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ABSTRACT 

Journal bearings are widely used in different machineries. Reynolds equation is the governing equation to 
predict pressure distribution and load bearing capacity in journal bearings. There are many analytical and 
numerical methods for solving this equation. The main disadvantage of these methods is their inability to 
analyze complex geometries. In this paper, a comprehensive method based on dynamic mesh method is 
developed to solve the conservation equations of mass, momentum and energy. This method has smaller error 
compared to other techniques. To verify the accuracy of this method, the bearings with different length to 
diameter ratios are analytically and numerically analyzed under different loads and compared with each other. 
In continue, the turbocharger’s bearing is numerically simulated and the effects of rotational speed change are 
studied. Finally, the turbocharger’s bearing with four axial grooves are simulated. The simulations results 
show that adding grooves to the turbocharger’s bearing causes the bearing eccentricity ratio and lubricant 
flow rate to increase and the attitude angle, rate of temperature rise and frictional torque to decrease. 

Keywords: Journal bearing; Turbocharger’s bearing; Analytical solution; Dynamic mesh; Axial groove. 

NOMENCLATURE 

AL long-bearing-eccentricity-ratio function 
in log scale 

 S Sommerfeld number 
 s location of journal 

AS short-bearing eccentricity-ratio function 
in log scale 

 T temperature 
Tave lubricant average temperature 

C0, C1… coefficients of finite analytic equation  U tangential surface velocity of journal 
CL long-bearing-model correction factor ݑത mesh displacement velocity 
C bearing clearance  u velocity of fluid flow 
Cp specific heat of lubricant  W load-bearing capacity 
D journal diameter ഥܹ dimensionless load 
Di diameter of oil input holes  X slenderness ratio in log scale 
FAero the force caused by fluid on journal  XL long bearing mesh point in log scale 
f Coefficient of Friction XS short bearing mesh point in log scale 
fL(ε) long-bearing-eccentricity-ratio function  x circumferential coordinate of journal 

Y dimensionless load in log scale 
fS(ε) short-bearing-eccentricity-ratio function  y axial coordinate of bearing 

γ diffusion coefficient 
h film thickness; enthalpy ΔT lubricant temperature rise 
hm fluid film thickness at the location in 

which maximum pressure occurs 
ε bearing eccentricity ratio 
θ circumferential angle of journal  

L bearing length μ lubricant viscosity 
m mass τ shear stress 
N journal rotational speed ρ lubricant density 
P bearing pressure distribution ω journal rotational speed 
Q oil flow rate φ attitude angle 
R journal radius 
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1. INTRODUCTION 

Industrial machineries with high speed and high 
loads, such as steam turbines, centrifugal 
compressors, pumps and motors, utilize journal 
bearings as rotor supports. One of the main 
applications of journal bearings is in turbochargers 
such as internal combustion engines. They are used 
to increase the engine's efficiency and power output 
by forcing extra air into the combustion chamber. In 
latest applications, turbochargers are used in aircraft 
and gas turbines as well.  

Journal bearing is a type of bearing that cover some 
or all of a rotary shaft and bears the applied radial 
loads. Usually, its performance is based on the 
properties of the lubricant film that is formed in the 
converged gap between shaft and bearing. Fig. 1 
illustrates a schematic of a journal bearing from top 
view and side view. 

In many journal bearings, the lubrication regime is 
hydrodynamic in which the load bearing surfaces 
are completely separated by a relatively thick 
lubricant film Shigley (2003). 

 

 
Fig. 1. View of journal bearing with a suitable 

details. 

 

The issue of journal bearing and its performance 
dates back to 19th century. Reynolds (1886) 
developed the governing equation in a bearing-type 
geometry using simplifying assumptions based on 
the mass and momentum conservation equations. 
Using Reynolds equation, one can achieve pressure 
distribution in the oil film in hydrodynamic 
lubrication regime. Sommerfeld (1904)analyzed 
Reynolds equation with the assumption of unlimited 
length bearing regardless of pressure variations in 
axial direction. Gümbel (1921) ignored the negative 
pressures to solve Reynolds equation for infinite 
bearings. Christopherson (1941) solved Reynolds 
equation using finite difference method. Dubois and 
Ocvirk (1953) analytical solved Reynolds equation 
with the assumption of short bearing regardless of 
pressure variation in circumferential 
direction.Raimondi and Boyd (1958) solved 
Reynolds equation for journal bearings using finite 
difference method. 

