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ABSTRACT

The effect of variable gravity on the free convection in a horizontal porous layer with viscous dis-
sipation is investigated. The bottom boundary is taken as adiabatic and there is a non-uniform
temperature distribution along the upper boundary. The effect of viscous dissipation is significant
and the top boundary temperature distribution is assumed to have a constant gradient. The gravity
varies linearly with the height. A linear stability analysis of the basic flow is carried out. The critical
horizontal Rayleigh number is calculated for oblique roll disturbances. The longitudinal rolls are
found to be the most unstable ones. The viscous dissipation has a destabilizing effect. There is a
drastic decrease in the value of critical horizontal Rayleigh number when modified variable gravity
parameter changes from −1 to 1.
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NOMENCLATURE

a non-dimensional wave number
c heat capacity per unit mass
f (z),h(z) eigen functions
g0 modulus of the reference

gravitational acceleration
g gravitational acceleration
Ge Gebhart number
k thermal conductivity
k̂ unit vector in z-direction
K permeability
L thickness of the layer
p non-dimensional pressure
P non-dimensional pressure disturbance
qh horizontal heat flux
Ra horizontal Darcy-Rayleigh number
t non-dimensional time
T non-dimensional temperature
T̂B reduced non-dimensional temperature
T̄0 reference temperature
u non-dimensional velocity

vector (u, v, w)
U non-dimensional velocity

disturbance (U , V , W )
(x, y, z) non-dimensional coordinates

α thermal diffusivity
β volumetric coefficient of thermal

expansion
η variable gravity parameter
η̃ real exponential coefficient ℜ(λ)
Θ non-dimensional temperature

disturbance
λ complex exponential coefficient,

η̃+ iω̃
µ dynamic viscosity
ν kinematic viscosity
ξ complex parameter
ρ fluid density at T̄ = T̄0
σ heat capacity ratio
χ inclination angle of the oblique

rolls
Ψ streamfunction
ω̃ imaginary exponential coefficient

ℑ(λ)

1. INTRODUCTION

The problem of convection in porous media is
of a great interest among the researchers be-

cause of its wide range of applications from
engineering to geophysical problems. In most
of the earlier studies of convection in porous
media, the contribution of the viscous dissipa-
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tion to the energy equation has been neglected. 
However, in recent years it has been noted that in 
mixed convection and vigorous natural con-
vection flows in porous media, viscous dissipa-
tion may become more significant. Also grav-ity 
has been assumed to be constant in most of the 
experimental and theoretical studies. But this 
assumption may not give accurate result while 
considering large scale flows, e.g. flows in ocean, 
atmosphere or earth’s mantle, be-cause the 
gravity field is varying with height from earth’s 
surface. In this cases consider-ing gravity as 
variable will help one to pro-duce more accurate 
results. The convection of a fluid through a flat 
layer bounded above and below by perfectly 
conducting media with vertical temperature 
gradient is considered by Horton and Rogers 
(1945). The instability of a horizontal fluid layer 
where the gravitational field is varying with 
height is investigated by Pradhan and Samal 
(1987). Later Straughan (1989) done the linear 
instabilty and nonlin-ear energy stability analysis 
for convection in a horizontal porous layer with 
variable gravity effect. Alex et al. (2001) 
investigated the ef-fect of variable gravity on the 
onset of convec-tion in an isotropic porous 
medium with inter-nal heat source and inclined 
temperature gradi-ent. The effect of variable 
gravity field on the onset of thermosolutal 
convection in a fluid sat-urated isotropic porous 
layer is studied by Alex and Patil (2001). Barletta 
et al. (2009) con-sidered a horizontal porous layer 
with an adia-batic lower boundary and an 
isothermal upper boundary and discussed the 
effect of viscous dissipation on parallel Darcy 
flow by means of linear stability analysis. The 
effect of viscous dissipation, on the stability of 
flow in a porous layer with an adiabatic bottom 
boundary and a top boundary with a stationary 
and non-uniform temperature distribution is 
investigated by Bar-letta et al. (2010). The linear 
thermoconvec-tive instability of a parallel flow in 
a horizon-tal porous layer bounded by 
impermeable walls and subject to a uniform heat 
flux is studied by Barletta (2012). Roy and 
Murthy (2015) dis-cussed the effect of Soret 
parameter on double diffusive convection when 
the convection oc-curs solely due to viscous 
dissipation. Recently the problem of convection 
in porous media with internal heat source and 
variable gravity effect is studied using three-
dimensional simulations (Harfash 2014). In this 
study the effect of variable gravity on convection 
in porous me-dia with an adiabatic lower 
boundary and an upper boundary with a 
horizontal temperature gradient is analyzed by the 
means of linear sta-bility analysis. The viscous 
dissipation is non-negligible. It is assumed that  

