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ABSTRACT 

Stability of rigid rotor supported on hybrid journal bearing with twin axial groove has been investigated using 

stiffness and damping coefficients of the bearings. In this paper the stability analysis of twin axial groove 

bearing is determined in different fluid flow regime. Non linear journal centre trajectories are drawn for small 

amplitude oscillations of the journal centre about its steady state position. It was observed that turbulence 

decreases 10 to 12 percent the stability margin of twin grooved journal bearings.  
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NOMENCLATURE 

a length of groove 

ijC  non dimensionless damping coefficient 

D diameter of bearing  

i,j co-ordinate  system used in analysis 

ijK  non dimensionless spring coefficient 

L length of bearing 

M mass of bearing 

MC critical mass of bearing 

Sn Somerfield number  

W width of groove           

Xj , Zj instantaneous journal centre co-ordinates 

jj ZX  ,  journal centre velocity 

 

αg location of groove 

 
1. INTRODUCTION 

Stability is invariably an important consideration in 

most high speed rotating machinery. Motion 

trajectory of journal centre in the wake of a 

disturbance from the equilibrium position can give 

more insight into the dynamic behavior of a journal 

bearing system than a mathematical criterion that 

simply determines if a system is stable or unstable 

[6]. Morton et al. (1987) presented the influence of 

grooves in bearing on the stability and response of 

rotating systems. They found that grooved bearing 

modify the journal locus by increasing the attitude 

angle and it also change the cavitation boundary at 

low eccentricity ratios i.e. high speeds. Pai and 

Mazumdar (1991) analyzed the stability 

characteristics of submerged plain journal bearings 

under a unidirectional constant load and variable 

rotating load. They solved unsteady Reynolds 

equation by a finite difference method with a 

successive over relaxation scheme to obtain the 

hydrodynamic forces. Using these forces, the 

equations of motion were solved by the fourth-order 

Runge-Kutta method to predict the transient 

behavior of the rotor. Finally, they obtained journal 

centre trajectories for different operating conditions.  

It was that at the inlet, flow into the bearing takes 

place only in the unloaded region. At the outlet, 

flow takes place out of the bearing in the loaded 

region.  

Das et al. (2005) presented the dynamic 

characteristics of hydrodynamic journal bearings 

lubricated with micropolar fluids. They concluded 

that higher threshold of stability is achieved in 

micropolar lubrication as compared to Newtonian 

lubrication. The threshold of stability gradually 

improves with more micropolar effect and the 

nonlinear analysis provides better stability than the 

linear analysis. Navthar and Halegowda (2010) 

presented a method to determine the synchronous 

whirl i.e. stability of hydrodynamic journal bearings 

by using dynamic characteristics such as stiffness 
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coefficients. They found out that bearing operating 

at a speed of 800 rpm and 150N load remains stable 

up to a speed of 1666 rpm. They also verified 

stability of bearing experimentally on journal 

bearing test rig by operating the bearing up to 1666 

rpm. The present paper deals with an investigation 

on the stability of two axial groove bearing. Results 

are presented in terms of the journal centre 

trajectory at constant speed for various Reynolds 

number and Sommerfeld number. Boukhelef et al. 

(2011) had done dynamic characterization and 

stability analysis of hydrodynamic bearing using 

FEM technique. They concluded that stability 

margin is decreases with increase in slenderness 

ratio (L/D). Brito et al. (2012) presented a 

comparison of the performance of journal bearing 

with single and a twin axial groove journal bearing. 

They found that under heavy loaded operation the 

twin groove configuration deteriorate the bearing 

performance when compared with the single groove 

arrangement due to uneven lubricant feed through 

each groove. Bhagat and Roy (2014) had done 

steady state thermo hydrodynamic analysis of two 

axial groove and multilobe hydrodynamic bearing. 

They have solved the Reynolds equation along with 

the energy equation and heat conduction equation in 

the gap between bush and shaft. Solghar et al. 