Tao et al. (2003)performed numerical simulation 
for lubrication of the connecting rod bearing. The 
simulations were performed for several known 

eccentricity ratios. In a study, Hydrodynamic 
parameters of infinitely short approximation 
bearing with a circumferential groove located in the 
middle of the bearing were predicted by Naïmi et 
al. (2010). In a work by Deligant et al. (2011) 
computational fluid dynamic model to predict 
turbocharger’s bearing performances was provided 
and the frictional power was calculated. This 
simulation was conducted for various values of 
eccentricity ratio. Lin et al. (2013)considered the 
journal bearing’s performance using fluid-structure 
interaction analysis. They studied the effect of 
temperature’s deviation and cavitation. In a recent 
researches by Gao et al. (2014) the plain journal 
bearing under hydrodynamic lubrication by water 
was analyzed numerically. The effect of using water 
instead of oil and eccentricity ratio’s deviation on 
other parameters was considered. 

Chauhan et al. (2014) considered the effect of 
variation of pressure and temperature on the 
lubricant film. Thermo-hydrodynamic analysis has 
been conducted for a particular eccentricity and 
rotational speed. Kumar and Ganapathi (2015) 
analyzed the hydrodynamic plain journal bearing 
using fluid structure interaction technique. They 
focused on the modeling of journal bearings for 
different values of eccentricity ratios and 
simulations were carried out to determine the 
pressure, stress, and deformation of plain journal 
bearing by CFD fluid structure interaction 
approach. Gao et al. (2015) in another work 
presented a new bearing bush, with a transition-arc 
structure, which is favorable for increasing 
hydrodynamic load-carrying capacity for water-
lubricant bearings. Hydrodynamic load-carrying 
capacity was calculated by means of three-
dimensional computational fluid dynamics analysis. 
Several variants of a journal bearing with a 
transition-arc structure of different dimensions were 
analyzed, while the radial clearance of the bearing, 
eccentricity ratio and the velocity of the journal 
remained constant. The results showed that 
observable changes were found in hydrodynamic 
load-carrying capacity of a water-lubricated journal 
bearing. 

However, there are many numerical and analytical 
methods for the analysis of journal bearing’s 
hydrodynamic lubrication. Most of analytical 
solutions are solved using simplifying assumption 
of the Reynolds equation. Two extreme cases of 
infinitely short approximation bearing and infinitely 
long one are solved by neglecting specific terms in 
the Reynolds equation. For finite width bearings, 
however, there is no analytical method. The main 
problem with all of these methods such as the finite 
difference method is its inability in handling 
complex geometries of journal bearing. Recently, it 
has been proved that journal bearings with axial 
grooves have better performance compared to the 
other ones. No analytical solution, however, is 
available to solve the flow inside such geometries. 

An axial groove is useful for distributing the oil 
over the whole bearing and control the oil 
temperature consequently. Using grooved bearing is 
a smart idea in turbocharger bearing due to the high 
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temperature and high shaft speed. Due to the 
complicated geometry of the grooved bearings, very 
few analyses have been done using CFD scheme. 
Most of these analyses correspond to plain bearings 
in grooved state and for a specific eccentricity ratio. 
For example Pai et al. (2001) analyzed the fluid 
flow in a journal bearing with three equi-spaced 
axial grooves which was supplied with water from 
one end of the bearing using computational fluid 
dynamics. Wu et al. (2015) studied the flow field of 
an open grooved two-disc system. The system 
included a rotating finite disc and a stationary finite 
disc. The rotating disc had radial grooves. The 
numerical results for the air–oil two-phase flow 
inside the open grooved two-disc system are 
calculated using CFD methods.  

Many engineering devices have dynamic 
components and hence, their computational models 
are no longer fixed in space and time. In these 
cases, dynamic mesh method is often used to 
analyze their motion or unsteady fluid dynamics 
around/inside them. In other words, dynamic mesh 
refers to situations in which the computational grid 
changes dynamically during the run of CFD 
simulation. This opens up the possibility to simulate 
flows where the geometry changes with time 
(Fluent (2009). In all fluid solid interaction 
simulations, dynamic mesh technique is needed. 
Some examples of dynamic mesh applications are 
as follow. Zhang et al. (2010) calculated the 
hydrodynamic coefficients of an underwater vehicle 
using dynamic mesh technique. Dumont et al. 
(2004) presented a 2D numerical model of the 
aortic valve hemo-dynamics, making use of 
dynamic mesh. 

In all researches related to flow solution inside 
journal bearings, dynamic mesh technique has not 
been used for evaluating eccentricity ratio. In this 
paper, dynamic mesh method is applied to simulate 
flow inside the turbocharger’s journal bearing with 
relatively complex geometry. In this method, the 
equations of momentum, continuity and mesh 
deformation are solved to obtain the unsteady flow 
field simultaneous with changing the geometry and 
mesh. Higher accuracy and its ability to predict the 
performance of bearings with complex geometries 
are advantages of dynamic mesh method. First, to 
verify the accuracy of dynamic mesh method, short, 
long and finite length bearing are analyzed using 
both analytical and dynamic mesh method and then, 
the obtained results are compared with each other. 
This method, however, has the disadvantage of 
being time-consuming to solve. After ensuring the 
accuracy of dynamic mesh method, turbocharger 
bearing with four axial grooves is analyzed using 
CFD method and dynamic mesh technique. 

