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ABSTRACT

In this article, unsteady boundary layer flow formed over a vertical surface due to impulsive mo-
tion and buoyancy is investigated. The mathematical model which properly accounts for space and
temperature-dependent internal heat source in a flowing fluid is incorporated into the energy equa-
tion. This model is presented in this study as a term which accounts for two different forms of
internal heat generation during the short time period and long time period. Due to the fluid flow
under consideration, the influence of thermal-diffusion and diffusion-thermo are incorporated into
the governing equation since it may not be realistic to assume that both effects are of smaller order
of magnitude than the effects described by Fourier’s or Fick’s law. The corresponding effect of in-
ternal heat source on viscosity is considered; the viscosity is assumed to vary as a linear function
of temperature. The flow model is described in terms of a highly coupled and nonlinear system of
partial differential equations. The governing equations are non-dimensionalized by using suitable
similarity transformation which unraveled the behavior of the fluid flow at short time and long time
periods. The dimensionless system of non-linear coupled partial differential equations (PDEs) is
solved using Bivariate Spectral Relaxation Method (BSRM). A parametric study of selected param-
eters is conducted and results of the surface shear stress, heat transfer and mass transfer at the wall
are illustrated graphically and physical aspects of the problem are discussed.

Keywords: Unsteady; Mixed convection; Impulsive motion; Variable viscosity; Bivariate Spectral
Relaxation method; Space-heat source.

NOMENCLATURE

a stretching rate
A∗ space dependent internal heat source
B∗ temperature dependent internal heat

source
C concentration of the fluid
C f skin friction coefficient
Cp specific heat at constant pressure
Cs concentration susceptibility
Dm coefficient of mass diffusivity
f ′(η,ξ) dimensionless velocity function
g acceleration due to gravity
Nu Nusselt number
Rex Reynold number
Sh Sherwood number
t dimensional time
T temperature of the fluid

Tm mean fluid temperature
u fluid velocity along x−direction
ue stretching velocity at freestream
v fluid velocity along y−direction

β, volumetric coefficient of thermal
expansion

β∗ volumetric coefficient of
concentration expansion

η similarity variable (space)
θ(η,ξ) dimensionless temperature

function
ϑ kinematic viscosity
κ thermal conductivity of the fluid
µ viscosity of the fluid
ξ dimensionless time scale
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ρ density of the fluid
τ dimensional time
ϕ(η,ξ) dimensionless concentration function
ψ(x,y) stream function

ω dimensionless variable viscosity
parameter

Tw,Cw condition of T,C at the vertical wall
T∞,C∞ condition of T,C at freestream

1. INTRODUCTION

The study of the thin layer formed on either hor-
izontal or vertical surface as fluid flows over it
has received great attention because of its appli-
cations in industry and engineering processes.
According to thermopedia, mixed convection
is a combination of forced and free convection
which is the general case of convection when
a flow is determined simultaneously by both
an outer forcing system (i.e., outer energy sup-
ply to the fluid streamlined body system) and
inner volumetric (mass) forces by the nonuni-
form density distribution of fluid medium in a
gravity field; Petukhov and Poliakov (1988).
Mass transfer occurs in many processes with
extensive applications in chemical engineering
such as reaction engineering, separations en-
gineering, heat transfer engineering and many
other sub-disciplines of chemical engineering
Welty et al. (1976). Mass transfer is used by
different scientific disciplines mostly for mod-
eling physical processes and mechanisms that
involve diffusive and convective transport of
chemical species within physical systems Bird
et al. (2007). In many industrial manufac-
turing processes, external support might be re-
quired to enhance the flow along a vertical sur-
face; such fluid flow may also be induced by
an impulsively (i.e. time-dependent) stretch-
ing of the fluid layer adjacent to surface or
fluid layers at the free stream. Recently, Ani-
masaun (2015a) reported the uses of modified
Boussinesq approximation to investigate dou-
ble diffusive convective micropolar flow over
a surface in which Tw < T∞. Effects of non-
uniform dual temperature-dependent heat gen-
eration/absorption on a stagnation-point flow of
Jeffrey nanofluid is presented in Sandeep et al.
(2016).

Theoretically and practically, Fourier’s law
of heat conduction describes the relation be-
tween energy flux and temperature gradient.
Fick’s law was determined by the correlation
of mass flux and concentration gradient; see
Fick (1855). Fourier (1995) reported that en-
ergy flux can be generated by composition gra-
dients, pressure gradients or body forces. The
energy flux caused by composition gradient was
discovered in 1873 by G. Henri Dufour and was
correspondingly referred to as Dufour effect;
on the other hand, mass flux can also be cre-

ated by a temperature gradient, as it was estab-
lished by Charles Soret. Practically speaking,
energy flux due to mass (concentration) gradi-
ent tends to occur as a coupled effect of irre-
versible processes in the industry when impul-
sive and buoyancy are required to induce the
flow. For example, when species are intro-
duced at a surface in fluid domain with different
(lower) density than the surrounding fluid, both
Soret (thermo-diffusion) and Dufour (diffuso-
thermal) effects tends to be influential. This is
often encountered in chemical engineering pro-
cesses according to Fourier (1995), Fick (1855)
and Alam et al. (2006). It is worth mention-
ing that when Dufour effect together with its re-
ciprocal phenomenon (Soret effect) are consid-
ered in most studies on heat and mass transfer;
the non-linearity of the governing partial differ-
ential equation which denotes the mathematical
modeling increases and becomes more difficult
to solve. In view of this, an efficient numerical
method/technique is required to solve and inves-
tigate the behavior of this kind of fluid flow. To
solve a related mathematical problem, Rashad
et al. (2015) adopted implicit iterative finite-
difference scheme to solve dimensionless gov-
erning equations which involve second deriva-
tive of temperature in species (mass) equation
and second derivative of concentration in the en-
ergy equation.

