed (1.8≤AR≤ 2.8). 

 

 

 

 

 

Fig. 1. Plane symmetric diffuser. 

The incompressible flow with a density of 1.225 
kg/m^3 and a viscosity of 1.7894*10^-5 kg/m.s 
enters the domain with a parabolic velocity 
profile corresponding to a fully developed 
laminar channel flow. The flow through the 
diffuser is assumed laminar with the Reynolds 
number of Re = 100, Re=uiH/ν where ν is the 
kinematic viscosity of the fluid and ui is the 
average inlet velocity. The diffuser centerline has 
symmetry boundary conditions and the upper 
wall is a no-slip wall. The zero diffusion flux 
condition applied at outlet cells (i.e. the 
conditions of the outlet plane are extrapolated 
from within the domain and have no impact on 
the upstream flow). This kind of boundary 
condition is approached physically in fully-
developed flows. Solving the fluid flow problem, 
one can find out the velocity and pressure fields 
from the inlet to the outlet. The pressure rise 
depends upon the flow rate through the diffuser, 
characterized by the Reynolds number. A 
nondimensional pressure rise is defined by a 
pressure coefficient CP given as, 

21
2

( - ) / ( )P o i iC P P u                                    (1) 

Where P0 and Pi are the area averaged diffuser 
outlet and inlet pressures and ρ is the fluid density. 

3. METHODOLOGY 

The main components of the adopted methodology 
of optimization are geometry parameterization, 
computational mesh generator and CFD solver (i.e. 
exact solver), surrogate modeling, adaptive 
optimization based on the above components 
(geometry parameterization, exact solver and 
created surrogate model) and to devise a 
computational algorithm that will combine the 
outlined components in a monolithic platform for a 
fully automated operation. 

1.8<AR<2.
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3.1 Geometry Parameterization 

As shown in Fig. 1, non-uniform rational basic 
spline (NURBS) is used to represent the diffuser 
wall. Though an edge with a varying curvature can 
be defined by various different curves such as 
spline, Bezier; NURBS offers a number of 
flexibilities. As the NURBS uses a parametric 
functional relationship for the given control points, 
it does not face any difficulty in treating slopes of 
extreme values. Any geometrical complexity can be 
adequately captured, as the curve is represented by 
a number of low degree polynomials using a unique 
definition for the entire length. A NURBS curve of 
degree n is a piecewise rational polynomial 
function, wherein the numerator and denominator 
are non-periodic B-splines of degree n.  

The first control point of each NURBS curve is 
located exactly at the inlet, and the other changeable 
control points are considered design variables. The 
x-coordinate of the last control point kept fixed 
during the optimization process, and the other 
changeable control points are free to shift in x and y 
directions. The control points were successively 
increased beginning with 3 points up to a maximum 
of 6 control points. Since the first control point is 
fixed at the inlet and the last control point can move 
only in y-direction, the numbers of design variables 
are 3, 5, 7 and 9 for three to six control points, 
respectively. 

The coordinates of each control point are 
constrained by the upper and lower bounds. These 
upper and lower bounds vary with the number of 
control points or design variables used to construct 
the wall shape. Since the x-coordinates of the first 
and last control points are kept fixed, the general 
form of the constraints for x coordinate of internal 
control points is given below for all the four cases  

( 1)( ) ( )
2 2

3 6, 1 2

m
cp cp

cp cp

L L
m x m

n n

n m n

 
   

   
    

              (2)    

Where m is integer, xm denotes the x coordinate of 
the mth internal control point and nCP stand for the 
total number of control points. Since the area ratio 
is selected as a design variable, the upper and lower 
bounds of y coordinates for all nCP control points 
(except the first control point) have been kept the 
same, as expressed below 

0.5 0.5mH y AR H                                   (3)    