2. SIMULATION 

In this research, both analytical and dynamic mesh 
method are used for simulation of journal bearing 
fluid flow. It is worth noting that the analytical 
solution is used here to be compared with the 
dynamic mesh solution for simple geometries. A 
brief description of these methods is given below. 

2.1 Analytical Solution of a Journal 
Bearing 

Analytical solutions for different length-to-diameter 
ratios of bearings are presented in this section. 
Process of obtaining these equations is shown in 
Fig. 2: 

 

 
Fig. 2. Analytical solution process. 

 
The main equation governing the flow within a 
journal bearing is the Reynolds equation for steady-
state and incompressible case. Assuming a 
Newtonian behavior: డడ௫ ቀ యଵଶఓ డడ௫ቁ + డడ௬ ቀ యଵଶఓ డడ௬ቁ = ଵଶ ܷ డడ௫   (1) 

Dimensionless form of Reynolds equation is: డడ௫ҧ ቀℎതଷ డതడ௫ҧቁ + ଶߨ ቀቁଶ డడ௬ത ቀℎതଷ డതడ௬തቁ = 6 డഥడത              (2) 

Dimensionless parameters in this equation are as 
follows: ݔҧ = ܦߨݔ തݕ ; = ܮݕ ; ℎത = ℎℎଶ ; തܲ = ܲܲ ;  

ܲ =  ℎଶଶ/ܷܦߨߤ

This is a partial differential equation which does not 
have a closed-form solution. Analytical solutionsare 
only available for extreme cases such as the 
infinitely long approximation (ILA) and infinitely 
short approximation (ISA).In this paper, the 
analytical solution of Naffin (2009)is presented. 
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2.1.1. InfinitelyLong Approximation 
Bearing (ILA) 

If ܮ >> ଶ(ܮ/ܦ) it can be said that ,ܦ << 1 and 
neglect the second term of the left hand side of Eq.              
(2). Physically, it means that one can ignore the side 
leakage term of the bearing. This approximation is 
acceptable forܦ/ܮ ≥ 3. Using this assumption and 
letting ݔ = ܷ,ߠܴ = ܴ߱,ℎ = 1)ܥ + ߝ ݏܿ        .Eq(ߠ
(3)is obtained: ௗௗ௫ = ߱ߤ6 ቀோቁଶ ቂ ଵ(ଵାఌ ୡ୭ୱ ఏ)మ − (ଵାఌ ୡ୭ୱ ఏ)యቃ        (3) 

Whereℎ is the value of the fluid film thickness at 
the location in which maximum pressure occurs. 
Finally, the pressure distribution in this case is: ܲ = ఌ ୱ୧୬ ఏ(ଶାఌ ୡ୭ୱ ఏ)(ଶାఌమ)(ଵାఌ ୡ୭ୱ ఏ)మ ߱ߤ ቀோቁଶ

     (4) 

By applying the half-Sommerfeld boundary 
condition, the value of Sommerfeld number in 
terms of the eccentricity value is                                 
(5): ܵ = (ଶାఌమ)(ଵିఌమ)గఌ ቂ ଵగమ(ଵିఌమ)ାସఌమቃ                                (5) 

In this case, load-bearing capacity is obtained using 
Eq. (6): ܹ = ଷఠఓయସమ ఌ(ସఌమାగమିగమఌమ)(ଶାఌమ)(ଵିఌమ)   (6) 

2.1.2. Infinitely Short Approximation 
Bearing (ISA): 

Ifܮ << ଶ(ܮ/ܦ)it can be said ,ܦ  >>  1 and one 
can neglect the circumferential component of flow 
compared to the side leakage flow. This 
approximation represents acceptable solutions 
forܦ/ܮ <  0.25. By disregarding the second term of 

Eq.              (2)and lettingݔ = ߝܥ− = ߠ݀/ℎ݀ ,ߠܴ  ݊݅ݏ ߠ /ܴ, pressure distribution is obtained 
using the following Eq.(7): ܲ = ଷఓమோ ቀమସ − ଶቁݕ ఌ ୱ୧୬ ఏ(ଵାఌ ୡ୭ୱ ఏ)య (7) 

Using half-Sommerfeld boundary conditions, the 
relation of Sommerfeld number with the 
eccentricity value is: ܵ = (ଵିఌమ)మగఌ[గమ(ଵିఌమ)ାଵఌమ]భ/మ ቀቁଶ

                                (8) 

Load capacity for this case is obtained from the 
Eq.(9): ܹ = ఓఠయ଼మ గఌ(ଵିఌమ)మ  భమ (9)(ଶߝ0.62)

2.1.3.Finite Length Bearing:  