On December 9, 1850 the word ”impulsive”
was used to describe fluid flow by Sir George
Stokes; for details, see the 47th point in Stoke
(1901). Thereafter, series of investigations
have been carried out towards the understand-
ing of the dynamics of impulsive induced fluid
flow. The motion within the boundary layer that
arises when a semi-infinite flat plate is impul-
sively started from rest with velocity U was in-
vestigated by Stewartson (1951). The boundary
layer flow development of a viscous fluid on a
semi-infinite flat plate due to impulsive motion
of the free stream has been further investigated
in Dennis (1972) and Watkins (1975). Williams
and Rhyne (1980) argued extensively that the
viscous flow within the boundary layer devel-
ops slowly, reaching a fully develop steady flow
only after some period of time. The bound-
ary layer development occurs in two stages (at
a small time and at a large time). Upon using
the scaling developed in Williams and Rhyne
(1980), it seems difficult to obtain analytic so-
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lutions of unsteady boundary layer flows valid
for all time. To obtain solutions of unsteady
boundary layer flows which are valid for all
time Nath et al. (2002) examined the asymp-
totic behavior of the solution for a steady case
and later obtained the solution for both cases
(unsteady and steady) by using an implicit fi-
nite difference scheme. Sandeep and Sugu-
namma (2014) adopted Laplace transform tech-
nique to solve the reduced dimensionless equa-
tions which modeled unsteady hydro-magnetic
free convection and radiative heat transfer along
a vertical surface due to impulsive. It is worth
mentioning that the uses of Laplace transform
strongly depend on the non-linearity of the dif-
ferential equation. A perturbation technique
which only provides a valid solution for small
time was adopted in Dennis (1972). To ob-
tain this kind of solution over the domain corre-
sponding to the dimensionless time (0 ≤ ξ ≤ 1),
Pop et al. (2004) adopted Keller-box implicit
finite difference method to obtain the numerical
solution. Liao (2006) explained the limitations
of the numerical approach adopted in Nath et al.
(2002) and Nazar et al. (2004) and hence pre-
sented analytic solutions uniformly valid for all
dimensionless time (0 ≤ ξ < +∞) in the whole
space region (0 ≤ η < +∞) using Homotopy
analysis method (HAM).

Spectral Methods are the class of spatial dis-
cretization of differential equations. They pro-
vide a way of translating an equation ex-
pressed in continuous space and time into a
discrete equation which can be solved numer-
ically. Spectral discretizations of differential
equations are based on Fourier or Chebyshev se-
ries which provides a very low error approxima-
tions Canuto et al. (1988). Considering the fact
that spectral methods are computationally less
expensive, Spectral Homotopy Analysis method
of solving boundary value problems was pro-
posed in Sibanda et al. (2010). Motsa (2013b)
modified spectral homotopy analysis method
(SHAM) and successfully used Local Lineari-
sation Method (LLM) to solve a partial differen-
tial equation (PDE) which models the problem
of unsteady boundary layer flow caused by an
impulsively stretching plate. The idea of decou-
pling systems of equations that were called local
linearisation method (LLM) in Motsa (2013a)
have been extended to a new spectral colloca-
tion method (BSLLM) which have been imple-
mented to solve the problem of unsteady heat
and mass transfer past a semi-infinite vertical
plate with diffusion-thermo and thermophore-
sis effects in the presence of suction; see Motsa
and Animasaun (2015). Just of recent, Motsa

et al. (2015) presented the ideas of Gauss-
Seidel approach to decoupling nonlinear system
of PDEs into a sequence of linear partial dif-
ferential equations which are then solved using
the Chebyshev spectral collocation method with
bivariate Lagrange interpolation polynomials as
basis functions. The method called Bivariate
Spectral Relaxation Method (BSRM) involves
seeking for solutions that are expressed as bi-
variate Lagrange interpolating polynomials and
applying pseudospectral collocation in both in-
dependent variables of the governing PDEs.

In all the above studies little or no attention
has been given to investigate unsteady bound-
ary layer flow over a vertical surface due to im-
pulsive motion and buoyancy in the presence of
thermal-diffusion and diffusion-thermo. In this
study space and temperature-dependent inter-
nal heat source is adopted and its corresponding
influence on the fluid viscosity is investigated.
The Bivariate Spectral Relaxation Method is
adopted to obtain the numerical solutions of the
systems of highly non-linear partial differential
equations. It is worth mentioning that the re-
sults of this present study will provide useful in-
formation to engineers in the industry and most
especially to chemical engineers. In this article,
we present the mathematical formulation of the
problem in section 2. The numerical solution
of the dimensionless equations using Bivariate
Spectral Relaxation method is presented in sec-
tion 3. In section 4 the results and discussions
are explained and we present the conclusions
based on the findings in section 5.

2. GOVERNING EQUATIONS

Consider the flow of a viscous incompressible
fluid past a vertical plate with the effects ther-
mal diffusion, diffusion-thermo and viscous dis-
sipation heat in the presence of exponential de-
caying heat source. In this research, a case
where the fluid is emerging out of a slit at the
origin (x = 0, y = 0) and moving along the ver-
tical wall is considered. As shown in Fig. 1.,
x−axis is taken along the plate in the vertically
upward direction and y−axis is normal to the
vertical surface.

Initially, at t ≤ 0 the plate and the adjacent fluid
is of low temperature (T∞) and low concentra-
tion (C∞) in a stationary condition. At t > 0
the inviscid flow is given an impulsive motion
in the vertical direction against the gravitational
field with velocity ue = ax and both the tem-
perature and concentration level near the plate
are raised from T∞ to Tw and C∞ to Cw respec-
tively. This is based on the fact that T∞ < Tw
and C∞ < Cw. The surface of the plate is as-
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Fig. 1. Physical Model and coordinate.

sumed to have an arbitrary constant temperature
Tw. In this investigation, the unsteadiness in the
flow field is caused by impulsively induced mo-
tion in the free stream (i. e. the unsteadiness
is caused by a change in the free stream veloc-
ity with respect to time) and by a sudden in-
crease in temperature and concentration at the
surface. The density variation and the buoy-
ancy effects are taken into consideration so that
the Boussinesq approximation for both the tem-
perature and concentration gradient is adopted.
Under these assumptions along with boundary
layer approximations, the flow is governed by
the following system of equations

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

= ue
∂ue

∂x
+

1
ρ

∂
∂y

(
µ

∂u
∂y

)

+gβ(T −T∞)+gβ∗(C−C∞), (2)

∂T
∂t

+u
∂T
∂x

+ v
∂T
∂y

=
κ

ρCp

∂2T
∂y2 +

DmKt

CpCs

∂2C
∂y2 +

(
1

1− e−τ

)
×

κa
ρCpϑ

[
A∗(Tw −T∞)e

(
−y

√
a

ϑξ

)
+B∗(T −T∞)

]
,

(3)

∂C
∂t

+u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2 +

DmKt

Tm

∂2T
∂y2 . (4)

