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ABSTRACT 

A theoretical study of steady laminar two-dimensional flow of a non-Newtonian fluid in a parallel porous 

channel with variable permeable walls is carried out. Solution by Differential Transform Method (DTM) is 

obtained and the flow behavior is studied. The non-Newtonian fluid considered for the study is couple stress 

fluid. Thus, in addition to the effects of inertia and permeabilities on the flow, the couple stress effects are 

also analyzed. Results are presented and comparisons are made between the behaviour of Newtonian and non-

Newtonian fluids. 

 

Keywords: Laminar flow; Couple stress fluid; Porous channel; Variable permeability; Differential transform 

method.  

NOMENCLATURE 

f,  g generic functions 

h height of the channel 
2l  dimensionless couple stress parameter 

q  
velocity vector 

1R  Reynolds number in case (i)
 

2R  Reynolds number in case (ii)
 

*R  entrance Reynolds number 

(0)U  entrance velocity 

u axial velocity 

1V  permeability velocity at the lower plate 

2V  permeability velocity at the upper plate 

v normal velocity 

 

1  suction/injection parameter for case (i) 

2  suction/injection parameter for case (ii)  

   dimensionless y coordinate 

  fluid density 

  fluid viscosity 

1  ratio of injection/suction Reynolds number 

to entrance Reynolds number-case 

2  ratio of injection/suction Reynolds number 

to entrance Reynolds number-case 

  couple stress parameter  

  

 
1. INTRODUCTION 

Laminar flow through porous channels (or) ducts 

have gained considerable importance because of 

their applications in industries and biophysical 

laboratories, such as binary gas diffusion, filtration, 

ablation cooling, transpiration cooling, paper 

manufacturing, oil production, blood dialysis in 

artificial kidneys and blood flow in capillaries. 

 Several researchers have studied the wall porosity 

effects on the two-dimensional steady laminar flow 

of an incompressible Newtonian fluid through 

uniform porous walls. Berman (1953) has 

investigated the effect of wall porosity on the two-

dimensional steady laminar flow of an 

incompressible Newtonian fluid in a rectangular 

channel and obtained solution by perturbation. 

Yuan (1956) has analyzed the two-dimensional 

steady laminar flow of an incompressible 

Newtonian fluid in channels with porous walls at 

moderate Reynolds numbers. Terrill (1964) has 

solved the flow in a two-dimensional channel with 

permeable walls by a numerical technique with 

http://www.jafmonline.net/
mailto:vimalap@annauniv.edu


P. Vimala and P. Blessie Omega / JAFM, Vol. 9, No. 6, pp. 2707-2716, 2016.  

 

2708 

uniform injection or suction. Terrill and Shrestha 

(1965) have studied the flow through parallel 

porous walls of different permeabilities for small 

Reynolds number and solved using perturbation 

technique and numerical method. 

Many studies on fluid flows are confined to the use 

of Newtonian fluids owing to its simple nature of 

the linear constitutive equation. However, in many 

practical applications, the fluids used are non-

Newtonian. In the classical continuum theory, 

various non-Newtonian models are used to describe 

the non-linear relation between stress and rate of 

strain. In particular, power-law model, cubic 

equation model, Oldroyd B model, Rivlin-Ericksen 

model, Hershel-Bulkley model, Bingham plastic 

model and Maxwell model have received 

remarkable attention among fluid dynamists. 

Further, analytical solution of fluid flow problems 

using Newtonian fluid is mostly possible and 

available in literature whereas it is rare in flow 

problems using non-Newtonian fluids. Therefore, it 

is reasonable to attempt at determining an analytical 

or a semi-analytical solution procedure for a non-

Newtonian fluid flow problem.  