In this section, the purpose is to obtain the model 
for bearings without dimensional limitation that 
connects the eccentricity and load capacity 
according to Eqs. (6) and (9). By the definition of 
dimensionless parameter as follows and substituting 
in Eqs. (6) and (9) one obtains the Eqs.(11) and 
(12). ഥܹ = మఓరఠ ܹ                                                          (10) 

ഥܹ = ଶߝ4)ߝ3 + ଶߨ − ଶ)భమ4(2ߝଶߨ + ଶ)(1ߝ − (ଶߝ ൬ܦܮ൰ ;  
 ≥ 3.0 (11) ഥܹ = 1)8ߝߨ − ଶ)ଶߝ ଶߝ0.62) + 1)భమ ൬ܦܮ൰ଷ ; 
 < ଵସ(12) 

The Eqs.(11)and(12) can be written as: ഥܹ = [ ݂(ߝ)] ቀቁ  ≥ 3.0(13) ഥܹ = [ ௌ݂(ߝ)] ቀቁଷ  < ଵସ   (14) 

By taking the logarithm of both sides of these 
equations: log ഥܹ = log[ ݂(ߝ)] + log ቀቁ ;   ≥ 3.0            (15) log ഥܹ = log[ ௌ݂(ߝ)] + 3 log ቀቁ ;  < ଵସ              (16) 

Eqs.            (15) and               (16), linearly relates log ( ഥܹ ) and log (ܦ/ܮ). The general form of 
proposed relation is as follows: ܻ = ,ߝ)݂ ܺ) ଵସ <  < 3                                          (17) 

Where in this equation isܻ =  log ( ഥܹ ) andܺ = log (ܦ/ܮ). Equations for short and long bearing 
can be written similar to Eq.                                          
(17). In this case, one can write Eqs.            (15) 
and              (16) in the form of Eq.                                      
(18) and   (19): ܻ = ௌܣ + 3ܺ           < ଵସ                                      (18) ܻ = ܣ + ܺ           ≥ 3.0   (19) 

Where ܣௌ = log[ ௌ݂(ߝ)] and ܣ = log[ ݂(ߝ)]. 
Equation                                           (17) may now 
be anchored long and short bearing models in this 
form. The lower and upper matching points 

are ௌܺ  =  log ቀଵସቁand ܺ  = log (3), respectively. 

The Eqs.                                          (17) and                                       
(18) correspond inܺ =  ௌܺ. Similarly, whenܺ = ܺ Eqs.                                           (17) and   (19) 
match. Additionally, the slope of the curves must be 
equal at the connection point. Therefore, the 
boundary conditions for connecting the finite and 
short bearing model are: ݂(ߝ, ௌܺ) = ௌܣ + 3 ௌܺ                                            (20) ௗ(ఌ,)ௗ ห = 3ୀೄ    (21) 

For connecting the finite and long bearing model, 
the boundary conditions are: ݂(ߝ, ܺ) = ܣ + ܺ                                                 (22) ௗ(ఌ,)ௗ ห = 1ୀಽ    (23) 

Hence, there are four boundary conditions. For 
obtaining a smooth curve, Eq.                                          
(17)is written in the form of a third order 
polynomial: 
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ܻ = ,ߝ)݂ ܺ) = ଷܺଷܥ + ଶܺଶܥ + ܥ+ ଵܺܥ ଵସ ≤  ≤ 3   (24) 

The unknown coefficients are obtained as: ܥଷ = ீభீమ                                                              (25) ܩଵ = ௌܣ + 3 ௌܺ − ܣ) + ܺ) + 3ܺ − ௌܺ − ൬ −22(ܺ − ௌܺ)൰ ൫ ௌܺଶ − ܺଶ൯ 

ଶܩ (26)    = ௌܺଷ − ܺଷ + ቆ3 ௌܺସ + 3ܺସ2(ܺ − ௌܺ) ቇ 

− ቆ 6ܺଶ ௌܺଶ2(ܺ − ௌܺ)ቇ + 3 ௌܺଶܺ − 3ܺଶ ௌܺ  

ଶܥ (27)    = ିଶିଷయಽమାଷయೄమଶ(ಽିೄ) ଵܥ (28)                                          = 3 − ଷܥ3 ௌܺଶ − ଶܥ2 ௌܺ                                   (29) ܥ = ܣ + ܺ − ଷܺଷܥ − ଶܺଶܥ −  ଵܺ   (30)ܥ

In these equations: 

ௌܺ = log ൬18൰   ,    ܺ = log(4.75) ܣ = log൫ ݂(ߝ)൯ = log ቈଷఌ(ସఌమାగమିగమఌమ)భమସ(ଶାఌమ)(ଵିఌమ)                                          (31) ܣௌ = log൫ ௌ݂(ߝ)൯ = 

log  గఌ଼(ଵିఌమ)మ ൬0.62ߝଶ+1 ൰భమ൩ (32) 

This model is solved using short bearing model (Eq.                                      
(18)) whenܺ < ௌܺ. Similarly, whenܺ > ܺ, it is 
solved using the long bearing model (Eq.  (19)). 
The error of the methodis about 56% compared to 
the given data in Khonsari and Booser (2008) which 
is a significant error. If the lower match point ( ௌܺ) 
is 0.125 and upper match point (ܺ) is 4.75, the 
maximum error reduces to about 14%. In this case, 
with increasing the load or eccentricity, the error 
grows exponentially for a relatively short bearing. 
One can improve the growth of short bearing error 
by changing the eccentricity term ( ௌ݂(ߝ)) in load-
dimensionless equation. 