The initial conditions are given at t ≤ 0 as

u = 0, v = 0, T = T∞, C =C∞. (5)

The boundary conditions for t > 0 are

u = 0, v = 0, T = Tw, C =Cw at y = 0,(6)

u → ue, T → T∞, C →C∞ as y → ∞. (7)

Since heat and mass transfer occur simultane-
ously in the moving fluid due to impulsive and
buoyancy, the relations between the fluxes and
the driving potentials are of more intricate in na-
ture. In view of these effects, thermal-diffusion
and the diffusion-thermo terms were incorpo-
rated into Eq. (3) and Eq. (4). Internal en-
ergy generation can be explained as a scien-
tific method of generating heat energy within a
body by a chemical, electrical or nuclear pro-
cess. Natural convection induced by internal
heat generation is a common phenomenon in
nature. In many situations, there may be an
appreciable temperature difference between the
surface and the ambient fluid. This necessitates
the consideration of temperature dependent heat
sources that may exert a strong influence on
the heat transfer characteristics Salem and El-
Aziz (2007). El-Aziz and Salem (2008) fur-
ther stated that exact modeling of internal heat
generation or absorption is quite difficult and
argued that some simple mathematical models
can express its average behavior for most phys-
ical situations. This idea is used to model the
space and temperature dependent heat source
in Eq. (2) such that its influence on the heat
and mass transfer at a short time and long time
periods exist. In this study, the fluid viscos-
ity (µ) is assumed to vary as a linear function
of temperature. This assumption is valid based
on the fact that the internal heat source will in-
crease the amount of total temperature of the
fluid as it flows over a vertical surface. Fol-
lowing Mukhopadhyay (2009), the mathemat-
ical model of temperature-dependent viscosity
model which was developed using the experi-
mental data of Batchelor (1987) as

µ(T ) = µ∗[m1 +b(Tw −T )], (8)

is considered. This consideration is based on the
discussion in Animasaun (2015b) on the phys-
ical effect of time-dependent modified thermal
Grashof number and time-dependent modified
solutal Grashof number on the behavior of fluid
flow along a vertical surface. The following re-
lations are introduced to transform u, v, T and
C as

u =
∂ψ
∂y

, v =−∂ψ
∂x

, θ =
T −T∞
Tw −T∞

, ϕ =
C−C∞

Cw −C∞
.

(9)
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respectively. Here, ψ(x,y) is the stream func-
tion. In formulating the problem of the bound-
ary layer development which is impulsively set
into motion, one encounters the problem of de-
termining the appropriate scaling for the prob-
lem. The solution for small dimensionless time
(τ) is similar in the scaled coordinate y√

ϑt
(i.e.

the solution exists for small time) while the so-
lution for large time is similar in the scaled co-
ordinate y

√ ue
ϑx (i.e. the solution exists for large

time). This implies that we have to find a scal-
ing of the y−coordinate which behaves like y√

ϑt
for small time and as y

√ ue
ϑx for large time. Fur-

thermore, it is convenient to choose a time scale
ξ so that the region of time integration may
become finite. Following Williams and Rhyne
(1980), such similarity transformations are

η = y
√

a
ϑξ

,
ψ(x,y)
x
√

aϑξ
= f (η,ξ), ξ = 1− e−τ, τ = at.

(10)

Substituting Eq. (8) - Eq. (10) into Eq. (1) - Eq.
(7), Eq. (1) is identically satisfied and Eq. (2) -
Eq. (7) reduces to

[m1 +ω−θω]
∂3 f
∂η3 −ω

∂θ
∂η

∂2 f
∂η2 +

η
2
(1−ξ)

∂2 f
∂η2 +ωGtθ+

ξ

[
1+ f

∂2 f
∂η2 −

(
∂ f
∂η

)2
]
+ωGsϕ= ξ(1−ξ)

∂2 f
∂ξ∂η

,(11)

∂2θ
∂η2 +

η
2

Pr(1−ξ)
∂θ
∂η

+Prξ f
∂θ
∂η

+
{A∗e−η +B∗θ}
[m1 +ω−θω]

+PrD f
∂2ϕ
∂η2 = ξ(1−ξ)Pr

∂θ
∂ξ

, (12)

∂2ϕ
∂η2 +

η
2

Sc(1−ξ)
∂ϕ
∂η

+Scξ f
∂ϕ
∂η

+ScSr
∂2θ
∂η2 =

ξ(1−ξ)Sc
∂ϕ
∂ξ

. (13)

The boundary conditions reduces to

f (0,ξ) =
∂ f (0,ξ)

∂η
= 0, θ(0,ξ) = ϕ(0,ξ) = 1,

(14)

∂ f (∞,ξ)
∂η

→ 1, θ(∞,ξ)→ 0, ϕ(∞,ξ)→ 0.(15)

In this study, ω = b(Tw − T∞) is the tempera-
ture dependent viscous parameter, Gt =

ξgβ
a2xb is

the modified time dependent thermal Grashof
number for heat transfer parameter, Gs =

ξgβ∗
a2xb

is the modified time dependent solutal Grashof
number for mass transfer parameter, Pr =

ϑ
α is

the Prandtl number, D f =
Dmkt

ϑ∗CpCs

(Cw−C∞)
(Tw−T∞)

is the

Dufour number, Sc = ϑ∗
Dm

is the Schmidt num-

ber and Sr = DmKt
ϑTm

(Tw−T∞)
(Cw−C∞)

is the Soret number.
The physical quantities of interest in this prob-
lem are the skin friction coefficient, the Nus-
selt number and the Sherwood number which
are defined as follows

C f =
τw

ρu2
e
=

ϑ
(ax)2

∂u
∂y

∣∣∣∣
y=0

, Nu =
−κ ∂T

∂y

∣∣∣
y=0

x

κ(Tw −T∞)
,

Sh =
−Dm

∂C
∂y

∣∣∣
y=0

x

Dm(Cw −C∞)
.