The theory of couple stress fluids proposed by 

Stokes (1966) shows all the important features and 

effects of couple stresses in fluid medium. The 

basic equations are similar to Navier Stokes 

equations. The importance of couple stress effects 

in flow between parallel porous plates have been 

analyzed by several researchers. Kabadi (1987) has 

studied the flow of couple stress fluid between two 

parallel horizontal stationary plates with fluid 

injection through the lower porous plate. Ariel 

(2002) has provided an exact solution for flow of 

second grade fluid through two parallel porous flat 

walls. Kamisili (2006) has analyzed the laminar 

flow of a non-Newtonian fluid in channels with the 

upper plate stationary, while the lower plate is 

uniformly porous and moving in x-direction with 

constant velocity. Srinivacharya et al. (2009) have 

analyzed the flow and heat transfer of couple stress 

fluid in a porous channel with expanding and 

contracting walls. Srinivacharya et al. (2010) have 

investigated the flow of couple stress fluid between 

two porous plates for suction at both plates with 

different permeabilities. 

A powerful semi-analytical technique namely 

Differential Transform Method (DTM) proposed by 

Zhou (1986) has been used to solve both linear and 

non-linear initial value problems in electric circuit 

theory. Several researchers like Chen and Ho 

(1999), Bert (2002), Kurnaz et al. (2005), Erturk et 

al. (2007), Rashidi and Sadri (2010), Rashidi et al. 

(2010),  Rashidi and Mohimanian Pour (2010), 

Rashidi and Erfani (2011), Vimala and Blessie 

(2013) have used DTM to solve partial differential 

equations, system of algebraic equations and fluid 

flow problems with highly non-linear terms.  In this 

paper, a steady laminar two-dimensional flow of 

couple stress fluid in a porous channel with variable 

permeablities is considered. The effects of inertia, 

porosity and couple stresses on the flow behavior 

are studied. At every stage of the formulation and 

solution, the present problem in the Newtonian case 

is compared with existing literature and the results 

agree well, which validate the present results. 

2. MATHEMATICAL FORMULATION 

The problem of two-dimensional steady laminar 

flow of an incompressible viscous couple stress 

fluid in a parallel porous channel is considered. 

Various types of flow occur and they fall under two 

major categories: (i) 
1 2V V  and (ii)

2 1V V . 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Flow Geometry. 

 
Based on the Stokes microcontinuum theory, the 

governing equations of the flow in the absence of 

body forces and body moments are the continuity 

equation and the momentum equations (Stokes 

1966) given by 

. 0q   , (1) 

 . ( )

( ( ( )))

q q p q

q

 



     

     . 
(2) 

The boundary conditions are 

 
1

2

( ,0) 0, ( ,0)

( , ) 0, ( , )

u x v x V

u x h v x h V

 

 
  , (3) 

and the no-couple stress conditions at the boundary 

are 

2

2

2

2

0 at 0,

0 at .

u
y

y

u
y h

y


 




 



   .                  (4) 

Taking
y

h
  , the above equations become 

1
0

u v

x h 

 
 

 
 , (5) 

2 2

2 2 2

1 1u v u p u u
u

x h x x h


  

      
    

      

, 
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4 4 4

4 4 4 2 2 2

1 2u u u

x h h x



  

   
   

     

 (6) 

2 2

2 2 2

1 1v v v p v v
u

x h h x x h


  

      
    

      

,  

4 4 4

4 4 4 2 2 2

1 2v v v

x h h x



  

   
   

     

                 (7) 

where p is the pressure and   is the kinematic 

viscosity. 

The boundary conditions are given by 

1

2

( ,0) 0, ( ,0) ,

( ,1) 0 , ( ,1) .

u x v x V

u x v x V

 

 
         (8) 

and 

2

2

2

2

0 at 0,

0 at 1.

u

u








 




 



      .  (9) 

Using a stream function (Berman, 1953) of the form  

1 2(0)
( , ) ( )

(1) (0) (1) (0)

V VhU
x x s

s s s s
  

 
  

  
, (10) 

where 

1

0

(0) (0, )U u d    is the entrance 

velocity, the partial differential Eqs. (5)-(7) reduce 

to an ordinary differential equation. 