Short bearing error whereߝ = 0.1 will exponentially 
grow with increasing the load or eccentricity. So, 
the ௌ݂(ߝ)term must be modified by an exponential 
correction factor ܥௌ(ߝ): 
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By taking the logarithm of Eq.  (33), the term AS in 

Eq.(32) is modified as: 
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Similarly, long bearing error can be reduced by 
multiplying a linear coefficient in AS:  

. .
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2 2 2 2 2

2 2
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= log (0 91+ 0 19 )

4(2 + )(1- )

    
 

 
 
 
 

LA  (36) 

The maximum error of this model is 5.8% which 
compared to 13.7% in the previous model has 
considerably reduced (Naffin (2009). This model is 
thus believed to be appropriate to determine load-
bearing capacity. The eccentricity ratio is obtained 
using a computer program. 

2.2. Dynamic Mesh Method 

For most CFD simulations, the physical geometry 
does not change with time, and a fixed mesh will 
then generally be the appropriate choice. For 
deforming geometries, dynamic meshing becomes a 
necessary part of the modeling (Fluent (2009). 
Dynamic mesh method is used when the shape of 
fluid domain changes as a result of moving 
boundaries Gertzos et al. (2008). There are several 
methods for mesh deformation in which following 
methods are commonly used: 

 Smoothing methods 

 Dynamic layering 

 Remeshing methods 

Smoothing method itself is categorized to several 
types. In this research, the Diffusion-Based 
smoothing method has been used. In the diffusion-
based smoothing, the mesh deformation is governed 
by the diffusion Eq. ∇. (തݑ∇ߛ) = 0                                                        (37) 

In this equation,ݑത  is the mesh displacement 
velocity. For this equation, boundary conditions 
are usually determined according to the moving 
boundaries. Then, the Laplace Eq.                                      
(37) specifies the propagation of boundaries 
displacement in internal nodes of the transformed 
mesh. Diffusion coefficient ߛ in Eq.                                      
(37) is used to control the effect of moving 
boundaries on internal nodes. The computational 
cost of diffusion-based smoothing is higher than 
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other smoothing methods. The advantage of this 
method is that it maintains the best mesh quality 
and allows greater deformation of the boundaries 
without mesh rupturing. It should be noted that 
with the diffusion-based smoothing, the interior 
mesh motion is governed by the solution of Eq.                                                        
(37) and the prescribed boundary motion, and not 
by mesh irregularities. Poor quality elements or 
mesh defects cannot be smoothed by this method, 
but rather move together with the pre-computed 
(at the beginning of each mesh update) 
displacement velocity ݑത (Fluent (2009). 

According to Fig. 3, in the first step of numerical 
method, primary geometry is produced. After that a 
special mesh is provided from this geometry. Then 
the oil flow in bearing is analyzed by solving the 
equations of continuity (Eq.   (38)), momentum (Eq.   
(39)) and energy (Eq.   (40)) simultaneously. A 
pressure distribution is gained from this analysis 
and by putting the force caused by this pressure 
distribution (FAero) to dynamic equations (Eq. (41)), 
the acceleration of journal is calculated. Solving 
Kinematic equations (Eqs. (42) and (43)) leads to 
evaluating the value of velocity and location of 
journal. By calculating the difference between this 
location and prior location the value of 
displacement is calculable. If displacement has a 
non-negligible value, a new geometry with new 
location of journal is produced and the procedure 
will be prepared till reaching to a negligible value 
for displacement. 

  
 

 
( u ) 0iit x    (38) 


 

  
   

   
( ) ( u u ) iji i ji i j

Put x x x    (39) 

 

 

  
 

  

 
   
 

2
( ) ( u )

1(u ) ; 2
tot tot jj

i ij tot ij j

Ph ht x tT h h ux x
   (40) 

 Aeromg F ms  (41) 

 0s s st    (42) 

 0s s st  (43) 

 

3. NUMERICAL SIMULATION 

Geometry: The proposed geometry is the space 
between the two cylinders that are initially 
concentric but, during the simulation, the inner 
cylinder becomes eccentric. The inner cylinder is 
considered as a rigid body that can move due to 
pressure distribution from fluid flow applied to its 
surface. The dynamic and cinematic equations of 
motion are applied to the inner cylinder to obtain its 
eccentricity. Thus, the space between the outer and 
inner cylinder is deformed during the simulation. 
Due to the symmetry of the problem and to save 

time, one half of the bearing is simulated (Fig.4). 