3.2 Computational Mesh Generator and 
CFD Solver 

The best design of diffuser should have a 
maximum CP. To find out CP, one needs to solve 
the mass and momentum conservation equations 
along with appropriate boundary conditions for a 
given geometry of the diffuser. The commercial 
CFD software, Fluent, has been used for this 
purpose. It discretizes the conservation equations 
by a finite volume technique and solves them. The 
mesh for the discretization has been created by 
the software called Gambit. A second-order 

upwind discretization scheme was used for the 
momentum equations. SIMPLE algorithm was 
used for pressure-velocity coupling. The 
discretized equations are solved implicitly in 
sequence, starting with the pressure equation 
followed by the momentum equations and finally 
by the pressure correction equation. The 
convergence criterion consisted of monitoring 
pressure recovery values and reduction of scaled 
residuals to 10-6.  Adequate sensitivity analyses 
have been carried out to reach the independence 
of the results from the grid resolution. As shown 
in Table 1, three different grid resolutions have 
been considered in the x − y plane. Grid 
independence was checked on the pressure 
recovery coefficient, defined in Eq. (1). 

Table 1 the mesh convergence details 

Grid nodes CP 

55×10 0.416 

110×20 0.428 

165×30 0.431 

 

The results obtained on the two finest grids showed 
a difference of less than 0.1%. Therefore, the 2D 
grid having 110 × 20 nodes was chosen for the 
analysis. In order to validate the result of Fluent 
solver with the CAFFA flow code used by 
(Cholaseuk et al. 1999) the CP values are compared 
for a typical straight wall diffuser with fixed area 
ratio. Although the Fluent predicts a CP value that is 
4.4% higher but is within the accepted range and 
verify the accuracy of current flow solver. 

3.3 Surrogate Modeling 

There are a multitude of popular techniques for 
constructing surrogates in the literature (see e.g. 
(Jones 2001), (Jin 2005), (Keane and Nair 2005) 
and (Forrester et al. 2008)). Techniques such as 
Kriging or support vector machines are more ideally 
suited to global optimization studies since they offer 
greater flexibility in tuning model parameters and 
provide a confidence interval of the predicted 
output. Neural networks require extensive training 
and validation yet have also been a popular 
technique for design applications notably in 
aerodynamic modeling.  

There are many different types of Kriging. Ordinary 
Kriging is a special case of universal Kriging, 
which is the most widely used method for 
approximating computational models. It can be 
written as a combination of a regression model and 
a random process.  

1-C (x) y( ) ( )p x z x                                 (4) 

Where x is a ndv (number of design variables) 
dimensional vector, y(x) (i.e. objective function) the 
unknown function of x, μ an unknown constant 
trend and z(x) the realization of a stationary normal 
distributed Gauss random process with zero mean, 
variance and non-zero covariance. The covariance 
matrix of z(x) is given by Eq. (5). 
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2[ ( ), ( )] [ ( , )], , 1,...,i j i j
sCov z x z x R x x i j n  

   (5) 

Where is a ns×ns symmetric correlation matrix 
with values of unity along the diagonal, and R (xi, 
xj) is the spatial correlation function between any 
two points xi and xj of ns observed points. 
Variograms, as the cornerstone in Kriging system, 
are introduced to describe the variance of the 
difference between two observed points. Since 
variograms are negative definite, numerically they 
are harder to handle. Compared with the variogram, 
a correlogram is easier to work with since all 
correlograms are positive definite. We adopt the 
Kriging model based on the correlogram rather than 
the usual variogram. A popular correlogram is the 
Gauss spatial correlation function, which is defined 
as the following form 

2

1

( , ) exp( )
dvn

ji j i
k k k

k

R x x x x


                  (6)    

Where θk is the kth element of correlation vector θ. 
The Kriging predictor is 

1ˆ ˆ ˆ( ) ( ) ( )Ty x r x Y F                            (7) 

Where F is a column vector of length ns filled with 
ones, Y the column vector with responses of 
observed points, and r(x) the correlation vector, 

1 2r( ) [ ( , ), ( , ),..., ( , )]sn Tx R x x R x x R x x         (8) 