Without loss of generality, it is assumed that  

1 2V V  in the first case and 2 1V V  in the 

second case. 

2.1 Case(i)
 1 2V V  

The stream function of Eq.(10) in this case becomes  

1

1

(0)
( , ) ( )

hU
x V x f  



 
  
 

 , (11)    

where 
2

1

1

( )
( ) , 1

(0)

Vs
f

s V


    . (12) 

Further, Eq. (6) and Eq. (7) respectively become  

 21

1

1
2 4

(0) 1

v

V
ff f

V xU ph

h x
f f

h h

  



 
     

   
    

 
 

,(13) 

21 1

1 3

ivV V p
f V ff f

h h

 





   


,   (14) 

Eq.(14) is a function of   only and therefore  

2

0
p

x 




 
   . (15) 

Using Eq.(15) in Eq.(13), a fifth order differential 

equation  is obtained as  

2 2

1 1( )vl f f R f ff A     
  

 , (16) 

where
 1A  is an arbitrary constant,

 
2

2

h
l






 

is the 

dimensionless couple stress parameter and 

1 1 /R V h   is the Reynolds number. It may be 

noted that Eq.(16) reduces to its Newtonian 

counterpart when
2l is made to vanish . 

The boundary conditions from Eq. (8) and Eq. (9) 

become 

1(0) 1, (0) 0, (1) 1 ,

(1) 0, (0) 0, (1) 0.

f f f

f f f

   

    
   (17) 

For the case of suction at the upper wall and 

injection at the lower wall,
 1  takes the range 

11 0  
 
and 1 0R  . For injection at the upper 

wall and suction at the lower wall, the range is
 

11 0    and 1 0R  . For suction at both walls, 

it is required that 1 0,R 
 12 1    , and for 

injection at both walls, it is 1 10, 2 1R      .   

2.2 Case (ii)
 2 1V V  

In this case, the stream function becomes  

2

2

(0)
( , ) ( )

hU
x V x g  



 
  
 

 ,  (18) 

where 1

2

2

1
V

V
     and 

( )
( )

(1)

s
g

s


  .  

Further Eq. (6) and Eq. (7) in this case reduce to 

 22

2

2
2 4

(0) 1

v

V
gg g

V xU ph

h x
g g

h h

  



 
     

   
    

 
 

,(19) 

22 2
2 3

ivV V p
g V gg g

h h

 





   


  . (20) 

Eq.(20) is independent of x and therefore Eq.(15) 

holds good in this case also. Using Eq. (15) in Eq. 

(19) as in case (i), a fifth order differential equation 

in ( )g    is obtained as 

2 2

2 2( )vl g g R g gg A      ,    (21) 

  

where 2A is an arbitrary constant and 2 2 /R V h 
 

is the  Reynolds number in this case. Here again 

Eq.(21) reduces to the Newtonian case when 
2l is 

made equal to zero. The boundary conditions from 

Eq. (8) and Eq.(9) become 
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2(0) 1 , (0) 0, (1) 1,

(1) 0, g (0) 0, (1) 0.

g g g

g g

    

       (22) 

For the case of suction at the upper wall and 

injection at the lower wall, 2 takes the range 

20 1 
 
and 

2 0R  . For injection at the upper 

wall and suction at the lower wall, the range of 

values is 
20 1 

 
and 

2 0R  . For suction at 

both the walls, it is required that 

2 0,R  21 2 
 

and for injection at both the 

walls, it is 2 20,1 2R    . 