 

Providing primary 
geometry

meshing

Analysis of oil flow 
in bearing

Calculation of 
pressure distribution 

and aerodynamic 
force on journal 

Solution of dynamic 
equations and 
calculation of 

journal’s acceleration

Solution of
Kinematic equations

and calculation of
displacement value

Calculating

Δs = sn -sn-1

Producing new
geometry and mesh

with new journal
center location by
smoothing method

Final location of
journal

Excessive
value

Low value

 
Fig. 3. Numerical solution process. 

 

 
Fig. 4. Long bearing geometry. 
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Generated mesh: For the simulation, a structured 
grid is generated. To evaluate the grid 
independency of the simulation, several grid sizes 
are used for the eccentricity value of 0.3 and then, 
the obtained maximum pressures as shown in Fig.5 
are compared. According to this figure, the grid 
independency is satisfied at 86400 cells in which 
the number of divisions in the radial, axial and 
circumferential direction is 12, 30 and 240, 
respectively (Fig.6). Due to the change of the 
geometry between the two cylinders during the 
simulation, the grid deformation is obtained by the 
dynamic mesh method. 

 

 
Fig. 5. Mesh study diagram. 

 

 
Fig. 6. Generated mesh for long bearing. 

 

Boundary conditions: Simulations are performed 
under light, medium and heavy loads. Rotational 
speed of the journal is 600 rpm for all the cases. 
Reynolds number is obtained from the following 
relation: ܴ݁ = ߤܥܷߩ = 15.65 

The flow regime is always laminar and unsteady. In 
all simulations, the time step is 0.00005 seconds 
and the number of iterations per time step is 50. To 
determine the effect of applied load, a rigid body 
which has a weight equal to the applied load is 
modeled at the place of inner cylinder. The mass of 
rigid body for each case is reported in table 1. 

Boundary conditions according to Fig.7 are as 
follow: 

(1) Symmetry plane: to save time and due to the 
symmetry conditions, the symmetry 

boundary condition has been used. The 
mesh in this plane is allowed to be deformed 

(2) Left plane: opening boundary condition is 
applied to this plane. Similar to the 
symmetry plane, the mesh in this plane is 
allowed to be deformed.  

(3) Outer cylinder: The outer cylinder is 
modeled as the stationary wall boundary 
condition.  

(4) Inner cylinder: For the inner cylinder, the 
moving wall boundary condition is 
considered. This wall rotates with a 
rotational speed of 600 rpm. Imbalance 
between the integral of pressure distribution 
and the load which are applied to the inner 
cylinder causes the inner cylinder to move. 
The inner cylinder moves such that these 
two forces neutralize each other. 

 

Table 1 The mass of rigid body at different 
loading 

 
Sommerfeld 

Number 
Rigid Body 

Mass 

Long Bearing 

0.1 125.2505 kg 

0.06 208.7508 kg 

0.035 357.8586 kg 

Short Bearing 

5 0.1566 kg 

2 0.3914 kg 

1 0.7813 kg 

Finite Bearing 

0.65 4.8173 kg 

0.19 16.4803 kg 

0.06 52.1877 kg 

 

 
Fig. 7. Long bearing boundary condition. 

 

4. DYNAMIC MESH 

VERIFICATION 

4.1. ILA Case 

For infinitely long bearing case, the values of the 
eccentricity under different loads are obtained by 
dynamic mesh method as well as the analytical 
method which are then compared to each other in 
Fig.8. Maximum error is below 7%. 
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Fig. 8. The value of eccentricity ratio for 

different Sommerfeld numbers for long bearing 

Figure 9 shows the obtained pressure distribution 
from the analytical and numerical solution for the 
infinitely long bearing under different loads. With 
increasing S, the pressure distribution changes in a 
way that the minimum and maximum pressures 
approach to each other. It’s obvious that the 
obtained numerical pressure distribution has an 
appropriate adaptation to the analytical method 
especially in light loading. 

 

 
Fig. 9. The pressure distribution obtained by 

both method at different loads in long bearing. 

 
4.2. ISA Case 

Figure 10 compares the value of eccentricity 
obtained from the analytical and the dynamic mesh 
method under different loads. The pressure 
distribution of the analytical and the dynamic mesh 
method are illustrated in Fig. 11 and Fig. 12, 
respectively. 

 

 
Fig. 10. Eccentricity ratio vs. Sommerfeld 

number for short bearing. 

 
Fig. 11. The pressure distribution obtained by 

analytical solution in short bearing. 

 

 
Fig. 12. The pressure distribution obtained by 

dynamic mesh solution in short bearing. 
 