Using the transformation variables in Eq.(10)
and Rex =

ax
ϑ in Nath et al. (2002), we obtain

the following dimensionless quantities

f ′′(0,ξ) =
√

ξC f
√

Rex, −θ′(0,ξ) =
√

ξ√
xRex

Nu,

−ϕ′(0,ξ) =
√

ξ√
xRex

Sh, ξ > 0

3. BIVARIATE SPECTRAL RELAX-
ATION METHOD (BSRM)

In this section the bivariate spectral relaxation
method (BSRM) for solving the governing cou-
pled non-linear system of partial differential Eq.
(11) - Eq. (15) is presented following the idea in
Motsa et al. (2015). The method starts by using
Gauss-Siedel relaxation approach to rearrange
and decouple Eq. (11) - Eq. (15) to form a linear
sequence of partial differential equations that
are later solved in succession over a number of
iterations (r). Consequently, re-arranging equa-
tions (11) - Eq. (15) and linearising in Gauss-
Seidel manner gives

a0,r(η,ξ)
∂2gr+1

∂η2 +a1,r(η,ξ)
∂gr+1

∂η
+a2,r(η,ξ)

= ξ(1−ξ)
∂gr+1

∂ξ
, (16)

∂ fr+1

∂η
= gr+1, (17)

∂2θr+1

∂η2 +b1,r(η,ξ)
∂θr+1

∂η
+b2,r(η,ξ)θr+1+
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b3,r(η,ξ) = ξ(1−ξ)Pr
∂θr+1

∂ξ
, (18)

∂2ϕr+1

∂η2 + c1,r(η,ξ)
∂ϕr+1

∂η
+ c2,r(η,ξ) =

ξ(1−ξ)Sc
∂ϕr+1

∂ξ
, (19)

subject to

gr+1(0,ξ) = 0, fr+1(0,ξ) = 0, θr+1(0,ξ) = 1,

ϕr+1(0,ξ) = 1, (20)

gr+1(∞,ξ) = 1, θr+1(∞,ξ) = 0, ϕr+1(∞,ξ) = 0,
(21)

where the coefficients are defined as

a0,r(η,ξ) = m1 +ω−ωθr,

a1,r(η,ξ) = ξ fr +
η
2
(1−ξ)−ω

∂θr

∂η
,

a2,r(η,ξ) = ξ+ω(Gtθr +Gcϕr)−ξg2
r+1,

b1,r(η,ξ) = ξPr fr+1 +
η
2
(1−ξ)Pr,

b2,r(η,ξ) =
B∗

[m1 +ω−θrω]

b3,r(η,ξ) =
A∗e−η

[m1 +ω−θrω]
+PrD f

∂2ϕr

∂η2 ,

c1,r(η,ξ) = ξSc fr+1 +
η
2
(1−ξ)Sc,

c2,r(η,ξ) = ScSr
∂2θr+1

∂η2 .

Eq. (16) - Eq. (19) form a linear decoupled sys-
tem of partial differential equations and can be
solved iteratively starting from given initial ap-
proximations (g0, f0,θ0 and ϕ0). The iteration
is repeated for r = 1,2, . . . , until approximate
solutions that are consistent to within a certain
tolerance level are obtained. Next step is to em-
ploy the spectral collocation to discretize both
space η and time ξ domains. The Chebyshev
collocation method requires that the domain of
the problem be transformed to [−1,1]× [−1,1].
We therefore use simple linear transformation to

transform η∈ [0,η∞] and ξ∈ [0,1] to τ∈ [−1,1]
and ζ ∈ [−1,1], respectively. Here η∞ is a finite
value that is introduced to facilitate the appli-
cation of the numerical method at infinity. The
spatial and time domains are discretized using
Chebyshev-Gauss-Lobatto points defined as

τi = cos
(

πi
Nx

)
, ζ j = cos

(
π j
Nt

)
,

i = 0,1, . . . ,Nx; j = 0,1, . . . ,Nt . (22)

Considering the linear decoupled system of five
equations (16) - (19), each equation can be
solved independently of the other equations in
the system. For example, the approximate so-
lution of g(η,ξ) can be obtained using bivariate
Lagrange interpolation polynomial of the form

g(η,ξ)≈
Nx

∑
m=0

Nt

∑
j=0

g(τm,ζ j)Lm(τ)L j(ζ), (23)

which interpolates g(η,ξ) at the collocation
points defined by equation (22). We remark
that, for ease of notation, we have dropped
the subscripts r + 1. The functions Lm(τ) are
the well-known characteristic Lagrange cardi-
nal polynomials

Lm(τ) =
Nx

∏
m=0,m̸=k

τ− τk

τm − τk
,

Lm(τk) = δmk =

{
0 if m ̸= k
1 if m = k . (24)

The function L j(ζ) is defined in a similar man-
ner. Eq. (23) is then substituted in Eq. (16).
A key step in the substitution process is the
evaluation of the derivatives of Lm(τ) and L j(ζ)
with respect to τ and ζ respectively. Follow-
ing Canuto et al. (1988), Trefethen (2000) and
Motsa et al. (2015), we define the derivatives of
g(η,ξ) with respect to η and ξ at the collocation
points τk and ζi as follows:

∂g
∂η

∣∣∣∣
(τk,ζi)

=

2
η∞

Nx

∑
m=0

Nt

∑
j=0

g(τm,ζ j)
dLm(τk)

dτ
L j(ζi) = DGi,(25)

∂2g
∂η2

∣∣∣∣
(τk,ζi)

= D2Gi, (26)
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∂g
∂ξ

∣∣∣∣
(τk,ζi)

=

2
Nx

∑
m=0

Nt

∑
j=0

g(τm,ζ j)
dL j(ζi)

dζ
Lm(τk) = 2

Nt

∑
j=0

di jG j,

(27)

where di, j (i, j = 0,1, . . . ,Nt) are entries of the
standard Chebyshev differentiation matrix d =
[di, j] of size (Nt + 1)× (Nt + 1) (for details,
see Canuto et al. (1988), Trefethen (2000) and
Motsa et al. (2015)), D = (2/ηe)[Dr,s] (r,s =
0,1,2, . . . ,Nx) with [Dr,s] being an (Nx + 1)×
(Nx + 1) Chebyshev derivative matrix, and the
vector Gi is defined as

Gi = [gi(τ0),gi(τ1), . . . ,gi(τNx)]
T . (28)

Accordingly, applying the collocation method
with the above definitions on Eq. (16) gives

AiGr+1,i +a2,r(ξi)−2ξi(1−ξi)
Nt

∑
j=0

di, jGr+1, j = 0,

i = 0,1,2, . . . ,Nt , (29)

subject to the boundary conditions

gr+1,i(τNx) = 0, gr+1,i(τ0) = 1, (30)

where

Ai = a0,r(ξi)D2 +a1,r(ξi)D,

am,r(ξi) (m = 0,1) is the diagonal matrix
of the vector [am,r(τ0),am,r(τ1), . . . ,am,r(τNx)]

T

and a2,r(ξi)= [a2,r(τ0),a2,r(τ1), . . . ,a2,r(τNx)]
T .