the gravity varies linearly with height.

2. MATHEMATICAL FORMULATION

A porous slab of height L bounded by two hor-
izontal impermeable planes z̄ = 0 and z̄ = L is 
considered. The gravity vector g is vary-ing 
linearly with z̄ (Chen and Chen 1992) so that g 
= −g0(1 + η̄ z̄)k̂, where η̄ is the vari-able 
gravity parameter which is assumed to be 
constant. The bottom boundary is adi-abatic. 
There is a linear change in tem-perature in the 
horizontal x̄- direction along the upper boundary 
(as indicated in the Eq. 5). Here ‘bar’ denotes 
dimensional quantities.

Fig. 1. The physical system and the 
boundary con-ditions

With the Oberbeck-Boussinesq approximation, 
the govening equations for the Darcy flow can 
be written as ∇̄ · ū = 0 (1)

µ
K

ū =−∇̄p̄+ρ0g0(1+ η̄z̄)β(T̄ − T̄0)k̂ (2)

σ
∂T̄
∂t̄

+ ū · ∇̄T̄ = α∇̄2T̄ +
ν

Kc
ū · ū (3)

The boundary conditions are

z̄ = 0 : w̄ = 0,
∂T̄
∂z̄

= 0, (4)

z̄ = L : w̄ = 0, T̄ = T̄0 −
qh

k
x̄ (5)

While writing the governing equations, the ef-
fect of viscous dissipation to the energy equa-
tion is considered and the fluid and solid are as-
sumed to be in local thermal equilibrium. The
last term in Eq. 3 represents the effect of vis-
cous dissipation for the Darcy flow. A detailed
study for deriving the expression for viscous
dissipation is given in Bejan (2013), Murthy and
Singh (1997).

The governing equations are non-
dimensionalized using the following nondi-
mensional parameters.

(x̄, ȳ, z̄) = (x,y,z)L, (ū, v̄, w̄) = (u,v,w)
α
L
, η = η̄L,

T̄ = T̄0 +T
να

g0βLK
, t̄ = t

σL2

α
, p̄ = p

µα
K

(6)
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The non-dimensional formulation of the prob-
lem is given by

∇ ·u = 0 (7)

u =−∇p+(1+ηz)Tk̂ (8)

∂T
∂t

+u ·∇T = ∇2T +Geu ·u (9)

z = 0 : w = 0,
∂T
∂z

= 0, (10)

z = 1 : w = 0, T =−Rax (11)

where the non-dimensional parameters are

Ge =
βg0L

c
, Ra =

βg0qhKL2

ναk
(12)

2.1 Steady State Solution

Let us assume the velocity, temperature and
pressure for the basic flow is given by

uB = uB(z), vB = wB = 0,
TB = TB(x,z), pB = pB(x,z) (13)

After solving Eqs. (7)-(11) for uB, TB and pB,
we get,

uB(z) = Raz(1+ηz) (14)

TB(x,z) =−Rax+
Ra2

120
[5[4(1− z3)+η(1− z4)]

+Ge[10(1− z4)+6η(1− z5)+η2(1− z6)]]

(15)