4.3. Finite Length Case 

Figure 13 shows the value of eccentricity for a 
finite length bearing obtained from the dynamic 
mesh method and the analytical method. It can be 
observed that the numerical method based on the 
dynamic mesh has a suitable accuracy for analysing 
the journal bearings. 

 

 
Fig. 13. Eccentricity ratio vs. Sommerfeld 

numbers for finite bearing. 
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5. ANALYSIS OF 

TURBOCHARGER’S BEARING 

Turbocharger’s bearing consists of four input holes 
for appropriate lubrication. The weight of the 
turbine and compressor is carried by two journal 
bearings. Effect of rotational speed on the 
eccentricity ratio, attitude angle, maximum 
temperature of the bearing, average temperature of 
oil output, leakage flow, and friction torque is 
studied. Three different rotational speeds are 
investigated. Then, a turbocharger’s bearing with 
four axial grooves are simulated. Fig. 14 shows the 
simulated geometry. 

 

 
Fig. 14. The simulated geometry. 

 

5.1.   Bearing’s Geometry 

The dimensions of proposed bearing are as follow 
Deligantet al. (2011): 

Bearing length: ܮ = 3.8 mm 

Bearing diameter: ܦ = 7 mm 

Clearance: ܥ = 15 µm 

Applied load from the turbine 
and compressor:  ܹ = 0.564 N 

The diameter of oil input holes: ܦ = 1.4 mm 

5.2.   Lubricant Characteristics 

In the simulation, the oil HC 5W-30 is used. The 
characteristics of the oil are as follow Schmidtet al. 
(2006): 

Density: The oil’s density variation with 
temperature is obtained using Eq.        (44): ߩ = −0.625ܶ + 1032.5         (44) 

Whereρis density in kg / m3and T is absolute 
temperature. 

Viscosity: Eq. (45)represents the changes of 
viscosity with temperature: ߤ = ܽ݁ ್ష  , ܽ = 7.48 ൈ 10ିହ  , ܾ = 1005.2  , ܿ = 157.45  (45) 

Where  is viscosity in Pa.s. 

Heat capacity: Heat capacity of the lubricant varies 
with temperature according to Eq.      (46): ܥ = 3.84ܶ +  . is specific heat capacity in J/kg Kܥ (46)       873.076

5.3   Generated Mesh 

In this simulation, similar to the plain bearing case, 
the generated mesh, shown in Fig. 15, consists of 
86400 cells. 

 

 
Fig. 15. Generated mesh for turbocharger 

bearing. 

5.4.   BoundaryConditions 
The boundary conditions according to Fig. 16 are 
as: 

(1) Pressure inlet boundary condition is used at 
the input holes of the bearing.Relative 
pressure value at the input is5 bar and input 
oil temperature is 323 K. Stationary 
condition is used to consider mesh 
deformation. 

(2) Pressure outlet boundary condition is 
applied to the right hand section of the 
bearing. Relative pressure value is zero. The 
mesh in this plane is allowed to be 
deformed. 

(3) In the symmetry plane of the bearing, the 
symmetry boundary condition is used. Such 
as the outlet section, the symmetry plane 
mesh is allowed to be deformed.  

(4) Bearing shell is considered as the stationary 
wall boundary condition. Stationary 
condition has been used to consider the 
mesh movement. 

(5) Moving wall boundary condition is applied 
to the inner cylinder of the bearing. Rigid 
body boundary condition has been intended 
to the mesh movement on this cylinder. 

The variation of eccentricity as a function of 
rotational speed is shown in Fig. 17. As the 
rotational speed increases, the Sommerfeld number 
increases. Increase of the Sommerfeld number 
means decrease of load and consequently decrease 
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of eccentricity. 

 

 
Fig. 16. Boundary condition in turbocharger’s 

bearing simulation. 

 

 
Fig. 17. Changes of eccentricity ratio vs. 

rotational speed of the journal. 

The effect of rotational speed on the attitude angle 
is illustrated in Fig. 18. Increasing the rotational 
speed of the journal causes the attitude angle to 
decrease. Increasing the rotational speed leads to an 
increase in the Sommerfeld number and thus, 
reduction of the growing rate of attitude 
angleKhonsari and Booser (2008). In further 
analyses of turbocharger’s bearings, at high 
rotational speeds, the attitude angle approaches to 
90(Deligant et al. (2011);Deligant et al. (2011; 
Deligant et al. (2009). 

 

 
Fig. 18. Changes of the attitude angle vs. 

rotational speed of the journal. 

As shown in Fig. 19, the rotational speed of the 
journal has relatively small effect on the oil flow 
rate. It has been experimentally shown in the 
literatureNaffin (2009; Schmidt et al. (2006). 

 

 
Fig. 19. Changes of the leakage flow in rotational 

speed of the journal. 