Expanding Eq. (29) and imposing boundary
conditions for i = 0,1, . . . ,Nt gives the follow-
ing matrix equation:


A0,0 A0,1 · · · A0,Nt

A1,0 A1,1 · · · A1,Nt

...
...

. . .
...

ANt ,0 ANt ,1 · · · ANt ,Nt




Gr+1,0

Gr+1,1

...
Gr+1,Nt

=


R1,0

R1,1

...
R1,Nt

 ,

(31)

where

Ai,i = Ai −2ξi(1−ξi)di,iI, i = 0,1, . . . ,Nt −1,

Ai, j = −2ξi(1−ξi)di, jI, when i ̸= j,

R1,i = −a2,r(ξi),

where I is an (Nx+1)×(Nx+1) identity matrix.
Similarly, applying the bivariate collocation as
described above on Eq. (18) and Eq. (19) gives

BiΘr+1,i +b2,r(ξi)−2ξi(1−ξi)Pr
Nt

∑
j=0

di, jΘr+1, j = 0,

i = 0,1,2, . . . ,Nt , (32)

CiΦr+1,i + c2,r(ξi)−2ξi(1−ξi)Sc
Nt

∑
j=0

di, jΦr+1, j = 0,

i = 0,1,2, . . . ,Nt , (33)

subject to the boundary conditions

θr+1,i(τNx) = 0, θr+1,i(τ0) = 1, ϕr+1,i(τNx) = 0,

ϕr+1,i(τ0) = 1, (34)

where

Bi = D2 +b1,r(ξi)D,

Ci = D2 + c1,r(ξi)D,

Θi = [θi(τ0),θi(τ1), . . . ,θi(τNx)]
T ,

Φi = [ϕi(τ0),ϕi(τ1), . . . ,ϕi(τNx)]
T ,

bm,r(ξi),cm,r(ξi) (m = 0,1) are the
diagonal matrices of the vector
[bm,r(τ0),bm,r(τ1), . . . ,bm,r(τNx)]

T and
[cm,r(τ0),cm,r(τ1), . . . ,cm,r(τNx)]

T ,
b2,r = [b2,r(τ0),b2,r(τ1), . . . ,b2,r(τNx)]

T and
c2,r = [c2,r(τ0),c2,r(τ1), . . . ,c2,r(τNx)]

T .
Expanding Eq. (32) and Eq. (33) and imposing
the boundary conditions for (i= 0,1, . . . ,Nt −1)
gives the following matrix equations:

B0,0 B0,1 · · · B0,Nt

B1,0 B1,1 · · · B1,Nt
...

...
. . .

...
BNt ,0 BNt ,1 · · · BNt ,Nt




Θr+1,0
Θr+1,1

...
Θr+1,Nt

=


R2,0
R2,1

...
R2,Nt

 , (35)


C0,0 C0,1 · · · C0,Nt

C1,0 C1,1 · · · C1,Nt

...
...

. . .
...

CNt ,0 CNt ,1 · · · CNt ,Nt




Φr+1,0

Φr+1,1
...

Φr+1,Nt−1

=
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Table 1 Comparison of fff ′′′′′′(((ηηη === 000,,,ξξξ === 000)))
with PPPrrr using BSRM and bvp4c

f ′′(η = 0,ξ = 0) f ′′(η = 0)
BSRM bvp4c (η∞ = 40)

Pr = 0.4 1.07917690 1.07917690
Pr = 0.5 1.03517860 1.03517860
Pr = 0.71 0.98991357 0.98991357

Pr = 1 0.95924746 0.95924746


R3,0
R3,1

...
R3,Nt

 , (36)

where

Bi,i = Bi −2Prξi(1−ξi)di,iI, i = 0,1, . . . ,Nt ,

Bi, j = −2Prξi(1−ξi)di, jI, when i ̸= j,

R2,i = −b2,r(ξi), R3,i =−c2,r(ξi),

Ci,i = Ci −2Scξi(1−ξi)di,iI, i = 0,1, . . . ,Nt −1,

Ci, j = −2Scξi(1−ξi)di, jI, when i ̸= j.

The approximate solutions for g(η,ξ), θ(η,ξ)
and ϕ(η,ξ) are obtained by iteratively solving
the matrix equations Eq. (31), Eq. (35) and Eq.
(36), in turn, for r = 0,1,2, . . . . Simple expo-
nential functions that satisfy the boundary con-
ditions Eq. (14) and Eq. (15) can be used as ini-
tial approximations to start the iterative process
at r = 0. In this work the following functions

f0(η,ξ) = η+ e−η −1,

θ0(η,ξ) = e−η, ϕ0(η,ξ) = e−η. (37)

were used as initial approximations.

3.1 Verification of the Results

In order to verify the accuracy of the present
analysis, the results of Bivariate Spectral Re-
laxation Method (BSRM) have been compared
with that of MATLAB Package (bvp4c) solu-
tion for the limiting case when ξ = 0, m1 = 1,
ω = 0.2, Gt = Gs = 1, A = B = 0.2, D f = Sr =
0.1 and Sc = 0.62 at various values of Pr.

The comparison in the above case is found to
be in good agreement, as shown in Table 1−3.
The excellent agreement is an encouragement
for further study of the effects of other parame-
ters on the fluid flow.