For a given θ, ̂  and 2̂  can be defined as 

1 1 1ˆ ( )T TF F F Y                                     (9)  

2 1ˆ ˆ ˆ( ) ( ) /T
sY F Y F n                           (10)  

The mean squared error at x is given by Eq. (11), 
indicating the uncertainty of the estimated value 

2 2 1 1 2 1ˆ( ) (1 (1 ) / ( ))T Ts x r r F r F F         
(11) 

Note that ̂ , 2̂ , r and implicitly depend on the 
unknown correlation vector θ . Correlation vector θ 
of the best Kriging model can be obtained by 
maximizing the following likelihood function, 

1
2ˆln( ) det( )ns                                        (12)    

Kriging calculations require inversion of the 
covariance matrix. As observed points begin to 
cluster around the optimum, the covariance matrix 
becomes ill-conditioned. It will result in significant 
numerical inaccuracies when computing the matrix 
inversion. In order to ensure the most reliable 
accuracy of the Kriging surrogate, a special 
numerical technique is adopted (Booker et al. 
1999). 

Once the Kriging surrogate is constructed, the 
optimum point can be searched over the model. 
However, this can easily lead to the optimization 
process falling into a local optimum, because the 

surrogate model includes uncertainty at the 
predicted point. For a robust search of the global 
optimum in the surrogate model, an expected 
improvement function (Jones 2001) is used in this 
application. The function involves computing the 
possible improvement at a given point x. It is 
assumed that y(x) at x is normally distributed with 
mean ŷ(x) and variance s2(x). For a minimization 
problem, let ymin be the current best objective 
function value, then an improvement can easily be 
computed by the following formula: 

min min( ) ( )
( )

0

y y x y x y
I x

otherwise

  
  
 

                 (13) 

The likelihood of this improvement is given by 
normal density function 

2 2
min ˆ(1 / 2 s( ))exp[ ( ( )) / (2 ( ))]x y I y x s x      

   (14) 

Then the expected value of the improvement can be 
found by integrating over this density function 

2 2
min0

(1/ 2 s( ))
[ ( )]

ˆexp[ ( ( )) / (2 ( ))]

x
E I x I dI

y I y x s x

     
    


  (15) 

By integrating by parts, Eq. (15) can be written as, 

[ ( )] ( )[u (u) (u)]E I x s x                           (16) 

Where Φ and Ψ denote the cumulative distribution 
function and the probability density function of the 
standard normal distribution, respectively, and 

min ˆ( ( )) / ( )u y y x s x                                  (17) 

The first term on the right side of Eq. (16) is the 
difference between the current minimum ymin and 
the predicted value ŷ(x) at x, multiplied by the 
probability that ŷ(x) is smaller than ymin. Hence the 
first term is large when ŷ(x) is likely to be smaller 
than ymin. The second term on the right side of Eq. 
(16) is a product of root mean squared error s(x) and 
normal density function Ψ(u). It is large when the 
predicted value ŷ(x) is close to ymin and s(x) is large. 
Therefore, the expected improvement function will 
tend to be large at a point with the predicted value 
smaller than ymin and/or with high predicted 
uncertainty. Eq. (16) provides an intelligent 
automatic balance between local exploitation and 
global exploration. Based on the above statements, 
the point where the value of the expected 
improvement function is maximized is used to 
update the Kriging model. 

4.3 Adaptive Optimization Algorithm 

For clarification, the overall optimization procedure 
is organized as the following steps: 

1. Define the optimization problem. This includes 
determination of objective function and 
parameterization based on design variables and 
constraint conditions. The objective function in this 
study is (1-CP). 
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2. Generate initial sample points by Design of 
Experiment technique. In this paper, Space-Filling 
Latin Hypercube Sampling (SFLHS) based on the 
maximin metric (Johnson et al. 1990), ‘tie-breaker’ 
definition  and scalar-valued criterion function 
(Morris and Mitchell 1995) defined to rank 
competing sampling plans is used.  