3. SOLUTION OF THE PROBLEM 

3.1 Solution by DTM for Case (i) 

Using differential transform about 0  , Eq. (16) 

can be transformed into 

1

1

2

1 1 1 1

0

1

1 1 1 1

0

1

(k 1)( 2)( 3)( 4)( 5) ( 5)

( 1)( 2)( 3) ( 3)

( 1)( 1) ( 1) ( 1)

( 1)( 2) ( ) ( 2)

( )

k

k

k

k

l k k k k F k

k k k F k

k k k F k F k k

R

k k k k F k F k k

A k





     

    

 
      

 
 
        
 







,(23)

and the first two  boundary conditions  and fourth 

condition from Eq. (17) are    

(0) 1, (1) 0, (3) 0F F F   . (24) 

It is assumed that 1 1(2) , (4)F b F d  , where 

1 1&b d  are undetermined constants. Using these 

and Eq. (24) in Eq. (23), the values of F(k) are 

obtained iteratively and the other three boundary 

conditions are  written as 

1 1

0

(1) 1 or ( ) 1
N

k

f F k 


     (25) 

1

0

(1) 0 or ( 1) ( 1) 0
N

k

f k F k




       (26)        

3

0

(1) 0 or ( 1)(k 2)(k 3) ( 3) 0
N

k

f k F k




       (27)                        

For N=17, solving the three Eqs. (25), (26) and (27), 

the values of 1 2,b d  and 1A are obtained. 

Using Eqs. (13) and (14), the general expression for 

pressure distribution is obtained as  

2

2 21 1

2

1 1 1

3 2

1

( , ) (0,0)

( ) ( ) (0)
2

(0)
( )

2

p x p

V V
f f f

h

V A VU x
f x

hh h



 
 

 






     

 
   

 

,(28)  

From this general expression the pressure 

distribution for x and   directions are deduced. The 

non- dimensional pressure drop in the x and   

directions are respectively given by  

 

 

2

1 1*

1

(0, ) ( , )

(0) / 2

1 1
2 8

x

p p x
p

U

x
A

hR

 









 
  

 

 , (29)       

 

2

2 2

2 21
1* *

2

2

1*

( ,0) ( , )

(0) / 2

4 4
( ) (1) 2 ( )

4
( ) (0)

p x p x
p

U

R
f R f

R R

R l f f
R







 






   
       

   

 
   

 

. (30) 

where  1

1 *

R x

hR
   is a non-dimensional variable 

and 
* 4 (0) /R hU   is the entrance Reynolds 

number. 

The non-dimensional stream function is given by 

1

1

( , ) 1
( , ) 4 ( )

(0)

x
x f

hU

 
  



 
    

 
.  

 (31) 

The skin friction is defined as 

2 2

2 ( / )

(0) / 2 hU(0)

wall wall

f

u
c

U

  

 

 
   ,  (31) 

where 
wallτ  is the shear stress at the wall and the 

skin friction here becomes 

1 1

1 1

8 1
4 [ ( )]f wall

h
c f

R x
  



 
  

 
. (32) 

3.2 Solution by DTM for Case (ii) 

In this case, Eq. (21) is transformed to  

1

1

2

1 1 1 1

0

2

1 1 1 1

0

2

( 1)( 2)( 3)(k 4)(k 5) ( 5)

( 1)( 2)( 3) ( 3)

( 1)( 1) ( 1) ( 1)

( 1)( 2) ( ) ( 2)

( )

k

k

k

k

l k k k G k

k k k G k

k k k G k G k k

R

k k k k G k G k k

A k





     

    

 
      

 
 
        
 







 ,(33)      

and the first two boundary conditions and fourth 

condition from Eq. (22) are 

2(0) 1 , (1) 0, (3) 0G G G    . (34) 

It is assumed that 2 2(2) , (4)G b G d  , where 

2 2,db  are undetermined constants. Using these and 

Eq. (34) in Eq. (33), the values of G(k) are obtained 

iteratively and the other three boundary conditions 

are written as 
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0

(1) 1 or ( ) 1
N

k

g G k


   (35) 

1

0

(1) 0 or ( 1) ( 1) 0
N

k

g k G k




      (36)  

3

0

(1) 0or ( 1)(k 2)(k 3)G( 3) 0
N

k

g k k




        (37) 

For N=17, solving the three equations (35),(36) and 

(37), the values of 
2 2,db  and 

2A are obtained. 