(2015) investigated thermo-hydrodynamics 

characteristics of two axial groove journal bearing 

by means of computational fluid dynamics 

technique. They concluded that the proposed model 

was able to accurately predict the temperature 

profile of twin groove plain hydrodynamic journal 

bearing, particularly in the inactive portion of the 

bearing and in the vicinity of grooves.  Ren and 

Feng (2016) presented a stability margin of the 

hybrid water lubricated journal bearings for fuel cell 

vehicle compressor. They also validated their result 

with experiments. 

2. STABILITY ANALYSIS 

Referring to Fig 1 the linearized equation of motion 

for zero unbalance was given in Eq. (1a) and Eq. 

(1b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Fluid domain (unwrapped bearing 

geometry) including coordinate system. 

J XX J XZ J XX J XZ JMX C X C Z K X K Z 0           1(a) 

J ZX J ZZ J ZX J ZZ JMZ C X C Z K X K Z 0       1(b) 

Now let 
1

t

JX X e and t

J 1Z Z e  

where Xj and Zj are amplitude of vibration. λ is the 

frequency.  

where,  

1

t

JX X e  , t

J 1Z Z e  ,
1

2 t

JX X e   

and 2 t

J 1Z Z e  in X and Z directions. 

Substituting 
JX , 

JZ and 
JX  in Eq. (1a), then 

equation of motion in X direction is given by 

1 1 1

2 t t t t t

XX XZ 1 XX XZ 1M X e C X e C Z e K X e K Z e 0           

or 

1 1 1

2

XX XZ 1 XX XZ 1M X C X C Z K X K Z 0       

1

2

XX XX XZ XZ 1(M C K )X ( C K )Z 0       

 2(a) 

Similarly substituting the 
JX ,

JZ and 
JX  in Eq. 

(1b), then equation of motion in Z direction is given 

by  

1

2

ZX ZX ZZ ZZ 1( C K )X (M C K )Z 0        2(b) 

Equations (2a) and Eq. (2b) can be written in matrix 

form as 

1

2

XX XX XZ XZ

2

ZX ZX ZZ ZZ 1

XM C K ( C K )
0

( C K ) (M C K ) Z

       
          

 (3) 

For non trivial solution of above equation, the 

determinant of above matrix should be zero, i.e. 

2

XX XX XZ XZ

2

ZX ZX ZZ ZZ

M C K C K
0

C K M C K

     
 

     

 

So, characteristics equation can be written as 

follows 

2 2

XX XX ZZ ZZ

ZX ZX XZ XZ

(M C K )(M C K )

( C K )( C K ) 0

       

    

 

Dividing above equation by M2, then 

4 3 2

XX ZZ XX ZZ XZ ZX XX ZZ2

XX ZZ ZZ XX XZ ZX ZX XZ2

XX ZZ XZ ZX2

1 1
(C C ) [C C C C M(K K )]

M M

1
(C K C K C K C K )

M

1
(K K K K ) 0

M

       

    

  

   (4) 

or, 
4 3 2

1 2 3 4a a a a 0                       (5) 

where, 

Axial 

groove 

w 

a 

π

D 

L 

Y,
β 

X,

α 

α1

g 

α2

g 

α1

g 

α1 α2 
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1 XX ZZ

2 XX ZZ XZ ZX XX ZZ2

3 XX ZZ ZZ XX XZ ZX ZX XZ2

4 XX ZZ XZ ZX2

1
a (C C )

M

1
a [C C C C M(K K )]

M

1
a (C K C K C K C K )

M

1
a (K K K K )

M

 

   

   

 

  

For stability analysis of linearized system given by 

Eq. (2a) and Eq. (2b), Routh-Herwitz criteria is 

employed on characteristic equation, Eq. (5) and is 

given in Table 1. 

 

Table 1 Routh’s tabulation for characteristic 

Eq. (5) 

 
According to Routh-Herwitz criteria of stability, the 

first and second row element of Routh’s tabulation 

table should be positive and all the element of first 

column should be positive. 