3. Calculate responses at initial sample points 
using high fidelity solver. The commercial CFD 
simulator Fluent is used to solve the Navier-Stokes 
equations based on the assumption of steady 
incompressible flow.  

4.  Construct Kriging surrogate model based on 
the sample points and corresponding responses. 

5.  Maximize the expected improvement function 
to get an additional sample point, and calculate its 
response using high fidelity solver. 

6.  Check loop termination. If the convergence 
criterion is satisfied or computational budget is 
finished, then stop; otherwise add the additional 
sample point into the sample points set, and go to 
step 4. Here, the maximum computational budget is 
limited to 20ndv iterations.  

According to (Huang et al. 2006) the convergence 
criterion is chosen as 

max max min( [ ( )] / )E I x y y                       (18) 

An advantage of this convergence criterion is that 
the user can set the convergence tolerance ε without 
considering the magnitudes of responses for 
different optimization problems. 

In this paper, genetic algorithm (GA) is adopted to 
maximize the log-likelihood and the expected 
improvement function.  

Finally, an algorithm has been designed, such that 
the outlined steps combine with each other 
seamlessly and data transfer takes places without 
any manual intervention. In this task, the main 
challenge lies in embedding highly structured 
commercial softwares like Fluent and Gambit inside 
an indigenously developed control loop. This has 
been achieved through an algorithm coded on the 
Matlab platform. The algorithm is schematically 
shown in Fig. 2. 

At the time of launching, Gambit and Fluent start 
with their respective journal files. Gambit journal 
file contains all the required instructions to create 
mesh file in their proper sequence and similarly, the 
Fluent journal file contains the instructions needed 
to solve the velocity and the pressure fields. 

4. RESULTS AND DISCUSSION 

As outlined above and depicted in Fig. 2, the 
optimization procedure will start with selection of 
design variables or control points ( 3 6CPn  ). To 

generate initial sampling plan, Space-Filling Latin 
Hypercube Sampling (SFLHS) with 10ndv sample is 
created. After geometry parameterization, mesh 
generation and CFD simulation the Kriging 

surrogate model is created and expected 
improvement is maximized. In order to maximize 
the log-likelihood and expected improvement a GA 
with population size of 20, mutation rate of 0.25, 
rank weighting approach and single point crossover 
is used. By determination of next infill vector of 
variables the geometry parameterization, mesh 
generation and CFD simulation is done. Finally, the 
Kriging surrogate model is reconstructed and the 
optimization is repeated until loop termination.  
 

 
Fig. 2. Schematic of the overall optimization 

procedure. 

Before running the optimization algorithm, in order 
to find the best straight wall diffuser a set of 
preliminary runs are performed and a plot of CP 
versus AR for all the direct solutions are shown in 
Fig. 3. With respect to Fig.3 the straight wall 
diffuser with AR=2.3 is selected as the reference 
diffuser.  

 

AR

C
p

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0.25

0.3

0.35

0.4

0.45

0.5

 
Fig. 3. Pressure recovery coefficient vs. area 
ratio for straight wall diffusers with L/H=3, 

Re=100. 
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The streamline pattern obtained for the best straight 
wall (reference) diffuser is shown in Fig. 4. The CP 
value has been obtained as 0.444 for this case. 

 

X=x/H

Y
=

y/
H

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

 
Fig. 4. Streamline pattern in the reference 

diffuser with straight wall. 

 

This section presents an overall performance 
comparison between the reference and the optimal 
designs. In addition, the corresponding flow fields 
as characterized by pressure recovery coefficients 
and streamlines are also compared in order to 
comprehend the flow behavior resulting from the 
shape optimization. Also, in the previous studies the 
area ratio of the diffuser was kept fixed and some 
correlations were developed for the relationship 
between the area ratio and the optimized diffuser 
dimensions. Here, the diffuser area ratio is selected 
as a continuous design variable (1.8≤AR≤2.8). So, 
the current study offers some important insights into 
the effect of area ratio on the performance of 
diffuser. 