PB(x,z) =−Raxz(1+
ηz
2
)− Ra2z

2880
[20[6z3 +6z4η+

z5η2 −6(4+η)−3zη(4+η)]+Ge[48z4+

64z5η+24z6η2 +3z7η3 −24(10+6η+

η2)−12zη(10+6η+η2)]]

(16)

To analyze the behavior of the basic tempera-
ture profile, we introduce a reduced temperature
gradient

T̂B(z) =
12

Ra2 [Tb(x,z)+Rax]

=
1
10

[5{4(1− z3)+η(1− z4)]+Ge[10(1− z4)

+6η(1− z5)+η2(1− z6)}] (17)

Plots of this reduced temperature functions for 
different values of η are given in Fig. 2. From 
these figures, it can be seen that the tempera-
ture at the lower boundary is always greater than 
the temperature at the upper boundary when x is 
constant. When Ge is constant, the temperature 
at the lower boundary increases as η increases 
from −1 to 1.

(a) η =−1

(b) η =−0.5

(c) η = 0

(d) η = 0.5

(e) η = 0.8

(f) η = 1

Fig. 2. TTT̂ BBB[[[zzz]]] vs. zzz for different values of ηηη.
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2.2 Linear Stability Analysis

Using small perturbation parameter ε, the basic
solutions are perturbed. Linearizing Eqs. (7)-
(11) with respect to ε, we get the linearized sys-
tem of governing equations as

∇ ·U = 0 (18)

U =−∇P+(1+ηz)θk̂ (19)

∂θ
∂t

+uB
∂θ
∂x

+U
∂TB

∂x
+W

∂TB

∂z
= ∇2θ+2GeuBU (20)

z = 0 : W = 0,
∂θ
∂z

= 0 (21)

z = 1 : W = 0, θ = 0 (22)

The pressure-temperature formulation of the
governing equations is given by

∇2P = (1+ηz)
∂θ
∂z

+θη (23)

∂θ
∂t

+uB
∂θ
∂x

− ∂P
∂x

∂TB

∂x
− (

∂P
∂z

− (1+ηz)θ)
∂TB

∂z

= ∇2θ−2GeuB
∂P
∂x

(24)

z = 0 :
∂P
∂z

= θ,
∂θ
∂z

= 0 (25)

z = 1 :
∂P
∂z

= 0, θ = 0 (26)

The plane wave solutions of Eqs. (23)-(26) in
the form of plane waves which are inclined with
respect to x-axis is assumed (Barletta et al.
2010). For neutral stability Eqs.(23)-(26) can
be written as

f ′′−a2f − (1+ηz)h′−hη = 0 (27)

h′′−[a2 − Ra2

120
(1+ηz)[5(12z2 +4z3η)+Ge

(40z3 +30z4η+6z5η2]+ i(ω̃+a cosχRaz

(1+
ηz
2
))]h− Ra2z2

120
[5(12+4zη)+Ge(40z

+30z2η+6z3η2)] f ′− ia cosχRa(1+2Gez

(1+
ηz
2
)) f = 0 (28)

z = 0 : f ′ = h, h′ = 0, (29)
z = 1 : f ′ = 0, h = 0 (30)

Here χ is the inclination angle between the di-
rection of the basic flow and the propagation
direction of the disturbance wave. For χ = π

2 ,
the disturbance will produce longitudinal rolls
and for χ = 0 we get transverse rolls. Critical
Rayleigh number is obtained for stationary lon-
gitudinal modes and oblique rolls. For station-
ary longitudinal rolls λ = 0 i.e η̃ = 0 and ω̃ = 0

2.3 Numerical Solution of the Eigenvalue
Problem

The eigen value problem given by Eqs. (27)-
(30) is solved numerically by a fourth order
Runge-Kutta method accompanied by shooting
method (Barletta et al. 2010). The new set of
initial conditions is

z = 0 : f = ξ, f ′ = 1, h = 1, h′ = 0 (31)