4. RESULTS AND DISCUSSION

The approximate numerical solutions of the
governing systems of Eqs. (11) - (15) were

Table 2 Comparison of −−−θθθ′′′(((ηηη === 000,,,ξξξ === 000)))
with PPPrrr using BSRM and bvp4c

−θ′(η = 0,ξ = 0) −θ′(η = 0)
BSRM bvp4c (η∞ = 40)

Pr = 0.4 −0.19127669 −0.19127669
Pr = 0.5 −0.06753863 −0.06753863
Pr = 0.71 0.08927300 0.08927300

Pr = 1 0.23007191 0.23007191

Table 3 Comparison of −−−ϕϕϕ′′′(((ηηη === 000,,,ξξξ === 000)))
with PPPrrr using BSRM and bvp4c

−ϕ′(η = 0,ξ = 0) −ϕ′(η = 0)
BSRM bvp4c (η∞ = 40)

Pr = 0.4 0.46191854 0.46191854
Pr = 0.5 0.45668721 0.45668721

Pr = 0.71 0.44969034 0.44969034
Pr = 1 0.44300657 0.44300657

solved using BSRM as described in the previ-
ous section. Grid independence tests revealed
that Nx = 60 and Nt = 20 collocation points in
the η and ξ domain, respectively, were sufficient
to give accurate and consistent results. A fur-
ther increase in the number of collocation points
did not result in a change in the computed re-
sults. Furthermore, the minimum number of
iterations required to give results that are con-
sistent to within a tolerance level of 10−5 were
used. In all the results presented below, it was
found that 30 iterations were sufficient to give
consistent results. The value of η∞ was set to
be 10. In this section, we present the results
of the numerical computations for the velocity,
temperature and species concentration profiles
for the various input parameters. It is very im-
portant to note that coupled dimensionless par-
tial differential Eq. (11) - Eq. (15) can only
be solved by MATLAB package (bvp4c) when
ξ = 0 and ξ = 1. In order to investigate the be-
havior of the fluid flow over a vertical surface,
BSRM is employed. The effects of dimension-
less time (ξ) on local skin friction coefficient
f ′′(η = 0,ξ), Nusselt number that is propor-
tional to local heat transfer rate −θ′(η = 0,ξ)
and Sherwood number that is proportional to lo-
cal mass transfer rate −ϕ′(η = 0,ξ) is presented
in Table 4. When ξ = 0, this corresponds to ini-
tial unsteady stage. Physically, only unsteady
acceleration dominates at this stage. Small
magnitudes of f ′′(η = 0,ξ), −θ′(η = 0,ξ) and
−ϕ′(η = 0,ξ) are observed when ξ = 0 in 4.
As ξ → 0.7, the influence of convective accel-
eration terms in the dimensionless momentum
equation (11), dimensionless energy equation
(12) and dimensionless concentration (mass)
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Table 4 Variation of fff ′′′′′′(((ηηη,,,ξξξ))), −−−θθθ′′′(((ηηη,,,ξξξ))) and
−−−ϕϕϕ′′′(((ηηη,,,ξξξ))) with dimensionless time (ξξξ) using
BSRM when mmm111 === 111, ωωω === 000...222, GGGttt === GGGsss === 111,
AAA === BBB === 000...222, DDD fff === SSSrrr === 000...111, SSSccc === 000...666222 and

PPPrrr === 000...777111
ξ f ′′(η,ξ) −θ′(η,ξ) −ϕ′(η,ξ)
0 0.989914 0.089273 0.449690

0.1 1.040608 0.092128 0.450001
0.2 1.091405 0.095787 0.450780
0.3 1.142237 0.100428 0.452115
0.4 1.193027 0.106295 0.454114
0.5 1.243676 0.113719 0.456922
0.6 1.294062 0.123160 0.460732
0.7 1.344030 0.135319 0.465812

Table 5 Variations of −−−ϕϕϕ′′′(((000,,,ξξξ === 000))) when
DDD fff === 000...222 and DDD fff === 111...555 with SSSrrr using BSRM
[mmm111 === 111, ωωω === 000...222, GGGttt === GGGsss === 111, AAA === BBB === 000...222,

SSSccc === 000...666222 and PPPrrr === 000...777111]
Sr −ϕ′(0,ξ = 0) −ϕ′(0,ξ = 0)

D f = 0.2 D f = 1.5
0.2 0.45742873 0.49043755
0.5 0.47832951 0.59190034
0.7 0.49306220 0.69815960
0.9 0.50847774 0.86788785
1.1 0.52461694 1.18527746
Sr −ϕ′(0,ξ = 0.7) −ϕ′(0,ξ = 0.7)

D f = 0.2 D f = 1.5
0.2 0.47342540 0.50501860
0.5 0.49350228 0.59425037
0.7 0.50764066 0.68891866
0.9 0.52242561 0.84178897
1.1 0.53789779 1.13096612

equation (13) gradually becomes significant the
fluid flow. Influence of space- and temperature-
heat source as ξ → 0.7 account for the high
amount of percentage increase in local heat
transfer rate −θ′(η = 0,ξ) which have been
estimated as 51.57886%. It is observed that
f ′′(η = 0,ξ) and −θ′(η = 0,ξ) increases sig-
nificantly with an increase in the magnitude of
ξ while −ϕ′(η = 0,ξ) increases negligibly. An
increase in the magnitude of dimensionless time
(ξ) from 0 to 0.7 corresponds to 35.7724% in-
crement in f ′′(η = 0,ξ), 51.57886% increment
in −θ′(η = 0,ξ) while −ϕ′(η = 0,ξ) increases
negligibly by 3.58513%.

4.1 Effects of Temperature Dependent
Variable Viscosity Parameter ω at
Short Time and Long Time Periods

Velocity profiles with ω and temperature pro-
files with ω when ξ = 0 have been compared
with when ξ = 0.5 as shown in Figs. 2-5. It

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

η

f
′
(η
,
ξ
)

ω = 0.1

ω = 0.4

ω = 0.7

ω = 1

ω
m

1
 = 1, G

t
 = G

s
 = 1, 

P
r
 = 0.71,

A* = B* = 0.2, D
f
 = S

r
 = 0.1,

S
c
 = 0.62

ξ = 0

Fig. 2. Velocity profiles fff ′′′(((ηηη,,,ξξξ))) for different
values of temperature dependent viscous
parameter (ωωω) when ξξξ === 000 using BSRM.
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Fig. 3. Velocity profiles fff ′′′(((ηηη,,,ξξξ))) for different
values of temperature dependent viscous

parameter (ωωω) when ξξξ === 000...555 using BSRM.