Using (19) and (20), the general expression for 

pressure distribution in this case is obtained as 

2

2 22 2

2

1 2 2

3 2

2

( , ) (0,0)

( ) ( ) (0)
2

(0)
g ( )

2

p x p

V V
g g g

h

V A VU x
x

hh h



 
 

 






     

 
   

 

 , (38)          

From this general expression, the pressure 

distribution for x and   directions are deduced. The 

non-dimensional pressure drop in the x and 

 directions are respectively given by 

 2 2*

2

1 1
2 8x

x
p A

hR




 
  

 

,  (39) 

 

2

2 22
2

2 2

2

2 1* *

4
( ) (1 )

*

4 4
2 ( ) g ( ) (0)

R
p g

R

R g R l g
R R

  

 

 
      

 

   
       

   
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where 2

2 *

R x

hR
    is a non-dimensional variable. 

In this case, the non-dimensional stream function 

and the skin friction are given by 

2
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 
  


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  & (41) 
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R x
  



 
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 
 .            (42) 

4. RESULTS AND DISCUSSION 

The problem of a steady, two-dimensional laminar 

flow of couple stress fluid in a porous channel has 

been solved using DTM under two cases 

(i) 1 2V V  and (ii) 2 1V V .  

In case (i), 1R is taken to be positive and the values 

of wall permeability 
1 0.2, 0.6   

 
correspond 

to suction at the upper wall and injection at the 

lower wall, that of 
1 1   correspond to a solid 

upper wall and injection at lower wall and those of 

1 1.4, 1.8     correspond to injection at both the 

walls. Other cases of suction at both walls, injection 

at upper wall and suction at lower wall correspond 

to negative values of 
1R . In particular, 

2 0V  in 

case (i) reduces to the problem of  Kabadi (1987). 

Figures 2-8 correspond to the results of case (i). 

Fig. 2 shows the effects of 
1 on normal velocity 

for the Reynolds number
1R 10 , couple stress 

parameter 2 = 0.0&0.5l
 
and for different values of 

the wall permeability parameter
1α . 
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Fig. 2. Effects of wall permeability on normal 

velocity (case (i)).  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1



f 
( 

)

R
1
= 1, 10,  30, 50


1
 = -0.5, l2 =0.5

 
Fig. 3. Effects of inertia on normal velocity (case 
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Fig. 4. Effects of couple stresses on normal 

velocity (case (i)). 
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 Fig. 5. Effects of wall permeability on axial 

velocity (case(i)).  
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Fig. 6. Effects of inertia on axial velocity (case 
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Fig. 7. Effects of couple stresses on axial velocity 

(case (i)). 

 
Here 2 = 0.0l correspond to the Newtonian case. 

The normal velocity decreases with increase in 

magnitude of 1 . Also, the effect of couple stresses 

2 = 0.5l on the flow behavior is to further decrease 

the normal velocity. Fig. 3 shows the inertia effects 

on normal velocity for 
2

1 0.5, 0.5l     and 

different values of
 1R . It is observed that the 

normal velocity increases with increasing Reynolds 

number.
  

Figure 4 shows the effects of couple stresses on 

the normal velocity. The normal velocity 

component decreases throughout the domain for 

increasing values of the couple stress parameter as 

seen in Fig. 2. Fig. 5 gives the effects of 
1 on 

axial velocity for 2

1 10, 0.0&0.5R l  and 

different values of 1 . 2 0.0l   corresponds to the 

Newtonian case where the axial velocity profiles 

are skewed close to the upper wall. For 2 0.5l  , 

increase in magnitude of 1 increases the 

magnitude of axial velocity, with minimum 

magnitudes at both walls and maximum 

magnitudes near the middle of the wall. Thus 

couple stresses are seen to permit a smooth flow. 

Fig. 6 shows the inertia effects on axial velocity 

for 
2

1 0.5, 0.5l    and for different values of 

1R . It is observed that the axial velocity decreases 

in magnitude as the value of 
1R is increased up to 

a certain value of . Above this value, the 

velocity increases in magnitude due to increase in 

lower wall velocity 1V  which is greater than upper 

wall velocity 2V .  