So from first condition of Routh-Herwitz criteria 

1 2 3 4a ,a ,a ,a 0                                                 (6) 

From second criteria of Routh criteria  

1 2 3a a a 0                                                          (7) 

or,    

1 2 3
1 4

1

1 2 3

1

a a a
a a

a
0

a a a

a

 
 

 



    

or,  
2

1 2 3 1 4a a a a a 0                                        (8)     

Substituting values of 
1 2 3a ,a ,a  in Eq. (8)  

XX ZZ XX ZZ XZ ZX XX ZZ2

XX ZZ ZZ XX XZ ZX ZX XZ2

2

XX ZZ ZZ XX XZ ZX ZX XZ2

2

XX ZZ XX ZZ XZ ZX

1 1
(C C ) [C C C C M(K K )]

M M

1
(C K C K C K C K )

M

1
(C K C K C K C K )

M

1
(C C (K K K K ) 0

M

   

  

 
    
 

 
    
 

  

2
2 1 4

1 2 3 32 2 4 2 2

a a1 1 1 1
a . a . a a . 0

M M M M M M
     

                                                                             (10) 

where, 

1 XX ZZa C C  , 
2 21 22a a a  , 

21 XX ZZ XZ ZXa (C C C C )  ,
22 XX ZZa M(K K )   

3 XX ZZ ZZ XX XZ ZX ZX XZa C K C K C K C K   

4 XX ZZ XZ ZXa (K K K K )   

so Eq. (10) is rewritten as 

2

1 2 3 3 1 4a .a .a Ma Ma a 0    

or, 
2 2

1 2 3 3 1 4a .a .a M(a a a )   

or, 
2 2

1 21 22 3 3 1 4a .(a Ma ).a M(a a a )    

or, 1 21 3

2 2

3 1 4 1 22 3

a a a
M

a a a a a a


 
                           (11) 

So for critical case the critical mass MC is equal to 

right side of Eq. (11) and is given as 

1 21 3
C 2 2

3 1 4 1 22 3

a a a
M

a a a a a a


 
 

     21

2 2

3 1 4 1 22 3

1 3

a

a a a a .a .a

a a


 

 

       21

3 4 1
22

1 3

a

a a a
a

a a



 

 

21
C

3 22 14 1

3 1

a
M

a a aa a

a a






                        (12) 

Substituting values of 
1 21 22 3 4a ,a ,a ,a ,a in Eq. 

(12), the critical mass for stability is given by 

Eq. (13) 
 

XX ZZ XZ ZX
C

XX ZZ XX ZZ XZ ZX

XX ZZ ZZ XX XZ ZX ZX XZ

XX XX ZZ ZZ XZ ZX ZX XZ

XX ZZ

C C C C
M

(C C )(K K K K )

C K C K C K C K

K C K C K C K C

C C



  
 

  
 
   
 

 

 

(13) 

From Eq. (13) it is clear that the smaller critical 

mass secured more stability for all Sommerfeld 

number. 

3. COMPUTATIONAL PROCEDURE 

Reynolds equation which governs flow of lubricant 

in the clearance space of a journal bearing is 

modified to study the laminar, transition and 

turbulent flows, by including turbulence 

coefficients 
XK  and 

YK . The short bearing 

λ4 1 a2 a4 

λ3 a1 a3 0 

λ2 
1 2 3

1

a a a 1

a

   1 4

1

a a 0 1

a

   
0 

λ1 

1 2 3
1 4

1

1 2 3

1

a a a
a a

a

a a a

a

 
 

 


 
0 0 

λ0 a4 0 0 
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approximation has been used to solve the Reynolds 

equation. With the short bearing approximation, the 

closed form expression of pressure distribution has 

been obtained by integrating twice the Reynolds 

equation and using boundary conditions. Positive 

pressure zone was established by deleting sub-

ambient pressure. For superlaminar flow, an 

iterative solution technique was employed for 

establishing flow regimes; laminar, transition or 

fully developed turbulent flow.  