For a set of input parameters (a, Ge, η), using
the boundary conditions at z = 1 one can calcu-
late the values of (Ra, ω̃) and also ξr, ξi, where
ξ = ξr + iξi. We have solved the problem in
Mathematica 8 using NDSolve and FindRoot.
After getting Ra for a given pair (a, Ge, η), the
critical horizontal Rayleigh number(Racr) is ob-
tained by minimizing Ra(a) for every (Ge, η)
i.e. Racr = min[Ra(a)]. While applying shoot-
ing method, the initial guess for (Ra, ω̃) plays
an important role as the convergence of the
method depends on this initial guess. For lon-
gitudinal rolls, an initial guess can be found by
Galerkin’s method of weighted residuals.

3. ANALYTICAL SOLUTION

An approximate solution of Eqs. (18)-(22) can
be found for longitudinal rolls by Galerkin’s
method of weighted residuals (Finlayson and
Scriven 1966; Barletta et al. 2010). The
weighted residual method yields expression for
Ra.

Ra2 =
2187π8

256a2(3π+4η)
[−960Geπ2 −252π3+

108π4 +108Geπ4 +5856Geπη−480π2η−
2880Geπ2η+54π4η+11648Geη2−
1440Geπ2η2 +27Geπ4η2]−1(4a4+

5a2π2 +π4) (32)

Now to get the critical value of Ra, we minimize
the right hand side of Eq.(32) with respect to a.
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This gives the critical values

acr =
π√
2

Ra2
cr =

19683π10

256(3π+4η)
[6π2(−42π−80η+9π2(2+

η))+Ge(5856πη+11648η2 +27π4(2+

η2)−480π2(2+6η+3η2))]−1 (33)

Table 1 Comparison of critical horizontal
Rayleigh number vs GGGeee for longitudinal rolls

when ηηη === 000
Barletta et al. (2010) Present Results

Ge Racr acr Racr acr

0 15.0311 2.62247 15.0310 2.62351
0.2 14.4496 2.63512 14.4495 2.63603
0.4 13.9300 2.64636 13.9300 2.64637
0.6 13.4622 2.65639 13.4622 2.65636
0.8 13.0382 2.66540 13.0382 2.66545
1 12.6516 2.67354 12.6516 2.67344

Table 2 Critical horizontal Rayleigh number
and critical wave number for different

values of GGGeee and ηηη for longitudinal rolls
(a) η = 0.5

Ge Racr acr

0 12.6539 2.72423
0.1 12.3605 2.73331
0.5 11.3607 2.76396
1 10.3941 2.79286

(b) η = 1

Ge Racr acr

0 10.9456 2.79457
0.1 10.6557 2.80689
0.5 9.68795 2.84774
1 8.77982 2.88532

(c) η =−0.5

Ge Racr acr

0 18.5734 2.45527
0.1 18.2634 2.45813
0.5 17.1614 2.46825
1 16.0269 2.53359

(d) η =−1

Ge Racr acr

0 24.4848 2.30665
0.1 24.1520 2.30718
0.5 22.9442 2.30910
1 21.6611 2.31117

Fig. 3. The dependence of RRRaaacccrrr on χχχ for 
different values of GGGeee and ηηη.

4. RESULTS AND DISCUSSION

4.1 Longitudinal Rolls

A comparison of our results for η = 0 and the 
results obtained by Barletta et al. (2010) are

2625
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(c) η = 0.5

(d) η = 1

(a) η = -1
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(a) η =−1 (b) η =−0.5

(c) η = 0 (d) η = 0.5

(e) η = 0.8 (f) η = 1

Fig. 4. Streamlines (solid lines) and 
isotherms (dashed lines) for aaa === aaacccrrr,
RRRaaa === RRRaaacccrrr, GGGeee === 000, ttt === 000, χχχ === πππ

222 with
different values of ηηη.

given in Table 1. Table 2 shows the values of
Racr and acr for different values of Ge and η
for longitudinal rolls. From Table 1 and Ta-
ble 2, it is clear that when η decreases from 0
and becomes negative i.e. the gravitational field
decreases with height, the Rayleigh number in-
creases and this results in a more stable flow.
When η increases from 0 i.e. the gravitational
field increases with height, the Rayleigh num-
ber decreases resulting in a more unstable flow.