The optimum diffuser designs as obtained by 
selecting a number of control points along the 
diffuser wall (Fig. 1) are described briefly. As 
mentioned earlier, the number of control points has 
also been varied to explore various design options. 
The coordinate values have been obtained as the 
function of inlet width (H) to generalize the 
optimum solution. Table 2 shows the CP values 
obtained with different number of control points 
and their optimal positions.  

It is interesting to note that an increase in the 
number of control points does not increase CP 
monotonically. In accordance with the results of 
(Ghosh et al. 2009) for a similar turbulent flow 
optimization, the magnitude of CP starts falling as 
the numbers of control points exceed five. 
Furthermore, In accordance with the results of 
(Cholaseuk et al., 1999) the optimum diffuser 
profile has a lower area ratio than the best straight 
walled diffuser and yet produced a larger pressure 
rise.  

At this point, the performance of the optimum 
diffuser may be compared with that of reference 
diffuser (Fig.4) to assess the benefit of the optimum 

design. It may be recalled that the value of CP for 
the reference diffuser has been obtained as 0.444. 
Compared with that, any design shown in Table 2 
shows a rational improvement. To have a better 
appraisal for the various optimum designs presented 
in Table 2, streamline pattern for the four different 
cases is shown in Fig. 5.  

 

Table 2 Values of CP with different number of 
control points and their optimal positions 

ncp ndv CP No. X cord Y cord AR 

3 3 0.47066 
1st 
2nd 
3rd 

0.75H 
1.2H 
3.75H 

0.5H 
0.67H 
0.96H 

1.92 

4 5 0.47462 

1st 
2nd 
3rd 
4th 

0.75H 
1.35H 
2.52H 
3.75H 

0.5H 
0.74H 
0.87H 
1.01H 

2.02 

5 7 0.47619 

1st 
2nd 
3rd 
4th 
5th 

0.75H 
1.09H 
2.57H 
2.94H 
3.75H 

0.5H 
0.65H 
0.87H 
0.92H 

H 

2 

6 9 0.47538 

1st 
2nd 
3rd 
4th 
5th 
6th 

0.75H 
1.26H 
1.9H 
2.35H 
3.65H 
3.75H 

0.5H 
0.71H 
0.81H 
0.86H 
0.97H 
0.98H 

1.96 

 

Also, the predicted separation and reattachment 
positions for various design options are compared in 
Table 3.  

In all the four cases, one can observe the reduction 
of the separation extent. In addition, two cases show 
the existence of secondary separation without any 
notable recirculation region. At last, it is evident 
that in the best diffuser design flow separates at the 
initial part of diffuser but reattaches immediately 
downstream, forming a recirculation region; 
furthermore, the subsequent flow separation is 
delayed and its extent is reduced. 

Finally, Fig. 6 shows the variation of the velocity 
profile at the diffuser end for the reference straight 
wall diffuser compared with the best optimum 
diffuser. The velocity profiles at the diffuser exit are 
normalized based on the average inlet velocity. 
With respect to Fig. 6, the velocity profile in the 
reference straight wall diffuser shows a 
recirculation zone at the top wall. This also 
corroborates the streamline pattern shown in Fig. 4. 



M. Dehghani et al. / JAFM, Vol. 9, No. 5, pp. 2527-2535, 2016.  
 

2533 

X=x/H

Y
=

y/
H

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

 
(a) 

X=x/H

Y
=

y/
H

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

 
(b) 

X=x/H

Y
=

y/
H

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

 
(c) 

X=x/H

Y
=

y/
H

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

 
(d) 

Fig. 5. the optimum half shape of the diffuser 
and the corresponding streamline pattern for all 
control points: (a) three control point; (b) four 
control points; (c) five control points; (d) six 

control points. 
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Fig. 6. Velocity Profiles at the diffuser exit. 