3.1 Determination of Turbulence 

Coefficients 

To obtain the solution of Reynolds equation and 

thus the pressure distribution, flow regime and 

corresponding turbulence coefficients are 

determined iteratively. Initially flow is assumed to 

be either laminar or turbulent to get initial value of 

XK  and 
YK  and pressure distribution. From this 

pressure distribution circumferential, axial and total 

flow are obtained. After getting total flow, mean 

Reynolds number is determined and compared to a 

critical local Reynolds number. After getting 

modified flow regime new values of turbulence 

coefficients 
XK  and 

YK  are calculated. This 

procedure is repeated till difference in the 

corresponding nodal pressure in two successive 

iterations are not less than a pre assigned tolerance. 

After establishing a converged solution for pressure, 

fluid film reaction forces are computed. 

3.2 Journal Centre Equilibrium 

Position for External Load 

Initially a trial value of journal centre co-ordinates 

Xj and Zj are chosen and after establishing the 

extent of fluid film, the film reactions and its 

derivatives are calculated. Using these values ΔXj 

and ΔZj are calculated and the new values of Xj and 

Zj are obtained. This procedure is repeated until 

percentage change in eccentricity ratio is not less 

than a pre assigned tolerance. 

3.3 Computation of Fluid Film 

Thickness and Damping Coefficients 

For computation of fluid film stiffness co-efficients, 

derivatives of fluid film force with respect to the 

journal centre components 
JX and 

JZ  are 

computed numerically. Similarly for computation of 

fluid film damping coefficients, derivatives of fluid 

film forces with respect to the journal center 

velocity components 
JX and 

JZ  are computed 

numerically. 

3.4 Transient Motion Trajectory of the 

Journal Centre 

The linear trajectory from the linearized equation of 

motion and the nonlinear trajectory from the 

nonlinear equations of motion were obtained, using 

fourth order Runge-Kutta method. For this 

procedure, the second order equations of motion 

were converted into a set of first order equations. In 

the fourth order Runge-Kutta method, initial 

disturbance in position and velocities are given. For 

time marching solution the process is repeated four 

times and new position of journal centre is 

established. Journal centre trajectories were drawn 

at constant speed of operation with respect of 

linearized stability chart for both laminar and 

superlaminar flow conditions as shown in Fig. 4 to 

Fig 9.  

 

4. RESULT AND DISCUSSION 

The analysis and solution algorithm were used to 

compute the static and dynamic performance 

characteristics and to obtain transient motion 

trajectories. The motion trajectories were obtained 

for both, constant speed and 

accelerating/decelerating journals for the plain 

circular hydrodynamic journal bearing operating in 

laminar and super laminar flow conditions. These 

studies were conducted by taking bearing aspect 

ratio (L/D) 0.25 and 0.5. Transient  

analysis was particularly done for 0.5 aspect ratio, 

assuming bearing and journal axes parallel and ratio 

of nominal clearance to the journal radius 0.001 

(C/R = 0.001). 

To establish the validity of the analysis, solution 

algorithms and the computer program, the 

eccentricity ratio obtained from the present short 

bearing approximation were compared with finite 

and short bearing results available in Capone et al. 

(1987). In Fig 2, the comparison of eccentricity 

ratio are shown for laminar and superlaminar flow 

conditions of fluid film at L/D ratio of 0.25 between 

present short bearing analysis and the results of 

Capone et al. (1987). The obtained results are 

within the acceptable range of limit. 

 

 
Fig. 2. Eccentricity vs. Sommerfeld Number for 

L/D = 0.25 for variation of Reynolds number. 