4.2 Oblique Rolls for Different Values of η

The dependence of Racr on χ (when Ge and η
are constant) is displayed in Fig. 3.

It shows that for all values of Ge and η, Racr
decreases as χ increases from 0 to π/2. It is
concluded that longitudinal rolls are most unsta-
ble. For oblique rolls also Racr increases when
gravitational field decreases with height from its
reference value (η decreases from 0) and Racr
decreases as gravitational field increases with
height (η increases from 0).This proves that in-

(a) η =−1 (b) η =−0.5

(c) η = 0 (d) η = 0.5

(e) η = 0.8 (f) η = 1

Fig. 5. Streamlines (solid lines) and 
isotherms (dashed lines) for aaa === aaacccrrr,
RRRaaa === RRRaaacccrrr, GGGeee === 000, ttt === 000, χχχ === πππ

333 with
different values of ηηη.

π
2

creasing gravitational acceleration advances the 
onset of convection. From these results, it is ev-
ident that viscous dissipation has a destabilizing 
effect on convection both in presence and in ab-
sence of variable gravity field.

4.3 Convective Roll Patterns for Ge=0 and
Different Values of η

The streamlines ψ = constant(solid lines) and 
isotherms θ = constant (dashed lines) corre-
sponding to the critical conditions for Ge = 0 
with different values of η and χ are represented 
in Figs (4)-(7).

When η is constant, there is a clear bending 
of convective rolls as χ decreases from to 
0. Also, when χ is constant and η decreases 
from 0, the streamlines are magnified, but the 
isotherms are shrunken. But as η increases from 
0, the unicellular streamlines tend to become bi-
cellular and the isotherms are magnified. The 
shape of the convective rolls are not much af-
fected by the viscous dissipation.
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(a) η =−1 (b) η =−0.5

(c) η = 0 (d) η = 0.5

(e) η = 0.8 (f) η = 1

Fig. 6. Streamlines(solid lines) and 
isotherms (dashed lines) for aaa === aaacccrrr,
RRRaaa === RRRaaacccrrr, GGGeee === 000, ttt === 000, χχχ === πππ

666 with
different values of ηηη.

5. CONCLUSIONS

The effect of variable gravity on parallel Darcy
flow in a horizontal plane porous layer with im-
permeable boundaries has been studied. the ef-
fect of viscous dissipation to the energy equa-
tion is taken into account. In the existing liter-
ature although gravity is considered as variable,
viscous dissipation effect is neglected. Here
we have discussed the effect of variable grav-
ity when the viscous dissipation effect is signif-
icant. It has been seen that for constant Geb-
hart number, the basic temperature at the lower
boundary increases as variable gravity param-
eter η increases from −1 to 1. It is observed
that for a constant η, Racr is a decreasing func-
tion of Ge. This proves that viscous dissipation
has a destabilizing effect. When Ge is constant,
Racr decreases when gravitational acceleration
increases with height from its reference value(η
increases from 0 to 1) and an opposite effect is
seen when η decreases from 0. This shows that
the flow tends to be more unstable if g increases

(a) η =−1 (b) η =−0.5

(c) η = 0 (d) η = 0.5

(e) η = 0.8 (f) η = 1

Fig. 7. Streamlines (solid lines) and 
isotherms (dashed lines) for aaa === aaacccrrr,

RRRaaa === RRRaaacccrrr, GGGeee === 000, ttt === 000, χχχ === 000 with 
different values of ηηη.

with height. The longitudinal rolls are happen 
to be the most unstable ones. The variable grav-
ity has a significant effect on convective rolls. 
As η increases from 0 to 1, i.e. if g increases 
with height, the unicellular streamlines tend to 
become bi-cellular.
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