 
In this section the details of optimization process 
for the plane symmetric diffuser at Re=100 and the 
fixed diffuser length of L=3H for the case of five 
control points are examined. As mentioned earlier, 
for this optimization problem with seven design 
variables, 70 initial sample points are generated by 
Space-Filling Latin Hypercube Sampling (SFLHS) 
method. Under the condition of ε=1×10−6, 88 
iterations are needed to obtain the optimum 
solution. As reported by (Ghosh et al. 2009) in a 
similar optimization problem using GA with 
population size of 40 at least 16 generations or 640 
exact evaluations were necessary. Here, the number 
of total iterations including initial sampling and 
exact evaluations is one fourth of evolutionary (GA) 
optimization exact evaluations. So, in comparison 
with evolutionary optimization methods (e.g. GA) 
coupling Navier-Stokes Computational Fluid 
Dynamic with expected improvement approach 
maximization and surrogate modeling can reduce 
computational runs significantly.  
The maximum CP obtained from computations is 
0.476. In order to examine other near optimal points 
obtained by this methodology the optimal points 
with the range of CP ≥0.475 are summarized in 
Table 4.  

5. CONCLUSIONS 

In the present work a passive control of boundary 
layer separation in a two-dimensional symmetrical 
diffuser by constrained shape optimization of the 
diffuser wall has been investigated. The final goal is 
to increase the pressure recovery inside the diffuser 
by delaying the flow separation and reducing its 
extent.  

The adopted fully automated methodology of 
optimization based on geometry parameterization 
by NURBS, mesh generation by Gambit, CFD 
simulation by Fluent and Kriging surrogate 
modeling has been developed on the Matlab 
platform.  

Reasonably high efficiency and performance are 
confirmed by comparing the optimization results 
with those of the straight wall diffuser design.  
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Table 3 The predicted separation and reattachment positions for various design options 

Diffuser
 

1st  
Separation 

1st  
Reattachment 

2nd  
Separation 

2nd  
Reattachment 

Ref 2.25H 5.65H ------- ------- 
ncp=3, 
ndv=3

 1.288H 3.33H ------- ------- 

ncp=4, 
ndv=5 

1.136H 2.57H 3.598H 3.82H 

ncp=5, 
ndv=7

 1.136H 2.267H 2.95H 3.52H 

ncp=6, 
ndv=9

 1.135H 2.72H ------- ------- 

 

Table 4 Values of CP in the optimal region and their positions for the case of five control points 

Iteration CP
 

No. X cord Y cord AR 

15 0.47501 

1st 
2nd 
3rd 
4th 
5th 

0.75H 
1.08H 
2.65H 
2.86H 
3.75H 

0.5H 
0.66H 
0.87H 
0.92H 
0.96H 

1.92 

48 0.47573 

1st 
2nd 
3rd 
4th 
5th 

0.75H 
1.19H 
2.54H 
3.06H 
3.75H 

0.5H 
0.68H 
0.87H 
0.94H 
1.03H 

2.06 

67 0.47564 

1st 
2nd 
3rd 
4th 
5th 

0.75H 
1.08H 
2.61H 
2.85H 
3.75H 

0.5H 
0.64H 
0.88H 
0.93H 
1.03H 

2.06 

71 0.47503 

1st 
2nd 
3rd 
4th 
5th 

0.75H 
1.28H 
2.51H 
3.02H 
3.75H 

0.5H 
0.73H 
0.86H 
0.94H 
1.03H 

2.06 

 
Based on the study, the best diffuser design flow  
separates at the initial part of diffuser but reattaches 
immediately downstream, forming a recirculation 
region; furthermore, the subsequent flow separation 
is delayed and its extent is reduced. Also, the 
proposed fully automated constrained shape 
optimization methodology shows its validity for 
symmetric diffuser design. Finally, the results show 
that the total numbers of exact solutions are 
approximately one fourth of similar evolutionary 
optimization procedure based on genetic algorithm 
and reduce computational time and effort 
significantly. 
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