Obtained temperature distribution is shown in 
Fig.20. Away from the input holes in the direction 
of rotation, the oil temperature increases and after 
arriving at the next hole in which the lubricant 
mixes with the fresh input oil, it drops. The 
temperature rise due to the eccentricity of the shaft 
is high at its right half. Fig. 21 plots the maximum 
oil temperature occurring in the bearing versus the 
rotational speed. As expected, due to the friction 
losses, increasing the rotational speed has a direct 
effect on the maximum temperature and 
consequently the outlet average temperature. 

 

 
Fig. 20. Oil temperature distribution in the speed 

of 400 rpm. 

Figure 22 shows the effect of the rotational speed 
on the frictional torque. Increasing the speed has a 
direct effect on the frictional losses. This result has 
been experimentally obtained by Deligant et al. 
(2012). With increasing the rotational speed, 
velocity gradient and consequently shear stress 
increase. Increasing the shear stress leads to an 
increase in the friction torque. 
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Fig. 21. Changes of the maximum temperature 

in rotational speed of the journal. 

 

 
Fig. 22. Changes of frictional in rotational speed 

of the journal. 

5.6. Considering the Effects of Adding 
Axial Grooves: 
In this section the effect of adding an axial groove 
to the bearing is studied. Groove dimensions are 
chosen as follow Deligant et al. (2009; Khonsari 
and Booser (2008): 

Groove length: ܮ = 3 mm 

Groove width: ܹ = 0.8 mm 

Groove deep: ܪ = 0.25 mm 

In order to simulate a bearing with an axial groove, 
a structured mesh which consists of 146000 cellsis 
generated (Fig. 23).The number of division in the 
direction of fluid film and circumferential direction 
in this case are the same as divisions’ number 
which obtained by mesh study. The simulation has 
been performed for 3000 rpm. 

In table 2, the results of simulating the performance 
of a grooved bearing are compared to a non-
grooved bearing. The results indicate a 20% 
increase in eccentricity and a 24% decrease in 
attitude angle by adding grooves. The chamber of 
turbine has a relatively high temperature. The best 
way to cool the shaft is to increase the oil flow. This 
requires increasing the input pressure which on the 
other hand, leads to problems such as increase in 
pressure of lubrication duct and seals damaging. 
The results in table 2 indicate a 3.8 fold increase of 

oil flow as a result of groove use. It is clear that 
total pressure drops from input to output in non-
grooved bearings due to the very small distance 
between the journal and shell. Addition of axial 
grooves leads to an increased clearance of the 
bearing and therefore, the reduced pressure drops 
and the flow rate increases. The rate of temperature 
rise due to the frictional losses is significantly 
reduced and this is due to the increase of oil mass 
flow. The frictional torque has reduced 5%which is 
another advantage of the axial grooved bearing. In 
Fig. 24, Fig. 25 and Fig. 26 temperature 
distribution, pressure distribution, and change in the 
position of the journal in different time steps are 
shown, respectively. 

 

 
Fig. 23. Generated mesh for turbocharger 

bearing with axial groove. 

 

 
Fig. 24. Temperature distribution in bearing 

with axial grooves. 

6. CONCLUSION 

In this paper a comprehensive method for the 
analysis of journal bearings based on the dynamic 
mesh method is presented. In order to show the 
validity of this method, three different cases for 
which the analytical solutions exists have been 
simulated. These cases are infinitely long bearing, 
infinitely short bearing, and finite bearing. The  
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Table 2 The comparison between simulation of bearing with four axial grooves and bearing without 
groove 

 
e [deg] ∆ ܶ௫[K] ∆ ܶ௩[K] Mass flow[kg/mଷ] Viscous Torque 

[N m] 

without grooves 0.1936 83.4832 3.1 2.185 2.82611e-005 3.3935e-04 

With grooves 0.2381 63.1236 1.7 0.665 10.7845 e-005 3.2221e-04 

values of difference 22% -24% - 82% -228% 282% -5% 

 
results reveal an acceptable agreement between the 
dynamic mesh method and the analytical solution. 
The difference between the results from the 
dynamic mesh method and the analytical method 
for the infinitely long bearing is lower than the 
other two cases. 

 

 
Fig. 25. Pressure distribution in bearing with 

axial grooves. 
 

 

 
Fig. 26. Position of X and Y axes at different 

time steps. 
 

In the simulation of turbocharger’s bearing, it was 
observed that increasing the rotational speed of the 
shaft results in a decrease in the eccentricity and the 
attitude angle of the journal while the temperature 
rise resulted from frictional losses and also 
frictional torque increases. The leakage flow is 
increased with increasing the rotational speed of the 
journal. Adding the axial grooves to turbocharger’s 
bearing leads to an increase inthe eccentricity and 
reduction in the attitude angle. Lubricant leakage 
flow is more in grooved bearing compared to 
simple bearing. Adding the axial grooves reduces 
the lubricant temperature rise. 
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