is observed that increase in velocity function
f ′(η,ξ) due to an increase in the magnitude
of temperature dependent viscous parameter is
more pronounced at short time period (see Fig.
2. and Fig. 3.). Dimensionless time ξ measures
the transition from short time period to long
time period which corresponds to final steady
stage. Firstly, it has been reported in Table 4
that f ′′(0,ξ = 0) < f ′′(0,ξ = 0.5). Since the
local skin friction when ξ = 0.5 is 1.243676;
physically, this indicates a negligible increase
of the friction between the fluid and the heated
vertical surface as ξ ranges from 0 to 0.5. Al-
though, this kind of friction is slightly subdued
by the influence of increasing parameter ω. This
accounts for the reason why velocity function
f ′(η,ξ = 0.5) still increases with ω despite the
higher magnitude of f ′′(0,ξ) when ξ = 0.5 (i.e.
unsteady acceleration and convective accelera-
tion are present in the fluid flow owing to im-
pulsive). Consequently, the increase in velocity
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Fig. 4. Temperature profiles θθθ(((ηηη,,,ξξξ))) for
different values of temperature dependent
viscous parameter (ωωω) when ξξξ === 000 using

BSRM.
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Fig. 5. Temperature profiles θθθ(((ηηη,,,ξξξ))) for
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viscous parameter (ωωω) when ξξξ === 000...555 using

BSRM.

function with ω at short time period ξ = 0 is
more enhanced than at long time period ξ = 1.
It can also be deduced in Fig. 2. and Fig. 3.
that an increase in the magnitude of ω leads to
a rise in the values of velocity near the vertical
wall. An increase in the magnitude of ω corre-
sponds to an increase in the value of (Tw −T∞)
at a constant value of b. This eventually de-
creases the time of interaction between neigh-
boring molecules and the intermolecular forces
between the fluid and subsequently causes a de-
crease in the viscosity which leads to the fluid
moving faster. Furthermore, the curves show
that the peak value of the velocity increases
rapidly near the wall of the vertical heated plate
as ω increases and then decays as η → ∞. This
means that the substantial heat energy being in-
jected from the vertical plate varnishes at larger
values of η.
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dependent viscous parameter (ωωω).
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Fig. 7. Variations of Nusselt number
−−−θθθ′′′(((ηηη === 000,,,ξξξ))) with dimensionless time ξξξ for
different values of temperature dependent

viscous parameter (ωωω).

An increase in the magnitude of ω can be seen
to reduce the temperature as shown in Fig. 4.
and Fig. 5. A negligible decrease in tempera-
ture function θ(η,ξ) with ω is observed at short
time period ξ = 0 while a significant decrease
is noticed when ξ = 0.5. At a constant value
of viscosity related parameter b, as (Tw − T∞)
increases due to the increase in the parame-
ter ω; the fluid attempts to expand since it is
an incompressible fluid. Thus, the fluid ab-
sorbs heat energy (temperature) available and
this may account for decrease in the tempera-
ture profiles. Variations of local skin friction
f ′′(0,ξ) which is proportional to shear stress
and Nusselt number −θ′(0,ξ) which is propor-
tional to heat transfer rate with dimensionless
time 0 ≤ ξ ≤ 1 and various values assign to ω
are presented in Fig. 6. and Fig. 7. It can be
deduced from Fig. 6. that local skin friction co-
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Fig. 8. Temperature profiles θθθ(((ηηη,,,ξξξ))) for
different values of Prandtl number (PPPrrr)

when ξξξ === 000...555 using BSRM.

efficient increases significantly with ω at short
time period (ξ = 0). It is also observed that the
increase in f ′′(0,ξ) with ω decreases as ξ → 1.
This result implies that at any value of ω < 1,
the overall total of unsteady acceleration term
in momentum, energy and concentration equa-
tions may leads to negligible effect of temper-
ature dependent variable fluid viscosity on ve-
locity at long time (ξ = 1). Fig. 7. depicts
that −θ′(0,ξ) increase significantly with ω at
short time period ξ = 0. It is seen that there ex-
ist a significant increase in −θ′(0,ξ) with ω as
ξ → 1.

4.2 Effects of Prandtl Number Pr on Tem-
perature Profiles at Long Time Period

When internal heat source parameters (A∗ =
B∗) = 0.2, Dufour number D f = 0.1 and Soret
number Sr = 0.1, it is noticed that both con-
duction and convection process of heat trans-
fer occurs as the fluid flows along a vertical
heated surface (i.e. Tw > T∞). The existence of
the two processes of heat transfer drastically af-
fects the temperature difference as both modes
of heat transfers were competing in transferring
the heat energy. It is observed in Fig. 8. that
temperature distribution decreases with an in-
crease in the magnitude of Prandtl number Pr.

4.3 Effects of Dufour Number D f at Short
Time and Long Time Periods

The effects of Dufour number on the velocity
profiles is shown in Fig. 9. From this figure,
we see that each velocity profile increases from
the wall η = 0 to a point near the wall η < 2.
This can be traced to the effect of Blasius no-
slip boundary condition. It is also observed
that velocity function f ′(η,ξ) increase negligi-
bly with D f within a small domain of η near the
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Fig. 9. Velocity profiles fff ′′′(((ηηη,,,ξξξ))) for different
values of Dufour number (DDD fff ) when ξξξ === 000...555.
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Fig. 10. Temperature profiles θθθ(((ηηη,,,ξξξ))) for
different values of Dufour number (DDD fff )

when ξξξ === 000...555.

wall. Base on this, we may conclude that when
Sr ≪ 1 fluid velocity rises negligibly with D f
within 0.8 ≤ η ≤ 3.4.

The effects of thermo-diffusion parameter (i.e.
Dufour number) on the temperature distribution
is shown in Fig. 10. when A∗ = B∗ = 0.2,
Sr ≪ 1. As D f increases within the range 0 ≤
D f ≤ 1.5, the temperature distribution increases
significantly near the vertical heated plate 0 ≤
η ≤ 4, thereafter no significant effect as η → 10
(fluid at free stream). The minimum distribu-
tion of temperature within the fluid domain is
observed when D f = 0 (i.e. in the absence of
energy flux due to composition gradient). The
increasing effect θ(η,ξ) with an increase in en-
ergy flux due to composition gradient is inves-
tigated at all values of 0.01 ≤ (A∗,B∗) ≤ 1.
Based on this, we may conclude that space-
and temperature- dependent internal heat source
contributes to this increasing effect θ(η,ξ) with
an increase in energy flux due to composition
gradient.
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Fig. 12. Variations of Nusselt number
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different values of Dufour number (DDD fff )
when ξξξ === 000...555.