 

Linearized stability analysis of the twin grooved 

journal bearing system is shown in Fig 3 in terms of 

stability chart under laminar and superlaminar flow 

conditions of the lubricant.  It is clear from Fig 3, 

turbulence decreases the stability of twin groove 

journal bearing as compared to non grooved journal 

bearing. In this figure characteristic speed is plotted 

against Sommerfeld number for laminar and 

superlaminar flow conditions of lubricant for twin 

groove journal bearing system. L/D ratio for this 

study was taken as 0.5. The obtained trend shows 

that with the increase in Sommerfeld number, 

characteristic speed decreases for a particular flow 
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conditions and becomes independent of 

Sommerfeld number for high Sommerfeld number 

for all flow conditions and for both twin grooved 

and non grooved bearing.  

 

 
Fig. 3. Comparative study of characteristic speed 

for groove and non-groove journal bearing. 

 

Journal bearing system is stable if operated to the 

left of the stability chart and unstable when 

operated to right of the curve. Curve shift towards 

left with increase in Reynolds number both for twin 

grooved and non grooved bearing. Results show 

that stability increases with decrease in the 

turbulence level for a particular value of 

Sommerfeld number. For a particular flow 

condition of the lubricant, stability curve shifts left 

for twin grooved bearing in comparison to non 

grooved bearing showing reduction in stability 

margin.  

To validate the stability results of linearized 

analysis, nonlinear journal centre trajectories were 

drawn for laminar and superlaminar flow conditions 

along β-line ‘OA’ shown in Fig 3. Sommerfeld 

numbers corresponding to different operating points 

taken along OA line are given in Table 2. 

 

Table 2 Sommerfeld number corresponding to 

different operating point along OA line of Fig. 3 

Operating point a b c 

Sommerfeld No. 0.053 0.11 0.17 

 

Journal centre trajectories as shown in Fig 4 to 9 are 

obtained at constant speed of operation with 

disturbance in displacement ΔXj and ΔZj equal to 

0.005. Disturbance in velocities 
JX  and 

JZ  was 

taken as zero. The operating points are ‘a’, ‘b’ and 

‘c’ corresponding to three different flow zones of 

laminar and super laminar flow regimes.  

At point ‘a’ the journal is stable for both laminar 

and super laminar flow conditions as shown in Fig 4 

and Fig 5. At the point ‘b’ the journal is stable (Fig 

6) when the turbulent effects are neglected but 

unstable when the turbulent effects are considered, 

Fig 7. At point ‘c’ the journal is unstable 

irrespective of the turbulent effects are considered 

or not (Fig 8 and Fig 9) 

 
Fig. 4. Nonlinear journal centre trajectory at 

constant speed along line OA (Laminar flow, 

L/D = 0.5, Sn = 0.053, at point ‘a’. 

 

 
Fig. 5. Nonlinear journal centre trajectory at 

constant speed along line OA (Re= 10000, L/D = 

0.5, Sn = 0.053, at point ‘a’. 

 

 

 
Fig. 6. Nonlinear journal centre trajectory at 

constant speed along line OA (Laminar flow, 

L/D = 0.5, Sn =0.11, at point ‘b’. 
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Fig. 7. Nonlinear journal centre trajectory at 

constant speed along line OA (Re=10000, L/D = 

0.5, Sn = 0.11, at point ‘b’. 

 

 
Fig. 8. Nonlinear journal centre trajectory at 

constant speed along line OA, Laminar flow, L/D 

= 0.5, Sn = 0.17, at point ‘c’. 

 

 
Fig. 9. Nonlinear journal centre trajectory at 

constant speed along line OA, Re = 10000, L/D = 

0.5, Sn = 0.17, at point ‘c’. 

 

5. CONCLUSION 

Turbulence decreases 10 to 12 percent of the 

stability margin of twin groove journal bearing 

similar to cylindrical non grooved bearing. 

Linearized stability curve shifts leftward on the 

stability chart with increase in Reynolds number, 

reducing the stability margin. Non linear analysis 

done in terms of journal centre trajectories verifies 

the linearized analysis.  
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