The effects of couple stresses on axial velocity are 

shown in Fig. 7. It can be seen that the axial 

velocity decreases for increasing couple stress 

parameter near the lower wall and the trend is 

reversed near the upper wall. Here, it is clearly seen 

that the flow becomes smoother as the couple stress 

parameter increases from
2 0.0l   to 

2 0.8l  . 

Fig. 8 shows the pressure drop in axial direction for 

various values of Reynolds number and for various 

values of couple stress parameter. The pressure 

drop decreases with decreasing Reynolds number 

and with decreasing couple stress parameter.  
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 Fig. 8. Axial pressure drop (case (i)).    

 
Similar graphs are plotted for case (ii) in Figs. 9-

15. In case (ii), 2R  is taken to be positive and the 
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values of
2 0.2,0.6   correspond to suction at 

the upper wall and injection at the lower wall, 

that of 
2 1   correspond to a solid lower wall 

and suction at upper wall and those of 

2 1.4,1.8   correspond to suction at both walls. 

Other cases of injection at both walls, injection at 

upper wall and suction at lower wall correspond 

to negative values of 2R . Fig. 9 shows the effect 

of 
2  on normal velocity for the Reynolds 

number 
2 10R  , couple stress parameter 

2 0.0 & 0.5l  and for different values of the 

wall permeability parameter
 2 .  The normal 

velocity decreases as the value of 
2   decreases 

for 
2 0.5l  . Also, the effect of couple stresses 

on the flow behavior is to further decrease the 

normal velocity. Fig. 10 shows the inertia effects 

on normal velocity for 
2

2 0.5, 0.5l   and 

different values of
2R . It is observed that the 

normal velocity decreases with increasing 

Reynolds number. 

 

Figure 11 shows the effects of couple stresses on 

the normal velocity. The normal velocity 

decreases with decrease in couple stress 

parameter. Fig. 12 gives the effects of 
2 on axial 

velocity for 
2

2 10, 0.0& 0.5R l   and different 

values of
2 . 

2 0.0l   corresponds to the 

Newtonian case where the axial velocity profiles 

are skewed close to the upper wall. For
2 0.5l  , 

increase in 
2   increases the axial velocity, with 

minimum values at both walls and maximum 

values near the middle of the wall. Thus couple 

stresses are seen to admit a smooth flow. Fig. 13 

shows the effects of inertia on axial velocity 

profile for 
2

2 0.5, 0.5l    and different 

values of 
2R . It is observed that the axial 

velocity decreases as the value of 
2R  increases 

up to a certain value of  . Above this value, the 

velocity increases due to increase in 2V which is 

greater than 1V . The effects of couple stresses on 

the axial velocity for fixed values of  
2

2 10, 0.5R l   are shown in Fig. 14. The axial 

velocity is increasing with increasing couple 

stress parameter for certain values of  and after 

that it is decreasing. Here, it is clearly seen that 

the flow becomes smoother as the couple stress 

parameter increases from
2 0.0l   to 

2 0.8l  . In 

Figs. 11 and 14, when the couple stress parameter 

is equal to zero, it represents the Newtonian fluid 

case. Fig. 15 shows the pressure drop in axial 

direction for various values of Reynolds number 

and for various values of couple stress parameter. 

The pressure drop decreases with increasing 

Reynolds number and with increasing couple 

stress parameter. 
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Fig. 9. Effects of wall permeability on normal 

velocity (case (i)). 
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Fig. 10. Effects of inertia on normal velocity 

(case (ii)).           
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Fig. 11. Effects of couple stresses on normal 

velocity (case (ii)). 
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Fig. 12. Effects of wall permeability on axial 

velocity (case (ii)). 
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Table 1 Effects of couple stresses on skin friction by DTM – case (i) 