An attempt was further made to unravel the ef-
fect of increasing Dufour parameter on physi-
cal quantities of interest (i.e. local skin fric-
tion coefficient, Nusselt number and Sherwood
number) at all time 0 ≤ ξ ≤ 1 as shown in Fig.
11., Fig. 12. and Fig. 13. It is observed
in both Fig. 11. and Fig. 13. that at long
time period (ξ = 1), increase in Dufour num-
ber leads to a negligible increase in local skin
friction coefficient

√
ξC f

√
Rex and Sherwood

number
√

ξ/(
√

xRex)
−1/2Sh. Also, D f leads to

a significant increase in both
√

ξC f
√

Rex and√
ξ/(

√
xRex)

−1/2Sh at short time period (ξ =
0). In addition, a significant increase in Nus-
selt number

√
ξ/(

√
xRex)

−1/2Nu which is pro-
portional to the rate of heat transfer with D f is
noticed at short time period as shown in Fig. 12.

0 0.2 0.4 0.6 0.8 1
0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

ξ

−
φ
′
(0
,
ξ
)

Df = 0
Df = 0.5
Df = 1
Df = 1.5

Df

ω = 0.2, m
1
 = 1, 

G
t
 = G

s
 = 1, P

r
 = 0.71,

A* = B* = 0.2, D
f
 varies, S

r
 = 0.1,

S
c
 = 0.62

Fig. 13. Variations of Sherwood number
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different values of Dufour number (DDD fff )
when ξξξ === 000...555.
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4.4 Effects of Soret Number Sr at Short
Time and Long Time Periods

Figure 14 shows the effects of Soret parameter
Sr on the concentration function ϕ(η,ξ). We
observed that when Sr increases, the concentra-
tion profiles increases significantly within fluid
domain 1 ≤ η ≤ 5. The negligible decrease is
noticed near the vertical heated wall and con-
centration distributions asymptotically tend to
zero within 4 ≤ η ≤ 10. When the dimension-
less time scale is 1/2, this implies that both un-
steady acceleration and convective acceleration
are significant in the fluid flowing.

The negligible decrease in the concentration
profiles near the wall can be traced to the
low magnitude of energy flux due to concen-
tration gradient 1/10 while the magnitude of
mass flux due to temperature gradient increases
within 0 ≤ Sr ≤ 1.5. Variation of Sherwood
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Fig. 15. Variations of Sherwood number
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number
√

ξ/(
√

xRex)
−1/2Sh with Sr and ξ is

presented in Fig. 15. It is observed that
Soret number has significant increasing effect
on

√
ξ/(

√
xRex)

−1/2Sh which is proportional to
local mass transfer rate at short time period (ξ=
0). The rate at which −ϕ′(0,ξ) increases with ξ
in the absence of diffusion-thermo is more sig-
nificant than when Sr = 1.5. The negligible in-
crease in the magnitude of

√
ξ/(

√
xRex)

−1/2Sh
with ξ as shown in Fig. 15. calls for fur-
ther investigation of the effect of Soret num-
ber (Sr) on

√
ξ/(

√
xRex)

−1/2Sh when magni-
tude of Dufour number (D f ) is small and large.
At short time period, it is shown in Fig. 16. that√

ξ/(
√

xRex)
−1/2Sh when D f = 0.2 has a linear

relation with Sr and of small quantity if com-
pared with the case when

√
ξ/(

√
xRex)

−1/2Sh
varies with Sr when D f = 1.5.

5. CONCLUSION

In this paper, a new spectral collocation-based
method derived in terms of bivariate Lagrange
interpolation polynomials have been used to
solve a highly nonlinear dimensionless partial
differential equation which models unsteady
boundary layer flow over a vertical surface in
the presence of thermal diffusion and diffusion-
thermo due to impulsive and buoyancy. The
newly proposed method called bivariate spec-
tral relaxation method have been successfully
used to solve a strong nonlinear coupled PDE
(BVP) due to the involvement of Dufour terms
in energy equation and Soret term in the species
(mass) equation. The derivation of the method
(BSRM) was found to be straightforward be-
cause it does not depend on any linearization
expansions. In fact, the discretization of the or-
dinary and partial derivatives is based on sim-
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Fig. 16. Variations of −−−ϕϕϕ′′′(((000,,,ξξξ === 000))) when
DDD fff === 000...222 and DDD fff === 111...555 with SSSrrr.

ple formulas. Since the numerical accuracy of
spectral methods is very high; the number of
grid points required to achieve the desired pre-
cision may be very low, thus a spectral method
often requires less memory during computation.
BSRM approach gives accurate solutions which
are uniformly valid for all dimensionless time
0 ≤ τ < +∞ in the whole region of 0 ≤ (η) <
+∞ where the exact solution is not available.
The effects of various physical parameters like
temperature dependent variable fluid viscosity
ω, Dufour D f and Soret number Sr were also
investigated. The main findings of this investi-
gation may be summarized as follows:

1. Increase in velocity profiles f ′(η,ξ) with
ω when (ξ = 0) is more pronounced than
when ξ = 0.5. Maximum velocity ex-
ist at short time period of the fluid flow.
Likewise, temperature profiles θ(η,ξ) de-
creases with ω when ξ = 0 and decreases
more significantly when ξ = 0.5.

2. Temperature dependent viscous parameter
(ω) decreases temperature profile negligi-
bly at short time period and significant de-
crease when ξ = 0.5. When (D f ,Sr) ≪ 1
and (Gt ,Gs) = 1

√
ξ/(

√
xRex)

−1/2Nu is
an increasing function of ω. This is true
at all time within the domain (0 ≤ ξ ≤ 1).

3. Near the final steady stage (0.9 ≤ ξ ≤ 1),
Sherwood number increases when Sr ≪ 1
but decrease when Sr = 1.5. Within the
above mentioned time interval, mass trans-
fer rate in the absence of Soret effect is
quite different from when Soret effect is
present.

4. At short time period of the flow, the in-
creasing effect of Dufour number on mass
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transfer rate is more significant than on lo-
cal skin friction coefficient. The increase
in the magnitude of

√
ξ/(

√
xRex)

−1/2Sh
with D f when Sr = 1.1 is more enhanced
than when Sr = 0.2. This is true at all time
within the domain 0 ≤ ξ ≤ 0.7.

5. Maximum increasing effect of D f on√
ξ/(

√
xRex)

−1/2Nu is obtained in the ab-
sence of diffusion-thermo (Dufour effect).
BSRM method can be extended to solve
other types of nonlinear PDE systems with
fluid mechanics applications or problems
from other disciplines of science and engi-
neering which are defined in terms of sys-
tems of non-linear PDEs.
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