 
2l  

1

1

= 2,
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R

α
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1

1

α

R
 

)0(′′f  )1(′′f  )0(′′f  )1(′′f  )0(′′f  )1(′′f  

0 -2.3730 3.7915 -1.5070 7.3454 -3.6484 10.0952 

0.2 -2.4552 2.5739 -2.2353 2.8128 -4.6619 5.4084 

0.4 -2.4759 2.5388 -2.3551 2.6645 -4.8128 5.2195 

0.6 -2.4835 2.5263 -2.4002 2.6117 -4.8707 5.1500 

0.8 -2.4875 2.5199 -2.4239 2.5846 -4.9013 5.1139 

 
Table 2 Effects of couple stresses on skin friction by DTM –  case (ii). 
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0 2.3466 -3.9354 1.1486 -10.388 1.6085 -19.770 

0.2 2.4550 -2.5740 2.2211 -2.8274 4.6159 -5.4668 

0.4 2.4758 -2.5389 2.3509 -2.6692 4.8009 -5.2350 

0.6 2.4835 -2.5264 2.3983 -2.6141 4.8655 -5.1572 

0.8 2.4875 -2.5200 2.4228 -2.5860 4.8997 -5.1157 
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Fig. 13. Effects of inertia on axial velocity (case 

(ii)). 

 
Tables 1 and 2 present comparisons between 

Newtonian ( 02 l ) and non-Newtonian results 

( 02 l ), revealing the effects of couple stresses 

on the skin friction in case (i) and case (ii) 

respectively. From Table 1 of case (i), it is 

observed that the magnitude of skin friction 

increases at the lower wall and decreases at the 

upper wall with an increase in couple stress 

parameter for all values of 
1
α  & 

1
R . Here, 

1
= -0.5α  corresponds to the case of one wall 

injection and other wall suction, whereas 
1

= -1α  

corresponds to the case of solid upper wall and 

injection at the lower wall. Further, the 

magnitude of the skin friction decreases at the 

lower wall whereas it increases at the upper wall 

with an increase in Reynolds number for fixed 

values of 
1
α  and l2 .   
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Fig. 14. Effects of couple stresses on axial 

velocity (case (ii)).  
 

 
From Table 2 of case (ii), it is observed that the 

magnitude of skin friction increases at the lower 

wall and decreases at the upper wall with an 

increase in couple stress parameter for all values 

of 
2
α  & 

2
R as in case (i). In Table 2 

2
= 0.5α  

corresponds to the case of one wall injection and 

other wall suction, whereas 
2

= 1α  corresponds 

to the case of solid lower wall and suction at the 

upper wall. Also, the magnitude of the skin 

friction decreases at the lower wall whereas it 



P. Vimala and P. Blessie Omega / JAFM, Vol. 9, No. 6, pp. 2707-2716, 2016.  

 

2715 

increases at the upper wall with an increase in 

Reynolds number for fixed values of 
2
α  and l2. 

Thus the effect of couple stresses on the 

magnitude of skin friction in both cases gets 

enhanced at one wall and diminished at the other 

wall.  
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       Fig. 15. Axial pressure drop (case(ii)). 

 

5. CONCLUSION 

In this paper, differential transform method is 

used successfully for finding the solution of two 

dimensional steady laminar flow of an 

incompressible couple stress fluid in a porous 

channel. It is seen that this method is simple and 

easy to use and solves the problem without any 

discretization and does not require exertion of 

any flow parameter as in perturbation method. 

Although the non-Newtonian fluid flow problem 

deals with more complicated governing equations 

than the Newtonian case, the method does not get 

disturbed and works well. Besides this, the 

reliability of the method and reduction in size of 

computational domain gives this method a wider 

applicability. Hence, the Differential Transform 

Method is an effective and reliable tool in finding 

the semi- analytical solution to many non-linear 

systems. This paper uses DTM for the flow 

problem with the couple stress model of the non-

Newtonian fluid. However, there is no limitation 

for applying the DTM for such problems in 

similar geometry with any other non-Newtonian 

fluid model. 
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